Models of Binary Data

Christopher Adolph

Political Science and CSSS
University of Washington, Seattle
Plan for today

Today

How to estimate a regression model with a binary outcome variable

Next time

How to interpret the results

Next week

How to judge whether the model fits the data well

But first: *exactly what is “logit”?*
Several distinct meanings of “logit,” including the logit function & the logit model

Let’s start with the logit function,
which is a tool for transforming continuous data
The logit function is a simple transformation mapping values in (0,1) to $(-\infty, \infty)$:

$$\text{logit}(y) = \log \left(\frac{y}{1-y} \right)$$

The logit transformation compresses differences near 0.5 and exaggerates differences in the neighborhood of 0 or 1.
Logit transforms are often applied to proportion data to make them unbounded, e.g., for use as the outcome in a linear regression.

Note that you cannot compute $\text{logit}(0)$ or $\text{logit}(1)$.

Be careful if your data contain exact 0’s or 1’s: you can’t just “round them off” to 0.0001 or 0.9999, as these values become extreme outliers on the logit scale!
The inverse of this function (the inverse-logit) maps from \((-\infty, \infty)\) to \((0,1)\):

\[
\logit^{-1}(y) = \frac{\exp(y)}{1 + \exp(y)} = \frac{1}{1 + \exp(-y)}
\]

The inverse-logit transform exaggerates differences in the midrange of \(y\) and compresses differences in the neighborhood of relatively small or large \(y\)'s
These are useful transformations for continuous data (akin to the log transformation)

You could use logit transformed variables in a linear regression, for example

How would you interpret the results on the original scale of y?
Compute $\text{logit}^{-1}(\hat{y}|x_{hyp})$ for x_{xhyp} of substantive interest

The above would still be linear regression on a transformed, continuous outcome – not the logit model, which is a nonlinear model of a binary outcome
Binary data & social science

Binary data are perhaps the most common social science measurement:

- Did you vote?
- Did an event occur (conflict, democratic transition, strike)?
- Is an institution/custom present in a culture?
- Did an individual commit a crime?
- Did a student complete a degree program?
Moreover, binary data analysis is fundamental to many advanced topics:

- Event history models
- Network models
- Models of sample selection
- Models of censoring
- Causal models

Finally, models of binary data are the easiest way to understand the *modus operandi* of maximum likelihood
Once upon a time, most people used linear regression to model 1s & 0s

Justification: LS is unbiased, as shown by Gauss-Markov theorem
But three big problems:

1. Functional form (poor fit)
But three big problems:

1. Functional form (poor fit)

2. Massive heteroskedasticity (inefficiency)
But three big problems:

1. Functional form (poor fit)

2. Massive heteroskedasticity (inefficiency)
But three big problems:

1. Functional form (poor fit)
2. Massive heteroskedasticity (inefficiency)
3. Impossible predictions (*prima facie* inappropriate)

Unless your *only* concern is unbiasedness, the “linear probability model” is inappropriate for binary data.
A sensible model of binary data

iid binary data precisely fit the assumptions of the Bernoulli distribution

Recall the Bernoulli had the following pdf

\[
Pr(y_i = 1 | \pi_i) = f_{\text{Bernoulli}}(y_i | \pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1-y_i}
\]

where

\[
E(y_i) = \pi_i
\]
A sensible model of binary data

iid binary data precisely fit the assumptions of the Bernoulli distribution

Recall the Bernoulli had the following pdf

\[\Pr(y_i = 1 | \pi_i) = f_{\text{Bernoulli}}(y_i | \pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1 - y_i} \]

where

\[\mathbb{E}(y_i) = \pi_i \]

We can easily form the likelihood from the joint probability:

\[\mathcal{L}(\pi | y) \propto \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1 - y_i} \]
A sensible model of binary data

iid binary data precisely fit the assumptions of the Bernoulli distribution

Recall the Bernoulli had the following pdf

$$
\Pr(y_i = 1|\pi_i) = f_{\text{Bernoulli}}(y_i|\pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1-y_i}
$$

where

$$
\mathbb{E}(y_i) = \pi_i
$$

We can easily form the likelihood from the joint probability:

$$
\mathcal{L}(\pi|y) \propto \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1-y_i}
$$

$$
\log \mathcal{L}(\pi|y) \propto \sum_{i=1}^{n} y_i \log \pi_i + (1 - y_i) \log(1 - \pi_i)
$$

A simple likelihood, easy to maximize numerically – approximately quadratic
Systematic component of the binary choice model

\[y_i \sim \text{Bernoulli}(y_i | \pi_i) \]

\[\pi_i = g(x_i \beta) \]
Systematic component of the binary choice model

\[y_i \sim \text{Bernoulli}(y_i|\pi_i) \]
\[\pi_i = g(x_i\beta) \]

What is the functional form of \(\pi \)? That is, what should we choose for \(g(\cdot) \)?
Systematic component of the binary choice model

\[y_i \sim \text{Bernoulli}(y_i | \pi_i) \]
\[\pi_i = g(x_i \beta) \]

What is the functional form of \(\pi \)? That is, what should we choose for \(g(\cdot) \)?

- \(\pi \) is bounded \([0, 1]\)
Systematic component of the binary choice model

\[y_i \sim \text{Bernoulli}(y_i | \pi_i) \]
\[\pi_i = g(x_i \beta) \]

What is the functional form of \(\pi \)? That is, what should we choose for \(g(\cdot) \)?

- \(\pi \) is bounded \([0, 1]\)

- An S-curve is an attractive option
Systematic component of the binary choice model

\[y_i \sim \text{Bernoulli}(y_i | \pi_i) \]
\[\pi_i = g(x_i \beta) \]

What is the functional form of \(\pi \)? That is, what should we choose for \(g(\cdot) \)?

- \(\pi \) is bounded \([0, 1]\)
- An S-curve is an attractive option
- Any \(x_i \beta \) in \([-\infty, \infty]\) then leads to a \(\pi \) in \([0, 1]\)
Systematic component of the binary choice model

\[y_i \sim \text{Bernoulli}(y_i | \pi_i) \]
\[\pi_i = g(x_i \beta) \]

What is the functional form of \(\pi \)? That is, what should we choose for \(g(\cdot) \)?

- \(\pi \) is bounded \([0, 1]\)
- An S-curve is an attractive option
- Any \(x_i \beta \) in \([-\infty, \infty]\) then leads to a \(\pi \) in \([0, 1]\)
- Exact choice of a function is arbitrary
Systematic component of the binary choice model

\[
y_i \sim \text{Bernoulli}(y_i | \pi_i)
\]
\[
\pi_i = g(x_i \beta)
\]

What is the functional form of \(\pi \)? That is, what should we choose for \(g(\cdot) \)?

- \(\pi \) is bounded \([0, 1]\)
- An S-curve is an attractive option
- Any \(x_i \beta \) in \([-\infty, \infty]\) then leads to a \(\pi \) in \([0, 1]\)
- Exact choice of a function is arbitrary
- cdfs are often S-curves, so let’s try some of them
Systematic component: logit

A popular choice: the cdf of the standard logistic distribution

\[\pi_i = \text{logit}^{-1}(x_i \beta) \]
Systematic component: logit

A popular choice: the cdf of the standard logistic distribution

\[\pi_i = \logit^{-1}(x_i \beta) = \frac{\exp(x_i \beta)}{1 + \exp(x_i \beta)} \]
A popular choice: the cdf of the standard logistic distribution

\[\pi_i = \logit^{-1}(x_i \beta) = \frac{\exp(x_i \beta)}{1 + \exp(x_i \beta)} = \frac{1}{1 + \exp(-x_i \beta)} \]
A popular choice: the cdf of the standard logistic distribution

\[\pi_i = \logit^{-1}(x_i \beta) = \frac{\exp(x_i \beta)}{1 + \exp(x_i \beta)} = \frac{1}{1 + \exp(-x_i \beta)} \]

This leads to the \textit{logit model}, which is very mathematically tractable

\[\mathcal{L}(\pi|y) \propto \prod_{i=1}^{n} \pi_i^{y_i}(1 - \pi_i)^{1-y_i} \]
Systematic component: logit

A popular choice: the cdf of the standard logistic distribution

$$\pi_i = \logit^{-1}(x_i \beta) = \frac{\exp(x_i \beta)}{1 + \exp(x_i \beta)} = \frac{1}{1 + \exp(-x_i \beta)}$$

This leads to the logit model, which is very mathematically tractable

$$L(\pi | y) \propto \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1-y_i}$$

$$L(\beta | y) \propto \prod_{i=1}^{n} \left(\frac{1}{1 + \exp(-x_i \beta)} \right)^{y_i} \left(1 - \frac{1}{1 + \exp(-x_i \beta)} \right)^{1-y_i}$$
Systematic component: logit

A popular choice: the cdf of the standard logistic distribution

\[\pi_i = \logit^{-1}(x_i \beta) = \frac{\exp(x_i \beta)}{1 + \exp(x_i \beta)} = \frac{1}{1 + \exp(-x_i \beta)} \]

This leads to the *logit model*, which is very mathematically tractable

\[
\mathcal{L}(\pi | y) \propto \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1-y_i} \\
\mathcal{L}(\beta | y) \propto \prod_{i=1}^{n} \left(\frac{1}{1 + \exp(-x_i \beta)} \right)^{y_i} \left(1 - \frac{1}{1 + \exp(-x_i \beta)} \right)^{1-y_i} \\
\mathcal{L}(\beta | y) \propto \prod_{i=1}^{n} (1 + \exp(-x_i \beta))^{-y_i} (1 + \exp(x_i \beta))^{-(1-y_i)}
\]
Systematic component: logit

A popular choice: the cdf of the standard logistic distribution

\[
\pi_i = \text{logit}^{-1}(x_i \beta) = \frac{\exp(x_i \beta)}{1 + \exp(x_i \beta)} = \frac{1}{1 + \exp(-x_i \beta)}
\]

This leads to the logit model, which is very mathematically tractable

\[
\mathcal{L}(\pi|y) \propto \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1-y_i}
\]

\[
\mathcal{L}(\beta|y) \propto \prod_{i=1}^{n} \left(\frac{1}{1 + \exp(-x_i \beta)} \right)^{y_i} \left(1 - \frac{1}{1 + \exp(-x_i \beta)} \right)^{1-y_i}
\]

\[
\mathcal{L}(\beta|y) \propto \prod_{i=1}^{n} (1 + \exp(-x_i \beta))^{-y_i} (1 + \exp(x_i \beta))^{1-y_i}
\]

\[
\log \mathcal{L}(\beta|y) \propto \sum_{i=1}^{n} -y_i \log (1 + \exp(-x_i \beta)) - (1 - y_i) \log (1 + \exp(x_i \beta))
\]
Systematic component: probit

Back to models of binary outcomes...

Another popular choice: the cdf of the standard Normal distribution

\[\pi_i = \int_{-\infty}^{0} (2\pi)^{-1/2} \exp \left(-\frac{1}{2} (y_i^* - x_i \beta)^2 \right) dy_i^* \]
Systematic component: probit

Back to models of binary outcomes. . .

Another popular choice: the cdf of the standard Normal distribution

\[\pi_i = \int_{-\infty}^{0} (2\pi)^{-1/2} \exp \left(-\frac{1}{2} (y_i^* - x_i \beta)^2 \right) \, dy_i^* \]

\[= \Phi(x_i \beta) = \text{probit}^{-1}(x_i \beta) \]

The probit is the inverse of the Normal cdf, and *vice versa*

As with logit, “probit” can refer to a function or a model based on that function

The Normal cdf is not analytically defined but can be approximated quickly
Systematic component: probit

Another popular choice: the cdf of the standard Normal distribution

\[\pi_i = \Phi(x_i \beta) = \text{probit}^{-1}(x_i \beta) \]

How do we derive an MLE for probit?

\[L(\pi|y) \propto \prod_{i=1}^{n} \pi_i^{y_i}(1 - \pi_i)^{1-y_i} \]
Systematic component: probit

Another popular choice: the cdf of the standard Normal distribution

$$\pi_i = \Phi(x_i \beta) = \text{probit}^{-1}(x_i \beta)$$

How do we derive an MLE for probit?

$$\mathcal{L}(\pi|y) \propto \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1-y_i}$$

$$\mathcal{L}(\beta|y) \propto \prod_{i=1}^{n} \Phi(x_i \beta)^{y_i} (1 - \Phi(x_i \beta))^{1-y_i}$$
Systematic component: probit

Another popular choice: the cdf of the standard Normal distribution

\[\pi_i = \Phi(x_i \beta) = \text{probit}^{-1}(x_i \beta) \]

How do we derive an MLE for probit?

\[
\mathcal{L}(\pi|y) \propto \prod_{i=1}^{n} \pi_i^{y_i}(1 - \pi_i)^{1-y_i}
\]

\[
\mathcal{L}(\beta|y) \propto \prod_{i=1}^{n} \Phi(x_i \beta)^{y_i}(1 - \Phi(x_i \beta))^{1-y_i}
\]

\[
\log \mathcal{L}(\beta|y) \propto \sum_{i=1}^{n} y_i \log \Phi(x_i \beta) + (1 - y_i) \log (1 - \Phi(x_i \beta))
\]

Use \(\text{pnorm()} \) in R to calculate \(\Phi(\cdot) \)
Systematic component: choices...

We could continue using still more mathematical function for S-curves.

Before we do, let’s think about how we choose a specific S-curve for our data.

Two questions:

1. Can we justify the choice of a particular systematic component?

2. Does it make a difference which systematic component we choose?
Latent variables justification

One justification for choosing a particular function form:

Concepts are seldom really binary “underneath”

Often study a continuous concept with imperfect binary measurement

Underlying concept Observable outcomes
Latent variables justification

One justification for choosing a particular function form:

Concepts are seldom really binary “underneath”

Often study a continuous concept with imperfect binary measurement

<table>
<thead>
<tr>
<th>Underlying concept</th>
<th>Observable outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insect health</td>
<td>alive or dead</td>
</tr>
</tbody>
</table>
Latent variables justification

One justification for choosing a particular function form:

Concepts are seldom really binary “underneath”

Often study a continuous concept with imperfect binary measurement

<table>
<thead>
<tr>
<th>Underlying concept</th>
<th>Observable outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insect health</td>
<td>alive or dead</td>
</tr>
<tr>
<td>International tension</td>
<td>war or peace</td>
</tr>
</tbody>
</table>
One justification for choosing a particular function form:

Concepts are seldom really binary “underneath”

Often study a continuous concept with imperfect binary measurement

<table>
<thead>
<tr>
<th>Underlying concept</th>
<th>Observable outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insect health</td>
<td>alive or dead</td>
</tr>
<tr>
<td>International tension</td>
<td>war or peace</td>
</tr>
<tr>
<td>Conservatism</td>
<td>yea or nay on roll call</td>
</tr>
</tbody>
</table>
Latent variables justification

One justification for choosing a particular function form:

Concepts are seldom really binary “underneath”

Often study a continuous concept with imperfect binary measurement

<table>
<thead>
<tr>
<th>Underlying concept</th>
<th>Observable outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insect health</td>
<td>alive or dead</td>
</tr>
<tr>
<td>International tension</td>
<td>war or peace</td>
</tr>
<tr>
<td>Conservatism</td>
<td>yea or nay on roll call</td>
</tr>
<tr>
<td>Aptitude</td>
<td>Correct or incorrect exam answer</td>
</tr>
</tbody>
</table>

In each case, we observe binary realizations y_i of an underlying (possibly unmeasurable) continuous variable y_i^*.
If we observed y_i^* we could use a linear model

$$y_i^* = x_i \beta + \varepsilon_i$$

where ε_i is a random variable following any *symmetrical* distribution (possibly but not necessarily the Normal distribution)

The mean of ε_i is zero, and the variance is fixed
Latent variables justification

If we observed y_i^* we could use a linear model

$$y_i^* = x_i \beta + \varepsilon_i$$

where ε_i is a random variable following any *symmetrical* distribution (possibly but not necessarily the Normal distribution)

The mean of ε_i is zero, and the variance is fixed

We don’t observe y_i^*, but we assume it created y_i as follows:

$$y_i = \begin{cases}
1 & \text{if } y_i^* > \tau \\
0 & \text{if } y_i^* \leq \tau
\end{cases}$$

In this setup, τ is a *cutpoint* along the scale of y_i^*

We usually don’t know where τ is
Latent variables justification

For identification and without loss of generality, assume $\tau = 0$, so that

$$y_i = \begin{cases}
1 & \text{if } y_i^* > 0 \\
0 & \text{if } y_i^* \leq 0
\end{cases}$$

In a sense, regression with y_i is a “degenerate” form of linear regression where we observe only the sign of the original dependent variable y_i^*.

Aside: this implies binary outcome variables contain less information per observation than any other kind of outcome variable.

With a binary outcome we need much larger N to precisely estimate parameters, compared to linear regression.
Can we derive an estimator based on the latent variable setup?

\[
\Pr(y_i^* > 0 | \beta, x_i) = \Pr(x_i \beta + \varepsilon_i > 0)
\]
Can we derive an estimator based on the latent variable setup?

\[
\Pr(y_i^* > 0 | \beta, x_i) = \Pr(x_i\beta + \varepsilon_i > 0) = \Pr(\varepsilon_i > -x_i\beta)
\]
Can we derive an estimator based on the latent variable setup?

\[
\Pr(y_i^* > 0 | \beta, x_i) = \Pr(x_i \beta + \epsilon_i > 0) = \Pr(\epsilon_i > -x_i \beta) = \Pr(\epsilon_i < x_i \beta)
\]

where the last step follows from the symmetry of \(f(\cdot) \)
Note that $\Pr(\varepsilon_i < x_i \beta)$ is the definition of a cdf:
Note that $\Pr(\varepsilon_i < x_i\beta)$ is the definition of a cdf:

$$\Pr(y_i^* > 0|\beta, x_i) = F(x_i\beta)$$
Note that $\Pr(\varepsilon_i < x_i \beta)$ is the definition of a cdf:

\begin{align*}
\Pr(y_i^* > 0 | \beta, x_i) &= F(x_i \beta) \\
\Pr(y_i = 1 | \beta, x_i) &= F(x_i \beta)
\end{align*}

So to justify choice of a specific cdf as the systematic component, we could argue for a specific pdf of the latent variable.
Latent variables justification

Suppose we thought the latent variable was Normal
Latent variables justification

Suppose we thought the latent variable was Normal

Since we can’t observe it, we can assume it is $f_N(0, 1)$ w/o loss of generality
Suppose we thought the latent variable was Normal

Since we can’t observe it, we can assume it is $f_{\mathcal{N}}(0, 1)$ w/o loss of generality

This implies the binary variable is related to $x_i \beta$ through the Normal cdf

\Rightarrow the Probit model
Latent variables justification

Suppose we thought the latent variable was Normal

Since we can’t observe it, we can assume it is \(f_N(0, 1) \) w/o loss of generality

This implies the binary variable is related to \(x_i \beta \) through the Normal cdf

\[\Rightarrow \] the Probit model

Or, suppose we assume the latent variable was standard logistic distributed:

\[
y_i^* = f_{\text{Standard Logistic}}(x_i \beta) = \frac{\exp(-x_i \beta)}{[1 + \exp(x_i \beta)]^2}
\]
Latent variables justification

Suppose we thought the latent variable was Normal

Since we can’t observe it, we can assume it is \(f_N(0, 1) \) w/o loss of generality

This implies the binary variable is related to \(x_i \beta \) through the Normal cdf

\[\Rightarrow \text{the Probit model} \]

Or, suppose we assume the latent variable was standard logistic distributed:

\[
\begin{align*}
y^*_i &= f_{\text{Standard Logistic}}(x_i \beta) = \frac{\exp(-x_i \beta)}{[1 + \exp(x_i \beta)]^2} \\
\Pr(y_i = 1|x_i, \beta) &= F_{\text{Standard Logistic}}(x_i \beta) = \frac{1}{1 + \exp(-x_i \beta)}
\end{align*}
\]

\[\Rightarrow \text{The logit model} \]

Does it matter which we choose? Let’s look at some S-curves to find out
The logistic CDF – which happens to be the inverse-logit function – is the most popular systematic component for models of binary data.

Above right is a plot of this model: \(\text{logit}^{-1}(\beta_0 + \beta_1 x_i) \)

This would be an appropriate model for \(\Pr(y_i | x_i \beta) \) if we believed the latent variable \(y_i^* = x_i \beta \) followed a Standard Logistic distribution (left panel).
Let’s assume we have a single covariate x_i with coefficient β_1 and a constant β_0.

Thus our systematic component is $\text{logit}^{-1}(\beta_0 + \beta_1 x_i)$.

The horizontal axes above show the value of x_i used to compute the latent variable $y_i^* = \beta_0 + \beta_1 x_i$.
Assume that $\beta_0 = 0$ and $\beta_1 = 1$

Suppose that $x_i = 1$
Now the shaded circle marks the probability that $y_i = 1$

What happens to the logit curve – and this probability – as we vary β_0 or β_1?
If we increase β_0 to 2, then the same value of x_i will lead to a higher value of y_i^*. This shifts the logit curve to the left, analogous to increasing the constant in linear regression.

Although the curvature of the logit curve is unchanged, the change in probability at any given value of x_i is nonlinear.
Likewise, if we lower β_0 to 2, then the same value of x_i will lead to a lower value of y_i^*.

This shifts the logit curve to the right, analogous to decreasing the constant in linear regression.

Again, there is no change in curvature.
Raising β_1 from 1 to 2 does change the shape of the curve.

It is now steeper, analogous to shifting the slope of a regression line.

Note the change is nonlinear, with strongest effects near a probability of 0.5.
Lowering β_1 from 1 to 0.5 flattens the curve

The logit is now a bit more linear

What would it take to make the logit completely linear?
Let’s compare logit and probit

Notice the probit has thinner tails than the logit

Does this mean there is a big difference between logit and probit models?
No. There exists a probit curve to closely match any given logit curve

The MLE will find this probit curve, so there’s only a trivial difference between logit and probit for binary outcomes

If there’s no real difference between logit and probit, does it matter which S-curve we use?
What if we abandon symmetry? (What might this mean substantively?)

If we assume a particular asymmetry in the latent variable, such as shown above, we can obtain an appropriate S-curve.

This example is the log-log model $\pi = \exp[-\exp(-\mu)]$

How might we flip this curve? Use the complementary log-log, $\pi = 1 - \exp[-\exp(\mu)]$ or reverse-code y_i
But what if we want to test asymmetry, rather than assume it?

Jonathan Nagler proposed “scobit,” a generalization of logit with a skew parameter α:

$$1 - \frac{1}{(1 + \exp(x_i/\beta))^\alpha}$$
A scobit with $\alpha = 1$ produces logit as a special case.

Other α’s produce different skews.

Scobit allows the model to find any asymmetry that may be present.
Here we see $\alpha > 1$ produces a log-log style curve.

While it’s often a good idea to let the data reveal the structure of the model, scobit may be the exception.

Takes an enormous amount of data, because curves are similar and binary outcomes contain little information.
Here we see $\alpha < 1$ produces a clog-log style curve.

Virtually impossible to estimate unless skew is extreme or data massive?

In practice, use logit or probit unless you have a strong reason to suspect a specific asymmetry.

In which case, use log-log or clog-log as appropriate.
Interpreting logit models

So far, we’ve learned how to estimate binary choice models

Now, we’ll learn how to interpret these estimates

Later, we’ll learn to see if our estimates are any good

Everything today will be in terms of logit, but most applies, *mutatis mutandis*, to probit, log-log, clog-log, scobit, etc.

Running example: Why do people vote?

We will explore a simple dataset using a naive model of voting to illustrate interpretation of logistic regression parameters

*Caveat: the goal is *not* to deeply understand voting; the model is incomplete*
Voting data: NES 2000

Turnout is binary: people either vote ($\text{Vote}_i = 1$) or they don’t ($\text{Vote}_i = 0$)

Many factors could influence turn-out; we focus on age and education

<table>
<thead>
<tr>
<th>vote00</th>
<th>age</th>
<th>hsdeg</th>
<th>coldeg</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>1</td>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td>[2,]</td>
<td>0</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>[3,]</td>
<td>1</td>
<td>57</td>
<td>1</td>
</tr>
<tr>
<td>[4,]</td>
<td>1</td>
<td>63</td>
<td>1</td>
</tr>
<tr>
<td>[5,]</td>
<td>1</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>[6,]</td>
<td>1</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>[7,]</td>
<td>0</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>[8,]</td>
<td>1</td>
<td>47</td>
<td>1</td>
</tr>
<tr>
<td>[9,]</td>
<td>1</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>[10,]</td>
<td>1</td>
<td>48</td>
<td>1</td>
</tr>
</tbody>
</table>

(Notice the structure of hsdeg and coldeg)
A logit model

Let’s model Vote_i as a function of Age, HSDeg, and ColDeg.

Formally,

$$\text{Pr}(\text{Vote}_i|\pi_i) = f_{\text{Bern}}(\pi_i)$$

$$\pi_i = \frac{1}{1 + \exp(-\mu_i)}$$

$$\mu_i = \beta_0 + \beta_{\text{Age}}\text{Age}_i + \beta_{\text{HSDeg}}\text{HSDeg}_i + \beta_{\text{ColDeg}}\text{ColDeg}_i$$

That’s a mouthful! A more concise version?
A logit model

Let’s model \(\text{Vote}_i \) as a function of \(\text{Age} \), \(\text{HSDeg} \), and \(\text{ColDeg} \).

Slightly more compact notation:

\[
\text{Vote}_i \sim \text{Bernoulli}(\pi_i)
\]

\[
\pi_i = \logit^{-1}(\beta_0 + \beta_{\text{Age}}\text{Age}_i + \beta_{\text{HSDeg}}\text{HSDeg}_i + \beta_{\text{ColDeg}}\text{ColDeg}_i)
\]

\textbf{Note:} You can’t use the “+ \varepsilon_i” notation with logit or any other nonlinear model!
A logit model: how I write models in a paper

Still more compact notation that might appear in a paper:

I model respondent i’s decision to vote in the 2000 U.S. presidential election ($\text{Vote}_i = 1$) using logistic regression:

$$\text{Vote}_i \sim \text{Bernoulli}(\pi_i)$$

$$\pi_i = \logit^{-1}(x_i \beta)$$

where x_i is a vector of covariates including the respondent’s Age in years, whether the respondent has (at least) a high school degree (HS Degree), and whether the respondent has a college degree (College Degree). All variables are taken from the ANES (American National Election Study, 2000).

This is very helpful if we add additional stochastic layers or hierarchical structure to the model, but overkill here
For a simple logit model, we can be even more concise. . .

I model respondent i’s decision to vote in the 2000 U.S. presidential election ($\text{Vote}_i = 1$) using logistic regression:

$$\text{Vote}_i \sim \text{Bernoulli}(\logit^{-1}(\mathbf{x}_i \beta))$$

(3)

where \mathbf{x}_i is a vector of covariates including the respondent’s Age in years, whether the respondent has (at least) a high school degree (HS Degree), and whether the respondent has a college degree (College Degree). All variables are taken from the ANES (American National Election Study, 2000).

This is how I would write up this model in a paper if I felt the need to write out the model formally.
A logit model

Let’s model Vote_i as a function of Age, HSDeg, and ColDeg

Back to this notation for this lecture:

\[
\begin{align*}
\text{Vote}_i & \sim \text{Bernoulli}(\pi_i) \\
\pi_i & = \logit^{-1}(\beta_0 + \beta_{\text{Age}} \text{Age}_i + \beta_{\text{HSDeg}} \text{HSDeg}_i + \beta_{\text{ColDeg}} \text{ColDeg}_i)
\end{align*}
\]

Note: I use this odd notation here to make it easier to talk about specific coefficients across models. Don’t imitate it in papers or homeworks!

We expect to Age and Education to increase $\Pr(\text{Vote})$.

Thus we expect $\beta_{\text{Age}} > 0$, $\beta_{\text{HSDeg}} > 0$, $\beta_{\text{ColDeg}} > 0$.

This is the (now familiar) logit model

We estimate it using ML, such as through `optim` in R.
Exciting R output

$par
(Intercept) xage xhsdeg xcoldeg
-2.23246823 0.03169878 1.29593503 1.18035804

$value
[1] 1027.954

$counts
function gradient
 49 8

$convergence
[1] 0

$hessian
(Intercept) xage xhsdeg xcoldeg
(Intercept) 349.69863 15813.476 308.88407 73.52431
xage 15813.476 810140.667 13386.997 3074.983
xhsdeg 308.88407 13386.997 308.88407 73.52431
xcoldeg 73.52431 3074.983 73.52431 73.52431
Table 1: *Determinants of voting in the 2000 presidential election.* Logit coefficients estimated using data from the 2000 American National Election Survey.

<table>
<thead>
<tr>
<th></th>
<th>est.</th>
<th>s.e.</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.032</td>
<td>0.003</td>
<td><0.001</td>
</tr>
<tr>
<td>High School Grad</td>
<td>1.296</td>
<td>0.178</td>
<td><0.001</td>
</tr>
<tr>
<td>College Grad</td>
<td>1.180</td>
<td>0.134</td>
<td><0.001</td>
</tr>
<tr>
<td>Constant</td>
<td>−2.232</td>
<td>0.257</td>
<td><0.001</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>log likelihood</td>
<td>−1027.95</td>
</tr>
<tr>
<td>N</td>
<td>1798</td>
</tr>
</tbody>
</table>

We can make the R output prettier

We’ll also calculate *p*-values, using \(p = 1 - F_t \left(\frac{\hat{\beta}}{\sqrt{\text{var}(\hat{\beta})}}, n - k \right) \)

(Aside: where do we find these quantities?)

All parameters have expected signs and are very significant

Declare victory and publish?
Table 2: *Determinants of voting in the 2000 presidential election.* Logit coefficients estimated using data from the 2000 American National Election Survey.

<table>
<thead>
<tr>
<th></th>
<th>est.</th>
<th>s.e.</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.032</td>
<td>0.003</td>
<td><0.001</td>
</tr>
<tr>
<td>High School Grad</td>
<td>1.296</td>
<td>0.178</td>
<td><0.001</td>
</tr>
<tr>
<td>College Grad</td>
<td>1.180</td>
<td>0.134</td>
<td><0.001</td>
</tr>
<tr>
<td>Constant</td>
<td>−2.232</td>
<td>0.257</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Log likelihood: −1027.95

N = 1798

What do these estimates *mean*?

<table>
<thead>
<tr>
<th></th>
<th>est.</th>
<th>s.e.</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.032</td>
<td>0.003</td>
<td><0.001</td>
</tr>
<tr>
<td>High School Grad</td>
<td>1.296</td>
<td>0.178</td>
<td><0.001</td>
</tr>
<tr>
<td>College Grad</td>
<td>1.180</td>
<td>0.134</td>
<td><0.001</td>
</tr>
<tr>
<td>Constant</td>
<td>−2.232</td>
<td>0.257</td>
<td><0.001</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>log likelihood</td>
<td>−1027.95</td>
</tr>
<tr>
<td>N</td>
<td>1798</td>
</tr>
</tbody>
</table>

What do these estimates *mean*? Are the effects small or large? Which is “biggest”?
Table 2: *Determinants of voting in the 2000 presidential election.* Logit coefficients estimated using data from the 2000 American National Election Survey.

<table>
<thead>
<tr>
<th>Determinant</th>
<th>est.</th>
<th>s.e.</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.032</td>
<td>0.003</td>
<td><0.001</td>
</tr>
<tr>
<td>High School Grad</td>
<td>1.296</td>
<td>0.178</td>
<td><0.001</td>
</tr>
<tr>
<td>College Grad</td>
<td>1.180</td>
<td>0.134</td>
<td><0.001</td>
</tr>
<tr>
<td>Constant</td>
<td>−2.232</td>
<td>0.257</td>
<td><0.001</td>
</tr>
<tr>
<td>log likelihood</td>
<td>−1027.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1798</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What do these estimates *mean*? Are the effects small or large? Which is “biggest”?

What is $\Pr(\text{Vote}|\text{Age} = a, \text{HSDeg} = h, \text{ColDeg} = c)$, for interesting a, h, c?
Table 2: *Determinants of voting in the 2000 presidential election.* Logit coefficients estimated using data from the 2000 American National Election Survey.

<table>
<thead>
<tr>
<th></th>
<th>est.</th>
<th>s.e.</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.032</td>
<td>0.003</td>
<td><0.001</td>
</tr>
<tr>
<td>High School Grad</td>
<td>1.296</td>
<td>0.178</td>
<td><0.001</td>
</tr>
<tr>
<td>College Grad</td>
<td>1.180</td>
<td>0.134</td>
<td><0.001</td>
</tr>
<tr>
<td>Constant</td>
<td>−2.232</td>
<td>0.257</td>
<td><0.001</td>
</tr>
</tbody>
</table>

log likelihood: −1027.95

N: 1798

What do these estimates *mean*? Are the effects small or large? Which is “biggest”?

What is Pr(Vote|Age = a, HSDeg = h, ColDeg = c), for interesting a, h, c?

What is the ΔPr(Vote) if we take a person on average age and give them a college degree? or increase their age by ten years?

<table>
<thead>
<tr>
<th></th>
<th>est.</th>
<th>s.e.</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.032</td>
<td>0.003</td>
<td><0.001</td>
</tr>
<tr>
<td>High School Grad</td>
<td>1.296</td>
<td>0.178</td>
<td><0.001</td>
</tr>
<tr>
<td>College Grad</td>
<td>1.180</td>
<td>0.134</td>
<td><0.001</td>
</tr>
<tr>
<td>Constant</td>
<td>−2.232</td>
<td>0.257</td>
<td><0.001</td>
</tr>
</tbody>
</table>

log likelihood −1027.95

N 1798

What do these estimates *mean*? Are the effects small or large? Which is “biggest”?

What is \(\Pr(\text{Vote}|\text{Age} = a, \text{HSDeg} = h, \text{ColDeg} = c) \), for interesting \(a, h, c \)?

What is the \(\Delta \Pr(\text{Vote}) \) if we take a person on average age and give them a college degree? or increase their age by ten years?

What are the confidence intervals for any of these quantities?
Table 2: *Determinants of voting in the 2000 presidential election.* Logit coefficients estimated using data from the 2000 American National Election Survey.

<table>
<thead>
<tr>
<th></th>
<th>est.</th>
<th>s.e.</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.032</td>
<td>0.003</td>
<td><0.001</td>
</tr>
<tr>
<td>High School Grad</td>
<td>1.296</td>
<td>0.178</td>
<td><0.001</td>
</tr>
<tr>
<td>College Grad</td>
<td>1.180</td>
<td>0.134</td>
<td><0.001</td>
</tr>
<tr>
<td>Constant</td>
<td>-2.232</td>
<td>0.257</td>
<td><0.001</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>log likelihood</td>
<td>-1027.95</td>
</tr>
<tr>
<td>N</td>
<td>1798</td>
</tr>
</tbody>
</table>

What do these estimates *mean*? Are the effects small or large? Which is “biggest”?

What is \(\Pr(\text{Vote}|\text{Age} = a, \text{HSDeg} = h, \text{ColDeg} = c)\), for interesting \(a, h, c \)?

What is the \(\Delta \Pr(\text{Vote}) \) if we take a person on average age and give them a college degree? or increase their age by ten years?

What are the confidence intervals for any of these quantities?

... Maybe we’re not finished with the analysis
4 ways to interpret logit results

1. Graphical display of response surface
2. Derivatives calculated at points on the response surface
3. Directly interpret coefficients on the scale of estimation (the logit)
4. Calculate interesting expected values & first differences

All four are trivially expressed by the coefficients in linear regression, but not in logit or other non-linear models
Plotting the response surface

The response surface is a complete summary of \(\mathbb{E}(\pi|x = x_c) \) for any specific possible values of \(x \) across \(k \) covariates.

This is a manifold (bumpy blanket) in \(k + 1 \) dimensions.

(Approximates a linear regression (flat sheet) only to extent that)

\[
\text{For all } x_c, \Pr(y|x = x_c) \approx \bar{y}
\]

That is, only for very poorly fitting/uninformative models!)

Unwieldy, especially if \(> 2 \) predictor variables.

Even then, not everyone can read 3D plots well.

Confidence intervals can be tricky to display – but see Sun and Genton (2011) “Functional boxplots” *J. of Computational & Graphical Stat.*
Derivative methods

For linear regression:

$$\frac{\partial \hat{y}}{\partial x_j} = \hat{\beta}_j$$

Derivative is a constant – very convenient summary
Derivative methods

For linear regression:

\[
\frac{\partial \hat{y}}{\partial x_j} = \hat{\beta}_j
\]

Derivative is a constant – very convenient summary

For logit:

\[
\frac{\partial \hat{\pi}}{\partial x_j} = \hat{\beta}_j \hat{\pi}(1 - \hat{\pi})
\]
Derivative methods

For linear regression:
\[\frac{\partial \hat{y}}{\partial x_j} = \hat{\beta}_j \]

Derivative is a constant – very convenient summary

For logit:
\[\frac{\partial \hat{\pi}}{\partial x_j} = \hat{\beta}_j \hat{\pi} (1 - \hat{\pi}) \]

\[\frac{\partial \hat{\pi}}{\partial x_j} = \hat{\beta}_j \times \frac{1}{1 + \exp(-\hat{\beta}_0 - \sum_{k=1}^{K} \hat{\beta}_k x_k)} \times \left(1 - \frac{1}{1 + \exp(-\hat{\beta}_0 - \sum_{k=1}^{K} \hat{\beta}_k x_k)}\right) \]

Derivative depends on \(\hat{\pi} \), which depends on all the \(x \)'s and \(\beta \)'s: not so convenient
Derivative methods

For linear regression:

\[
\frac{\partial \hat{y}}{\partial x_j} = \hat{\beta}_j
\]

Derivative is a constant – very convenient summary

For logit:

\[
\frac{\partial \hat{\pi}}{\partial x_j} = \hat{\beta}_j \hat{\pi} (1 - \hat{\pi})
\]

\[
\frac{\partial \hat{\pi}}{\partial x_j} = \hat{\beta}_j \times \frac{1}{1 + \exp(-\hat{\beta}_0 - \sum_{k=1}^{K} \hat{\beta}_k x_k)} \times \left(1 - \frac{1}{1 + \exp(-\hat{\beta}_0 - \sum_{k=1}^{K} \hat{\beta}_k x_k)}\right)
\]

Derivative depends on \(\hat{\pi} \), which depends on all the \(x \)'s and \(\beta \)'s: not so convenient

Derivative is at maximum when \(\hat{\pi} = 0.5 \); instantaneous effect at this point is \(\beta_j/4 \)

Derivative methods are useful if reader has a calculator, descriptive statistics for all \(x \)'s, and a lot of patience . . .
Direct interpretation: log odds

Logit coefficients are obscure: understanding them requires some background.

Define the odds of y given x as

$$O_{y|x} = \frac{\Pr(y|x)}{1 - \Pr(y|x)}$$

For example, if betting markets have the odds of Clinton beating Trump at 11/2, then

$$O_{\text{Clinton}} = \frac{\Pr(\text{Clinton})}{\Pr(\text{Trump})} = \frac{11}{2} = .846$$

$$\Pr(\text{Clinton}) = \frac{11}{11 + 2} = .846$$

$$\Pr(\text{Trump}) = \frac{2}{11 + 2} = .154$$
Direct interpretation: log odds

Notice that

\[\pi = \logit^{-1}(x\beta) \quad \Rightarrow \quad \logit(\pi) = x\beta \]
Direct interpretation: log odds

Notice that

\[\pi = \logit^{-1}(x\beta) \Rightarrow \logit(\pi) = x\beta \]

\[\pi = \frac{1}{1 + \exp(-x\beta)} \Rightarrow \log \left(\frac{\pi}{1 - \pi} \right) = x\beta \]
Direct interpretation: log odds

Notice that

\[\pi = \logit^{-1}(x\beta) \implies \logit(\pi) = x\beta \]

\[\pi = \frac{1}{1 + \exp(-x\beta)} \implies \log \left(\frac{\pi}{1 - \pi} \right) = x\beta \]

\[\log \left(\frac{\pi}{1 - \pi} \right) \] is the log odds – hence “logit”

A 1 unit increase in \(x_k \) increases the log odds by \(\beta_k \)

... Okay, but how do we use this?
Direct interpretation: log odds

Next define the *relative risk*, a useful summary of the effect of x on y:

$$RR = \frac{\Pr(y|x)}{\Pr(y|x')}$$

At the average age, the RR of voting given a college degree versus high school is

$$RR_{\text{coldeg,hsdeg}} = \frac{\Pr(\text{Vote}|\text{coldeg})}{\Pr(\text{Vote}|\text{HSdeg})} = \frac{.8501}{.6363} = 1.3360$$

A College grad is 33.6% more likely to vote than a HS grad, at age 47

The value of the *relative risk* depends on other covariates

Here, the relative risk with respect to education depends on the level of age
Direct interpretation: log odds

Finally, define the odds ratio as:

\[
\text{OR}_{x,x'} = \frac{O_{y|x}}{O_{y|x'}} = \frac{\Pr(y|x)}{1 - \Pr(y|x)}/\frac{\Pr(y|x')}{1 - \Pr(y|x')}
\]

Note this is not the same as the relative probability (or relative “risk”):

\[
\text{OR}_{\text{ColDeg}, \text{HSDeg}} = \frac{O_{\text{Vote}|\text{ColDeg}}}{O_{\text{Vote}|\text{HSDeg}}} = \frac{\Pr(\text{Vote}|\text{ColDeg})}{1 - \Pr(\text{Vote}|\text{ColDeg})}/\frac{\Pr(\text{Vote}|\text{HSDeg})}{1 - \Pr(\text{Vote}|\text{HSDeg})}
\]

\[
\text{OR}_{\text{ColDeg}, \text{HSDeg}} = 3.2415
\]

The OR is fixed regardless of age, but its meaning is unclear.

The odds ratio is not the relative risk and not directly interesting.

Exception for rare events:
The odds ratio approaches the relative risk as \(\Pr(y) \to 0\).
Direct interpretation: log odds

Odds ratios are usually uninterpretable and often misleading, at least if we treat them as relative risks.

But odds ratios are what β shifts:

$$\log \frac{O_y|x}{O_y|x'} = \log O_y|x - \log O_y|x'$$

$$\log \frac{O_y|x}{O_y|x'} = x\beta - x'\beta$$

$$\log \frac{O_y|x}{O_y|x'} = (x - x')\beta$$

And so for $\Delta x_k = 1$,

$$\frac{O_y|x_k}{O_y|x'_k} = \exp(\beta_k)$$

A one unit increase in x_k increases the odds ratio by $\exp(\beta_k)$.
Direct interpretation: log odds

If you have rare events – that is, $\Pr(y \approx 0)$ for the whole dataset – it may be useful to note that $\exp(\hat{\beta})$ is the change in the odds ratio.

Otherwise, odds ratios are not a good way to express results.

Requires the reader have a calculator, knowledge of odds ratios, and a fair bit of imagination.

Why restrict your audience and risk misunderstanding?

So on to a better way . . .
Computing quantities of interest

Given some counterfactual x_c’s, our goal is to obtain “quantities of interest” like:

- **Expected Values:** $E(y|x_c)$
- **First Differences:** $E(y|x_{c2}) - E(y|x_{c1})$
- **Relative Risks:** $\frac{E(y|x_{c2})}{E(y|x_{c1})}$
- or any function of the above

Getting point estimates is easy: e.g., for EVs, just plug x_c into $\frac{1}{1 + \exp(-x_c/\beta)}$
Computing quantities of interest using point estimates

What is the probability a high school graduate of average age (42.7 years) votes?

\[
Pr(\text{Vote}|\text{Age} = 42.7, \text{HSdeg} = 1, \text{Coldeg} = 0) = \logit^{-1}(-2.15 + 0.0309 \times 42.7 + 1.21 \times 1 + 1.10 \times 0) = 62.8\%
\]
Computing quantities of interest using point estimates

What is the probability a high school graduate of average age (42.7 years) votes?

\[
\Pr(\text{Vote} \mid \text{Age} = 42.7, \text{HSdeg} = 1, \text{Coldeg} = 0) = \logit^{-1}(-2.15 + 0.0309 \times 42.7 + 1.21 \times 1 + 1.10 \times 0) = 62.8\%
\]

What is the probability a college graduate of average age (42.7 years) votes?

\[
\Pr(\text{Vote} \mid \text{Age} = 42.7, \text{HSdeg} = 1, \text{Coldeg} = 0) = \logit^{-1}(-2.15 + 0.0309 \times 42.7 + 1.21 \times 1 + 1.10 \times 1) = 83.5\%
\]
Computing quantities of interest using point estimates

What is the probability a high school graduate of average age (42.7 years) votes?

\[
\Pr(\text{Vote}|\text{Age} = 42.7, \text{HSdeg} = 1, \text{Coldeg} = 0) = \logit^{-1}(-2.15 + 0.0309 \times 42.7 + 1.21 \times 1 + 1.10 \times 0) = 62.8\%
\]

What is the probability a college graduate of average age (42.7 years) votes?

\[
\Pr(\text{Vote}|\text{Age} = 42.7, \text{HSdeg} = 1, \text{Coldeg} = 0) = \logit^{-1}(-2.15 + 0.0309 \times 42.7 + 1.21 \times 1 + 1.10 \times 1) = 83.5\%
\]

How much does a college degree raise the chance of voting for a high school grad?

\[
83.5\% - 62.8\% = 20.8\%
\]

Is this statistically significant? What’s the 95% CI?
Computing quantities of interest using point estimates

What is the probability a high school graduate of average age (42.7 years) votes?

\[
\Pr(\text{Vote} | \text{Age} = 42.7, \text{HSdeg} = 1, \text{Coldeg} = 0) = \logit^{-1}(-2.15 + 0.0309 \times 42.7 + 1.21 \times 1 + 1.10 \times 0) = 62.8\%
\]

What is the probability a college graduate of average age (42.7 years) votes?

\[
\Pr(\text{Vote} | \text{Age} = 42.7, \text{HSdeg} = 1, \text{Coldeg} = 0) = \logit^{-1}(-2.15 + 0.0309 \times 42.7 + 1.21 \times 1 + 1.10 \times 1) = 83.5\%
\]

How much does a college degree raise the chance of voting for a high school grad?

\[
83.5\% - 62.8\% = 20.8\%
\]

Is this statistically significant? What's the 95% CI?

Confidence intervals of these quantities are tiresome to calculate analytically, so let's try simulation
Let’s start with what we know about the MLEs:

<table>
<thead>
<tr>
<th>estimates</th>
<th>$\hat{\beta}_0$</th>
<th>$\hat{\beta}_{\text{Age}}$</th>
<th>$\hat{\beta}_{\text{HSdeg}}$</th>
<th>$\hat{\beta}_{\text{Coldeg}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2.15</td>
<td>0.0309</td>
<td>1.21</td>
<td>1.10</td>
</tr>
</tbody>
</table>
Let’s start with what we know about the MLEs:

<table>
<thead>
<tr>
<th></th>
<th>$\hat{\beta}_0$</th>
<th>$\hat{\beta}_{\text{Age}}$</th>
<th>$\hat{\beta}_{\text{HSdeg}}$</th>
<th>$\hat{\beta}_{\text{Coldeg}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>estimates</td>
<td>-2.15</td>
<td>0.0309</td>
<td>1.21</td>
<td>1.10</td>
</tr>
<tr>
<td>var-cov</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\beta}_0$</td>
<td>0.0658</td>
<td>-0.000682</td>
<td>-0.0358</td>
<td>-0.00135</td>
</tr>
<tr>
<td>$\hat{\beta}_{\text{Age}}$</td>
<td>-0.000682</td>
<td>0.0000115</td>
<td>0.000178</td>
<td>0.0000227</td>
</tr>
<tr>
<td>$\hat{\beta}_{\text{HSdeg}}$</td>
<td>-0.0358</td>
<td>0.000178</td>
<td>0.0322</td>
<td>-0.00388</td>
</tr>
<tr>
<td>$\hat{\beta}_{\text{Coldeg}}$</td>
<td>-0.00135</td>
<td>0.0000227</td>
<td>-0.00388</td>
<td>0.0170</td>
</tr>
</tbody>
</table>
Let’s start with what we know about the MLEs:

<table>
<thead>
<tr>
<th></th>
<th>$\hat{\beta}_0$</th>
<th>$\hat{\beta}_{\text{Age}}$</th>
<th>$\hat{\beta}_{\text{HSdeg}}$</th>
<th>$\hat{\beta}_{\text{Coldeg}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>estimates</td>
<td>-2.15</td>
<td>0.0309</td>
<td>1.21</td>
<td>1.10</td>
</tr>
<tr>
<td>var-cov</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\beta}_0$</td>
<td>0.0658</td>
<td>-0.000682</td>
<td>-0.0358</td>
<td>-0.00135</td>
</tr>
<tr>
<td>$\hat{\beta}_{\text{Age}}$</td>
<td>-0.000682</td>
<td>0.0000115</td>
<td>0.000178</td>
<td>0.0000227</td>
</tr>
<tr>
<td>$\hat{\beta}_{\text{HSdeg}}$</td>
<td>-0.0358</td>
<td>0.000178</td>
<td>0.0322</td>
<td>-0.00388</td>
</tr>
<tr>
<td>$\hat{\beta}_{\text{Coldeg}}$</td>
<td>-0.00135</td>
<td>0.0000227</td>
<td>-0.00388</td>
<td>0.0170</td>
</tr>
<tr>
<td>correlations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\beta}_0$</td>
<td>1.000</td>
<td>-0.785</td>
<td>-0.777</td>
<td>-0.040</td>
</tr>
<tr>
<td>$\hat{\beta}_{\text{Age}}$</td>
<td>-0.785</td>
<td>1.000</td>
<td>0.292</td>
<td>0.051</td>
</tr>
<tr>
<td>$\hat{\beta}_{\text{HSdeg}}$</td>
<td>-0.777</td>
<td>0.292</td>
<td>1.000</td>
<td>-0.166</td>
</tr>
<tr>
<td>$\hat{\beta}_{\text{Coldeg}}$</td>
<td>-0.040</td>
<td>0.051</td>
<td>-0.166</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Consider the model estimates of β_{Age} and β_{HSdeg} (se’s in parentheses):

$\hat{\beta}_{\text{Age}} = 0.0309 \ (0.00339) \quad \hat{\beta}_{\text{HSdeg}} = 1.21 \ (0.179) \quad r_{\hat{\beta}_{\text{Age}}, \hat{\beta}_{\text{HSdeg}}} = 0.292$

These describe the 1st and 2nd moments of an asymptotically Normal distribution

In computing functions of β, how do we account for this uncertainty?

Perhaps we can capture and pass on this variability using simulation.
We often summarize uncertainty with confidence intervals around parameters.

\[-2\hat{\sigma}_{\text{Age}} \leq \hat{\beta}_{\text{Age}} \leq +2\hat{\sigma}_{\text{Age}}\]
These intervals represent $\hat{\beta}_{\text{Age}} = 0.0309 \ (0.00339)$, assuming the uncertainty in the parameter estimate is Normally distributed.
But we could use random draws (here, 10,000 draws) from the distribution of the parameter to capture the same uncertainty.
68% [95%] of the draws fall in the $\pm 1 \ [\pm 2] \hat{\sigma}$ confidence interval.
Whatever other quantities we calculate with these 10,000 draws will, across their 10,000 versions, contain all the uncertainty we have about $\hat{\beta}_{\text{Age}}$.
We can capture uncertainty in any estimated parameter using draws from its predictive distribution.
For example, here is the estimated distribution of $\hat{\beta}_\text{HSdeg}$, which we again assume is Normally distributed.
But we want the *joint* distribution of $\hat{\beta}_{\text{Age}}$ and $\hat{\beta}_{\text{HSdeg}}$ — can we draw $\hat{\beta}_{\text{Age}}$ and $\hat{\beta}_{\text{HSdeg}}$ separately from Normal distributions?
Not unless we’re willing to assume they’re uncorrelated...
and we know these parameters are correlated at $r = 0.292$
Let's try to simulate these two parameters \textit{jointly}.
Draw 10,000 simulations $[\tilde{\beta}_{\text{Age}}, \tilde{\beta}_{\text{HSdeg}}]$ from MVN $\left(\begin{bmatrix} 0.0309 \\ 1.21 \end{bmatrix}, \begin{bmatrix} 0.0000115 & 0.000178 \\ 0.000178 & 0.0322 \end{bmatrix} \right)$
The central 68% [95%] of all draws match up closely with the theoretical 68% [95%] confidence regions of the parameters
Why might these parameter estimates be positively correlated? What implications does this have for computing quantities of interest?
Of course, we have not two but *four* estimated parameters, so we should draw all four at once to account for all estimated covariances.
Collectively, the 10,000 simulations of \([\tilde{\beta}_0, \tilde{\beta}_{\text{Age}}, \tilde{\beta}_{\text{HSdeg}}, \tilde{\beta}_{\text{Coldeg}}] \) capture everything the model “knows” about them.
Let’s look at a specific draw of simulated $\tilde{\beta}$’s and compute our quantities of interest.
Computing quantities of interest using point estimates

What is the probability a high school graduate of average age (42.7 years) votes?

\[\text{Pr}(\text{Vote} | \text{Age} = 42.7, \text{HSdeg} = 1, \text{Coldeg} = 0) = \logit^{-1}(\mathbf{-2.15} + 0.0309 \times 42.7 + 1.21 \times 1 + 1.10 \times 0) = 62.8\% \]

What is the probability a college graduate of average age (42.7 years) votes?

\[\text{Pr}(\text{Vote} | \text{Age} = 42.7, \text{HSdeg} = 1, \text{Coldeg} = 0) = \logit^{-1}(\mathbf{-2.15} + 0.0309 \times 42.7 + 1.21 \times 1 + 1.10 \times 1) = 83.5\% \]

How much does a college degree raise the chance of voting for a high school grad?

\[83.5\% - 62.8\% = 20.8\% \]

Recall that the above were the point estimates of our quantities of interest.
Simulating quantities of interest: Draw 8 of 10,000

What is the probability a high school graduate of average age (42.7 years) votes?

\[
\Pr(\text{Vote}|\text{Age} = 42.7, \text{HSdeg} = 1, \text{Coldeg} = 0) = \logit^{-1}(-2.01 + 0.0302 \times 42.7 + 1.02 \times 1 + 1.14 \times 0) = 60.9\%
\]

What is the probability a college graduate of average age (42.7 years) votes?

\[
\Pr(\text{Vote}|\text{Age} = 42.7, \text{HSdeg} = 1, \text{Coldeg} = 0) = \logit^{-1}(-2.01 + 0.0302 \times 42.7 + 1.02 \times 1 + 1.14 \times 1) = 82.9\%
\]

How much does a college degree raise the chance of voting for a high school grad?

\[
82.9\% - 60.9\% = 22.1\%
\]

Each simulation of the QoI will differ slightly from the mean; collectively, these differences capture our uncertainty.
Simulating quantities of interest: Draw 9 of 10,000

What is the probability a high school graduate of average age (42.7 years) votes?

\[
\Pr(\text{Vote}|\text{Age} = 42.7, \text{HSdeg} = 1, \text{Coldeg} = 0) = \logit^{-1}(-2.08 + 0.0330 \times 42.7 + 0.99 \times 1 + 1.00 \times 0) = 61.4\%
\]

What is the probability a college graduate of average age (42.7 years) votes?

\[
\Pr(\text{Vote}|\text{Age} = 42.7, \text{HSdeg} = 1, \text{Coldeg} = 0) = \logit^{-1}(-2.08 + 0.0330 \times 42.7 + 0.99 \times 1 + 1.14 \times 1) = 81.3\%
\]

How much does a college degree raise the chance of voting for a high school grad?

\[
81.3\% - 61.4\% = 19.8\%
\]

Each simulation of the QoI will differ slightly from the mean; collectively, these differences capture our uncertainty.
Simulating quantities of interest: Summary

Just as the middle 95% of simulated β’s matched the 95% CI, the middle 95% of simulated $\Pr(\text{Vote}|\text{Age}, \text{HSdeg}, \text{Coldeg})$’s provide a 95% CI

What is the probability a high school graduate of average age (42.7 years) votes?

The mean across 10,000 simulations was 62.8%, with a 95% CI of [59.8%, 65.8%]

What is the probability a college graduate of average age (42.7 years) votes?

The mean across 10,000 simulations was 83.5%, with a 95% CI of [80.2%, 86.4%]

How much does a college degree raise the chance of voting for a high school grad?

The average difference across 10,000 simulations was 20.7%, with a 95% CI of [16.5%, 24.9%]

These closely match the point estimates computed above, but now have measures of uncertainty as well
Simulating quantities of interest: formalization

Let’s formalize the simulation procedure we’ve used to interpret our logit result.

We consider a generic simulation method (King, Tomz, Wittenberg 2000) for models of the form:

\[y_i \sim f(\mu_i, \alpha) \quad \mu_i = g(\beta, x_i) \]

(for convenience, \(\theta = \text{vec}(\beta, \alpha) \))

This formulation includes all the models in POLS/CSSS 510.
Algorithm for simulating EVs and their confidence intervals

1. Choose a counterfactual \(x_c \)

2. Estimate the model and obtain the parameter vector, \(\hat{\theta} \), and its variance covariance matrix, \(\hat{V}(\hat{\theta}) \)

3. Draw \(\tilde{\theta} \) from the multivariate normal \(f_{\text{MVN}}(\hat{\theta}, \hat{V}(\hat{\theta})) \)

4. Calculate \(\tilde{\mu}_c = g(\tilde{\beta}, x_c) \)

5. Draw \(\tilde{y}_c \sim f(\tilde{\mu}_c, \tilde{\alpha}) \), from the model's distribution. This is a predicted value. [Aside]

6. Repeat steps 3 to 5 many times, averaging the results to get one expected value

7. Repeat step 6 many times to obtain a vector of expected values

8. Summarize this vector using means, sd's, or confidence intervals
The algorithm applied to logit

1. Choose a counterfactual \(x_c \)

2. Estimate the model and obtain the parameter vector, \(\hat{\beta} \), and its variance covariance matrix, \(\hat{V}(\hat{\beta}) \)

3. Draw \(\tilde{\beta} \) from the multivariate normal \(f_{\text{MVN}}(\hat{\beta}, \hat{V}(\hat{\beta})) \)

4. Calculate \(\tilde{\pi}_c = 1/(1 + \exp(-x_c\tilde{\beta})) \)

5. Draw \(\tilde{y}_c \sim \text{Bernoulli}(\tilde{\pi}_c) \): this is a predicted value (a 1 or a 0)

6. Repeat steps 3 to 5 many times, averaging the results to get one expected value (i.e., a \(\hat{\pi}_c \))

7. Repeat step 6 many times to obtain a vector of expected values

8. Summarize this vector using means, sd’s, or confidence intervals
A shortcut

A good idea to simulate at least 10,000 PVs to get a single EV
And at least 10,000 EVs to get its distribution
Which means doing 100 million sims for each x_c!

Important shortcut!
If $\mathbb{E}(y|\mu_c) = \hat{\mu}_c$ (the case for linear regression, logit, probit, Poisson, etc.), you can skip steps 5 and 6: just iterate the fourth step 10,000 times to get your EVs

Want predicted values? Need to draw from the model distribution, to include “fundamental uncertainty”

EVs include only “estimation uncertainty;” PVs include both

Now let’s simulate EVs for the Votes data, starting with high school grads at each age
Plotting each of our EV’s and CI’s over the range of ages gives us a slice of the response surface, with uncertainty (10,000 sims each)
No knowledge of logit or odds ratios required – any curious person can read it
Why stop with one level of education?

Repeating for college grads gives full response surface in a single 2D plot
Claim: this plot is a better summary of the regression than Table 1

If you can publish only the table or the plot, choose the plot

<table>
<thead>
<tr>
<th></th>
<th>est.</th>
<th>s.e.</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.075</td>
<td>0.017</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Age^2</td>
<td>-0.000443</td>
<td>0.000166</td>
<td>0.007</td>
</tr>
<tr>
<td>High School Grad</td>
<td>1.124</td>
<td>0.180</td>
<td>< 0.001</td>
</tr>
<tr>
<td>College Grad</td>
<td>1.080</td>
<td>0.131</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Constant</td>
<td>-3.019</td>
<td>0.418</td>
<td>< 0.001</td>
</tr>
<tr>
<td>log likelihood</td>
<td>-1101.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1798</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Above is a new specification we’ll use in subsequent plots. . .

What’s changed? How would you interpret this using odds ratios?
When simulation is the only reasonable option

This lecture builds up a plot from an article posted on the course site (King, Tomz, and Wittenberg, *AJPS* 2000).

KTW add an extra term, Age^2, which has a negative effect – intuitively, past some age, voting may be difficult.

This would add a great deal of complexity to interpretation under most alternatives:

If you like odds ratios, you’ll love combining several odds ratio interaction terms!

How hard would it be to add a quadratic term to our simulation method?
Age2 adds zero complexity to the expected values plot.
There’s a hidden flaw in this plot: can you spot it?
18 year-old college graduates? Take care in selecting counterfactuals!

At a minimum, stay inside the sampled space ("convex hull")
Graphing simulations from models

Challenges for presentation:

1. Our QoIs and their CIs trace out non-linear functions
2. Contain lots of information: easy to produce hundreds of data points
3. Often, counterfactuals producing QoIs vary on multiple dimensions

Once we simulate our quantities of interest and confidence intervals, we need visual methods for presenting them.

I offer two R packages on my website to make this easier:

simcf – generic primitive functions for simulating QoIs

tile – a graphics package for plotting QoIs with CIs

Learn more about tile in CSSS 569; only a taste here.
Graphing simulations from models

Two proposed general graphical methods using the tile package:

- **lineplot**: For models with at least one continuously varying counterfactual variable, use a line varying over that counterfactual, and as many lines as you have discrete counterfactuals.

 Note this will focus attention on your continuous counterfactuals, which may not be your intention.
Graphing simulations from models

Two proposed general graphical methods using the tile package:

- **lineplot**: For models with at least one continuously varying counterfactual variable, use a line varying over that counterfactual, and as many lines as you have discrete counterfactuals.

 Note this will focus attention on your continuous counterfactuals, which may not be your intention.

- **ropeladder**: For any model, including those with only discrete counterfactual variables, or a combination of discrete and continuous.

 Ropeladders put equal attention on covariates that vary continuously and those that vary discretely.

 Can accommodate large numbers of different counterfactual scenarios.

Let’s use lineplots for our voting example, since we have one continuous and one categorical covariate.
Age of Respondent
Probability of Voting
Less than HS
High School
College
Logit estimates:
95% confidence interval is shaded
Logit interpretation example

Clear memory
rm(list=ls())

Load libraries
library(MASS)
library(simcf)
library(tile)
library(RColorBrewer)

Notes:

I usually start programs with a command to clear memory

Then I load all the libraries I need

The tile and simcf libraries are available at chrisadolph.com under Software
Logit interpretation example

Load data
file <- "nes00a.csv"
data <- read.csv(file, header=TRUE)

Estimate logit model using optim()
Construct variables and model objects
y <- data$vote00
x <- cbind(data$age, data$age^2, data$hsdeg, data$coldeg)

Notes:

To use optim, we need the data in a vector of y's and a matrix of X's

If we had missing data, we would also need to listwise delete.

Note that you need to cbind() the x and y data together before listwise deleting with na.omit(), then pull the x and y apart again.

We'll look at an easier way in a moment.
Logit interpretation example

Likelihood function for logit
llk.logit <- function(param,y,x) {
 os <- rep(1,length(x[,1]))
 x <- cbind(os,x)
 b <- param[1 : ncol(x)]
 xb <- x*b
 sum(y*log(1+exp(-xb)) + (1-y)*log(1+exp(xb)));
 # optim is a minimizer, so min -ln L(param|y)
}

Notes:

We need to program in the likelihood as a function that can take in the parameters, data, and covariates, and pass back the likelihood at those parameters
Logit interpretation example

Fit logit model using optim
ls.result <- lm(y~x) # use ls estimates as starting values
stval <- ls.result$coefficients # initial guesses
logit.result.opt <- optim(stval,llk.logit,method="BFGS",
 hessian=T,y=y,x=x)

call minimizer procedure
pe.opt <- logit.result.opt$par # point estimates
vc.opt <- solve(logit.result.opt$hessian) # var-cov matrix
se.opt <- sqrt(diag(vc.opt)) # standard errors
ll.opt <- -logit.result.opt$value # likelihood at maximum

Notes:

After we load the data and program the likelihood, we send them to optim

Optim is a minimizer, which sends back the parameters that make $-L$ as small as possible

Then we extract the point estimates, variance-covariance, standard errors, and likelihood at the max
Logit interpretation example

Estimate logit model using glm()
Set up model formula and model specific data frame
model <- vote00 ~ age + I(age^2) + hsdeg + coldeg
mdata <- extractdata(model, data, na.rm=TRUE)

Notes:

Alternatively, we could use the command glm() to do logit and several other similar models.

glm() needs a model formula, and a dataframe with listwise deleted data

extractdata() from simcf simplifies listwise deletion

We keep all data in a dataframe while deleting only based on model variables
Logit interpretation example

Run logit & extract results
logit.result <- glm(model, family=binomial, data=mdata)
pe.glm <- logit.result$coefficients # point estimates
vc.glm <- vcov(logit.result) # var-cov matrix

Notes:

Running the model using glm() uses less code, but ends with the same estimates

glm() won’t work for ever MLE in this course, though; just those that belong to the Exponential family
Logit interpretation example

Simulate quantities of interest using simcf

We could do this from the optim or glm results;
here, we do from glm

Simulate parameter distributions
sims <- 10000
simbetas <- mvrnorm(sims, pe.glm, vc.glm)

Notes:

Regardless of whether we use optim or glm, we use the same simulation method to understand the results.

We summarize the model using draws from the predictive distributions of the estimated parameters.

This is approximately MVN for all MLEs, regardless of the distribution of the response variable.
Logit interpretation example

Set up counterfactuals: all ages, each of three educations
xhyp <- seq(18,97,1)
nscen <- length(xhyp)
nohsScen <- hsScen <- collScen <- cfMake(model, mdata, nscen)

Notes:

We set up counterfactual levels of the continuous covariate of interest, age

This determines the number of scenarios for our lineplots

We then make counterfactual objects using the simcf package (on course site)

Each of these objects has a many scenarios as there are counterfactuals of age

We need three sets of these counterfactuals – one for each level of education

This step (and following) varies greatly depending on which counterfactuals & graphics you want to make.
Logit interpretation example

for (i in 1:nscen) {
 # No High school scenarios (loop over each age)
 nohsScen <- cfChange(nohsScen, "age", x = xhyp[i], scen = i)
 nohsScen <- cfChange(nohsScen, "hsdeg", x = 0, scen = i)
 nohsScen <- cfChange(nohsScen, "coldeg", x = 0, scen = i)
}

Notes:

We loop over each level of age

At each iteration, we need to set the appropriate values of the covariates in our counterfactuals

cfChange() takes a counterfactual scenario under construction, the name of a covariate, a new level for the variable, and the number of the scenario to be changed to that level

We apply cfChange() repeatedly to setup all our scenarios

We could set in addition xpre to do first differences between x and xpre
Logit interpretation example

for (i in 1:nscen) {
 # No High school scenarios (loop over each age)
 nohsScen <- cfChange(nohsScen, "age", x = xhyp[i], scen = i)
 nohsScen <- cfChange(nohsScen, "hsdeg", x = 0, scen = i)
 nohsScen <- cfChange(nohsScen, "coldeg", x = 0, scen = i)

 # HS grad scenarios (loop over each age)
 hsScen <- cfChange(hsScen, "age", x = xhyp[i], scen = i)
 hsScen <- cfChange(hsScen, "hsdeg", x = 1, scen = i)
 hsScen <- cfChange(hsScen, "coldeg", x = 0, scen = i)

 # College grad scenarios (loop over each age)
 collScen <- cfChange(collScen, "age", x = xhyp[i], scen = i)
 collScen <- cfChange(collScen, "hsdeg", x = 1, scen = i)
 collScen <- cfChange(collScen, "coldeg", x = 1, scen = i)
}

Logit interpretation example

Simulate expected probabilities for all scenarios
nohsSims <- logitsimev(nohsScen, simbetas, ci=0.95)
hsSims <- logitsimev(hsScen, simbetas, ci=0.95)
collSims <- logitsimev(collScen, simbetas, ci=0.95)

Notes:

We run each set of counterfactuals through an appropriate simulator from simcf

Since we are using a logit model, and want expected probabilities, we use logitsimev, which stands for Logit Simulate Expected Values

The output is a list with point estimates pe, lower bounds lower, and upper bounds upper
Logit interpretation example

Get 3 nice colors for traces
col <- brewer.pal(3,"Dark2")

Set up lineplot traces of expected probabilities
nohsTrace <- lineplot(x=xhyp,
 y=nohsSims$pe,
 lower=nohsSims$lower,
 upper=nohsSims$upper,
 col=col[1],
 extrapolate=list(data=mdata,
 cfact=nohsScen$x,
 omit.extrapolated=TRUE),
 plot=1)

Notes:

We put the simulated responses, CIs, and corresponding hypothetical ages into a trace

We need one trace for each education level
Get 3 nice colors for traces
col <- brewer.pal(3,"Dark2")

Set up lineplot traces of expected probabilities
nohsTrace <- lineplot(x=xhyp,
 y=nohsSims$pe,
 lower=nohsSims$lower,
 upper=nohsSims$upper,
 col=col[1],
 extrapolate=list(data=mdata,
 cfact=nohsScen$x,
 omit.extrapolated=TRUE),
 plot=1)

Notes:

Optionally, we include instructions to omit extrapolations outside the convex hull.

Inputs to `extrapolate` are very picky: we need the model data, and the hypothetical data in exactly the same order of columns.
Logit interpretation example

```r
# Get 3 nice colors for traces
col <- brewer.pal(3,"Dark2")

# Set up lineplot traces of expected probabilities
nohsTrace <- lineplot(x=xhyp,
    y=nohsSims$pe,
    lower=nohsSims$lower,
    upper=nohsSims$upper,
    col=col[1],
    extrapolate=list(data=mdata,
        cfact=nohsScen$x,
        omit.extrapolated=TRUE),
    plot=1)
```

Notes:

Leave the `extrapolate=` lines out if they are giving you trouble

Start small with tile code, then add features!
Logit interpretation example

hsTrace <- lineplot(x=xhyp,
 y=hsSims$pe,
 lower=hsSims$lower,
 upper=hsSims$upper,
 col=col[2],
 extrapolate=list(data=mdata,
 cfact=hsScen$x,
 omit.extrapolated=TRUE),
 plot=1)

collTrace <- lineplot(x=xhyp,
 y=collSims$pe,
 lower=collSims$lower,
 upper=collSims$upper,
 col=col[3],
 extrapolate=list(data=mdata,
 cfact=collScen$x,
 omit.extrapolated=TRUE),
 plot=1)
Logit interpretation example

```r
# Set up traces with labels and legend
labelTrace <- textTile(labels=c("Less than HS", "High School", "College"),
                       x=c(55, 49, 30),
                       y=c(0.26, 0.56, 0.87),
                       col=col,
                       plot=1)

legendTrace <- textTile(labels=c("Logit estimates:",
                                 "95% confidence",
                                 "interval is shaded"),
                        x=c(82, 82, 82),
                        y=c(0.2, 0.15, 0.10),
                        cex=0.9,
                        plot=1)
```
Logit interpretation example

```r
# Plot traces using tile
tile(nohsTrace,
    hsTrace,
    collTrace,
    labelTrace,
    legendTrace,
    limits=c(18,94,0,1),
    xaxis=list(at=c(20,30,40,50,60,70,80,90)),
    yaxis=list(label.loc=-0.5, major=FALSE),
    xaxistitle=list(labels="Age of Respondent"),
    yaxistitle=list(labels="Probability of Voting"),
    width=list(null=5,yaxistitle=4,yaxis.labelspace=-0.5),
    output=list(file="educationEV",width=5.5)
)
```

This makes a pdf called `educationEV.pdf`; leave out the `output=` line to have this plot to the screen

The `width` argument lets of tweak the layout.

Setting `null=5` stretches the size of each plot in the graphic to 5 inches from a default of 2
Age of Respondent

Probability of Voting

Less than HS
High School
College

Logit estimates:
95% confidence interval is shaded
Summing up . . .

Now you know how to

- Pick a binary choice model
- Obtain ML estimates of it
- Interpret those estimates
- Present your results to a broad audience

But are your results are any good?

Essential step: testing goodness of fit.
Evaluating the fit of logit models

So far, we’ve learned how to estimate binary data models

and how to interpret these estimates

But are the estimates any good?

As before, everything will be in terms of logit, but most applies, mutatis mutandis, to probit, log-log, clog-log, scobit, etc.

Most of it even applies to all other MLEs – I’ll note where it doesn’t
Recall the Votes data

Response is individual turn-out, a binary variable

People either vote \((\text{Vote}_i = 1)\), or they don’t \((\text{Vote}_i = 0)\)

Many factors could influence turn-out; we focused on age and education

<table>
<thead>
<tr>
<th>vote00</th>
<th>age</th>
<th>hsdeg</th>
<th>coldeg</th>
<th>married</th>
<th>vote96</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>1</td>
<td>49</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>[2,]</td>
<td>0</td>
<td>35</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>[3,]</td>
<td>1</td>
<td>57</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>[4,]</td>
<td>1</td>
<td>63</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[5,]</td>
<td>1</td>
<td>40</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>[6,]</td>
<td>1</td>
<td>77</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>[7,]</td>
<td>0</td>
<td>43</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>[8,]</td>
<td>1</td>
<td>47</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>[9,]</td>
<td>1</td>
<td>26</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>[10,]</td>
<td>1</td>
<td>48</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note two new variables
Comparing two models

We modeled \(\text{Vote}_i \) as a function of \(\text{Age}_i \), \(\text{HSDeg}_i \), and \(\text{ColDeg}_i \)

Let’s call this Model 1 (M1)

Now add the variable Married to make Model 2 (M2)

Formally,

\[
\text{Vote}_i \sim \text{Bernoulli}(\pi_i)
\]

\[
\pi_i = \logit^{-1}(\beta_0 + \beta_1 \text{Age}_i + \beta_2 \text{Age}_i^2 + \beta_3 \text{HSDeg}_i + \beta_4 \text{ColDeg}_i + \beta_5 \text{Married}_i)
\]

Like age and education, we expect being married to increase Pr(Vote)
Table 4: *Determinants of voting in the 2000 presidential election*. Entries are logit coefficients, with standard errors in parentheses. Data taken from the 2000 American National Election Survey.

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.075</td>
<td>0.061</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>Age(^2)</td>
<td>−0.000443</td>
<td>−0.000318</td>
</tr>
<tr>
<td></td>
<td>(0.000166)</td>
<td>(0.000170)</td>
</tr>
<tr>
<td>High School Grad</td>
<td>1.124</td>
<td>1.099</td>
</tr>
<tr>
<td></td>
<td>(0.180)</td>
<td>(0.181)</td>
</tr>
<tr>
<td>College Grad</td>
<td>1.080</td>
<td>1.053</td>
</tr>
<tr>
<td></td>
<td>(0.131)</td>
<td>(0.132)</td>
</tr>
<tr>
<td>Married</td>
<td>0.373</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.110)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>−3.019</td>
<td>−2.866</td>
</tr>
<tr>
<td></td>
<td>(0.418)</td>
<td>(0.421)</td>
</tr>
<tr>
<td>log likelihood</td>
<td>−1101.370</td>
<td>−1099.283</td>
</tr>
<tr>
<td>N</td>
<td>1783</td>
<td>1783</td>
</tr>
</tbody>
</table>

A conventional way to compare two logit models: *Substantive difference?*
An intelligible way to compare two logit models

Holding marriage constant at its mean, the age and education effects haven’t discernably changed

Same words to describe either plot \(\equiv\) “substantively the same relationship”
Holding age and education constant at their means, marriage has a moderate effect.

Is this effect statistically significant?
A common misconception about confidence intervals: *expected values* with overlapping CIs don’t always imply an insignificant *difference*

Not necessarily the case in “close calls”
Right way to assess statistical significance: simulate the CI of the first difference

Here the first difference is always bounded away from zero, hence always significant
Why the difference?

EV estimates difference & location; estimating more things increases uncertainty

FD estimates the difference only, so it has a tighter CI

Avoid mistakenly rejecting significant first differences!
Consider showing relative risks instead of (or in support of) first diffs

Shows “how many times more likely”: often the best way to show magnitude
Setting up counterfactuals for FDs or RRs is tricky (see sample code)

Be very careful to completely lay out before and after scenarios

Here I set before and after age to the same value (which varied across the plot) but I set Married to different values (0 before, 1 after)
Take care in selecting the before and after values of all covariates. This is the most common place students make errors, usually with huge substantive consequences.
Now we know the *substantive* effect of including Marriage as a covariate.

But should we use Model 1 or Model 2? Do we keep Marriage or not?

To decide, we should consider model goodness of fit.
3 paradigms for goodness of fit

In-sample fit

Test the model’s performance on the same data used to fit the model

Easy to do – you already have the data

The default approach unless otherwise stated

Tends towards overconfidence and overfitting: treats models that predict quirks of the sample as good models of the population
3 paradigms for goodness of fit

In-sample fit

Test the model’s performance on the same data used to fit the model

Easy to do – you already have the data

The default approach unless otherwise stated

Tends towards overconfidence and overfitting:
treats models that predict quirks of the sample as good models of the population

Out-of-sample fit

Test the model’s performance on a separate sample from the target population

Expensive, as you need to reserve/find data not used in the main analysis

Requires the analyst to construct a special test; not a default output

Avoids overconfidence: shows how the model *generally* fits the population
3 paradigms for goodness of fit

In-sample fit

Test the model’s performance on the same data used to fit the model

Easy to do – you already have the data

The default approach unless otherwise stated

Tends towards overconfidence and overfitting:
treats models that predict quirks of the sample as good models of the population

Out-of-sample fit

Test the model’s performance on a separate sample from the target population

Expensive, as you need to reserve/find data not used in the main analysis

Requires the analyst to construct a special test; not a default output

Avoids overconfidence: shows how the model *generally* fits the population

Cross-validation

Can you have the best of both worlds?
Within each paradigm, the same tests can be applied

Five (mostly) generic ways to check MLE goodness of fit

1. t-test / Wald statistic
2. Likelihood Ratio test
3. Bayesian Information Criterion (BIC)
4. Akaike Information Criterion (AIC)
5. Inspection of “residuals” (GLM only)
Within each paradigm, the same tests can be applied

Five (mostly) generic ways to check MLE goodness of fit

1. t-test / Wald statistic
2. Likelihood Ratio test
3. Bayesian Information Criterion (BIC)
4. Akaike Information Criterion (AIC)
5. Inspection of “residuals” (GLM only)

Six additional ways to check GOF for binary outcomes

6. Percent correctly predicted
7. Separation plots
8. Sensitivity and specificity / ROC plots
9. Concordance index / “Area under the curve” (AUC)
10. Actual versus predicted plots
11. Error versus predicted plots
We start with a general test of goodness of fit applied in-sample.

A simple test of whether a parameter is significantly different from zero is:

\[p = 1 - F_t \left(\frac{\hat{\beta}}{\sqrt{\text{Var}(\hat{\beta})}}, n - k \right) \]

We calculate the \(t \)-statistic for Married, and find:

\[\frac{\hat{\beta}}{\sqrt{\text{Var}(\hat{\beta})}} = \frac{0.373}{0.110} = 3.393 \]

which has a \(p \)-value of 0.0007 = \(\frac{7}{10,000} \)

what does this mean?

A more general form (Wald test) can be applied to multiple parameters at once...
Likelihood ratio test of nested models:

\[
LR = -2 \log \frac{\mathcal{L}(M_1)}{\mathcal{L}(M_2)}
\]

\[
LR = 2 (\log \mathcal{L}(M_2) - \log \mathcal{L}(M_1)) \sim f_{\chi^2}(m)
\]

where \(m \) is the number of restrictions placed on model 2 by model 1 (e.g., parameters held constant in model 1)

In our example,

\[
LR = 2 \times (-1099.283 + 1101.370) = 4.174
\]

with a \(p \)-value from the \(\chi^2 \) distribution of 0.041

LR tests require same data, and nested models [aside: missing data]
Information Criteria

Penalized LR tests:

Bayesian Information Criterion

\[
\text{BIC}_{M_2} = \log n \times p_2 - 2 \log L(M_2)
\]
\[
\text{BIC}_{M_1} = \log n \times p_1 - 2 \log L(M_1)
\]

where \(p \) are the number of parameters and \(n \) the number of observations

Lower values of BIC are better – penalty for extra obs & params

In our example, \(\text{BIC}_{M_2} - \text{BIC}_{M_1} \) is 3.311664, which by Raftery’s guidelines indicates “weak” evidence for \(M_1 \) over \(M_2 \)
Information Criteria

Penalized LR tests:

Bayesian Information Criterion

\[
\text{BIC}_{M_2} = \log n \times p_2 - 2 \log \mathcal{L}(M_2) \\
\text{BIC}_{M_1} = \log n \times p_1 - 2 \log \mathcal{L}(M_1)
\]

where \(p \) are the number of parameters and \(n \) the number of observations

Lower values of BIC are better – penalty for extra obs & params

In our example, \(\text{BIC}_{M_2} - \text{BIC}_{M_1} \) is 3.311664, which by Raftery’s guidelines indicates “weak” evidence for \(M_1 \) over \(M_2 \)

An alternative, Akaike’s Information Criterion, agrees:

\[
\text{AIC}_{M_2} = 2p_2 - 2 \log \mathcal{L}(M_2) \\
\text{AIC}_{M_1} = 2p_1 - 2 \log \mathcal{L}(M_1)
\]

In our example, \(\text{AIC}_{M_2} - \text{AIC}_{M_1} = -2.174388 \) (“weak” evidence for \(M_2 \)
Residual inspection

Residual inspection a mainstay of linear regression analysis

- Identification of outliers, especially those with high leverage
- Robust regression (downweights outliers) / resistant regression (ignores them)

More difficult for binary models – the distribution of residuals is unclear

Bayesian alternatives for outlier detection (optional reading: Albert and Chib)

GLM alternatives available in example code

Less useful for binary data – what's an outlier when only two outcomes are possible?

We’ll revisit residuals with count data

Now some methods tailored for binary outcomes...
Percent Correctly Predicted

Percent Correctly Predicted: The percentage of observations, \(y \), such that

\[
\hat{y} \geq 0.5 \text{ and } y = 1 \quad \text{or} \quad \hat{y} < 0.5 \text{ and } y = 0
\]

How do we formalize this?
Percent Correctly Predicted

Percent Correctly Predicted: The percentage of observations, \(y \), such that

\[\hat{y} \geq 0.5 \text{ and } y = 1 \quad \text{or} \quad \hat{y} < 0.5 \text{ and } y = 0 \]

How do we formalize this?

\[
PCP = \frac{1}{n} \left[\sum_{\forall y_i = 1} \mathbb{1}(\hat{y}_i \geq 0.5) + \sum_{\forall y_i = 0} \mathbb{1}(\hat{y}_i < 0.5) \right]
\]
Percent Correctly Predicted

Percent Correctly Predicted: The percentage of observations, y, such that

$$\hat{y} \geq 0.5 \text{ and } y = 1 \quad \text{or} \quad \hat{y} < 0.5 \text{ and } y = 0$$

An alternative way to write this may be easier to turn into code:

$$PCP = \frac{1}{n} \left[\sum_{\forall i} y_i \times I(\hat{y}_i > 0.5) + (1 - y_i) \times I(\hat{y}_i < 0.5) \right]$$

For the model with “married”, $PCP_{m2} = 69.770\%$

For the model without “married”, $PCP_{m1} = 69.994\%$

Note a PCP less than 50% would be horrid (why?)
Percent Correctly Predicted

Percent Correctly Predicted: The percentage of observations, y, such that

\[\hat{y} \geq 0.5 \text{ and } y = 1 \quad \text{or} \quad \hat{y} < 0.5 \text{ and } y = 0 \]

An alternative way to write this may be easier to turn into code:

\[
\text{PCP} = \frac{1}{n} \left[\sum_{\forall i} y_i \times I(\hat{y}_i > 0.5) + (1 - y_i) \times I(\hat{y}_i < 0.5) \right]
\]

For the model with “married”, \(\text{PCP}_{m2} = 69.770\% \)

For the model without “married”, \(\text{PCP}_{m1} = 69.994\% \)

Note a PCP less than 50% would be horrid (why?)

\(\bar{y} = 0.65675 \), so these PCPs are less impressive than you might think (Why?)

If you report PCP, be sure to also say what \(\bar{y} \) is:

\(\text{PCP} - \bar{y} \) is how much improvement in prediction comes from your covariates
Percent Correctly Predicted

PCP is easy to calculate but flawed

PCP treats these cases *identically*:

\[\hat{y} > 0.51 \text{ and } y = 1 \] (Model is hedging its bets)

\[\hat{y} > 0.99 \text{ and } y = 1 \] (Model is going “all in”)
PCP is easy to calculate but flawed

PCP treats these cases *identically*:

\[\hat{y} > .51 \text{ and } y = 1 \] (Model is hedging its bets)

\[\hat{y} > .99 \text{ and } y = 1 \] (Model is going “all in”)

... but treats these cases *differently*:

\[\hat{y} > .51 \text{ and } y = 1 \] (Model is hedging its bets)

\[\hat{y} > .49 \text{ and } y = 1 \] (Model is hedging its bets)

PCP’s sharp emphasis on probability=0.5 is a severe limitation

Can we avoid this misplaced emphasis?

Let’s try some graphical methods
Separation Plots

Greenhill, Ward, and Sacks suggest a simple graphical approach to binary GOF:

Sort the observations by the predicted probability of the outcome; plot 1s as red lines, and 0s as tan lines.

A model that correctly predicts observations should separate red and tan lines.

Red lines lying to the left and tan lines lying to the right are mispredictions.

A horizontal black line traces out the predicted probability for each case.

Null Model (No covariates)
Greenhill, Ward, and Sacks suggest a simple graphical approach to binary GOF

Sort the observations by the predicted probability of the outcome; plot 1s as red lines, and 0s as tan lines

A model that correctly predicts observations should separate red and tan lines

Red lines lying to the left and tan lines lying to the right are mispredictions

A horizontal black line traces out the predicted probability for each case

Null Model (No covariates)

Model 1 (Age, Edu)
Separation Plots

Greenhill, Ward, and Sacks suggest a simple graphical approach to binary GOF

Sort the observations by the predicted probability of the outcome; plot 1s as red lines, and 0s as tan lines

A model that correctly predicts observations should separate red and tan lines

Red lines lying to the left and tan lines lying to the right are mispredictions

A horizontal black line traces out the predicted probability for each case

Null Model (No covariates)
Model 1 (Age, Edu)
Model 2 (Age, Edu, Married)

Helps when comparing lots of models (compact, stackable plots)

Could even use the R locator() function to identify the most surprising cases and the models that get them right
Perfect separation

Suppose the separation plot looked like this:

Things to think about:

1. What kind of model would produce perfect separation?
Perfect separation

Suppose the separation plot looked like this:

Things to think about:

1. What kind of model would produce perfect separation?

2. I’ve added a line tracing the probability of each case. What is the slope of this line near the separation between tan and red?
Perfect separation

Suppose the separation plot looked like this:

![Separation Plot](image)

Things to think about:

1. What kind of model would produce perfect separation?

2. I’ve added a line tracing the probability of each case. What is the slope of this line near the separation between tan and red?

3. If there is a binary covariate z that is 0 for every $y = 0$ and 1 for every $y = 1$, what is the logit coefficient for z?
Perfect separation

Suppose the separation plot looked like this:

![Separation Plot]

Things to think about:

1. What kind of model would produce perfect separation?

2. I’ve added a line tracing the probability of each case. What is the slope of this line near the separation between tan and red?

3. If there is a binary covariate z that is 0 for every $y = 0$ and 1 for every $y = 1$, what is the logit coefficient for z?

4. Could a logit model fit “too well”?
Let’s return to the data & models for turnout:

Null Model (No covariates)
Model 1 (Age, Edu)
Model 2 (Age, Edu, Married)

We can visualize percent correctly predicted using these plots:

- Find the spot where the probability line crosses 50%
- Red observations to the left of this point are incorrectly classified
- Red observations to the right of this point are correctly classified

We noted $\pi^* = 50\%$ was an arbitrary threshold

Can we conceptualize how different thresholds π^* would classify the data?
Sensitivity and Specificity

Let \(\pi^* \) be a threshold at some level in \([0,1]\), above which we suppose \(\hat{y} = 1 \).
Sensitivity and Specificity

Let π^* be a threshold at some level in $[0,1]$, above which we suppose $\hat{y} = 1$.

Given a threshold π^*, we can compute the model’s sensitivity and specificity:

Sensitivity is the fraction of true positives the model tends to identify, or

$$\text{True Positive Rate} \quad \Pr(\hat{y} \geq \pi^* | y = 1)$$
Sensitivity and Specificity

Let π^* be a threshold at some level in $[0,1]$, above which we suppose $\hat{y} = 1$

Given a threshold π^*, we can compute the model’s sensitivity and specificity:

Sensitivity is the fraction of true positives the model tends to identify, or

$\text{True Positive Rate} \quad \Pr(\hat{y} \geq \pi^* | y = 1)$

Specificity is the fraction of true negatives the model tends to identify, or

$\text{True Negative Rate} \quad \Pr(\hat{y} < \pi^* | y = 0)$
Sensitivity and Specificity

Let π^* be a threshold at some level in $[0,1]$, above which we suppose $\hat{y} = 1$

Given a threshold π^*, we can compute the model’s sensitivity and specificity:

Sensitivity is the fraction of true positives the model tends to identify, or

\[
\text{True Positive Rate} \quad \Pr(\hat{y} \geq \pi^* | y = 1)
\]

Specificity is the fraction of true negatives the model tends to identify, or

\[
\text{True Negative Rate} \quad \Pr(\hat{y} < \pi^* | y = 0)
\]

While we’d like high sensitivity and specificity, they trade off as we shift π^* (Why?)

A sensitive model is better when you especially fear false negatives (detecting a virulent infectious disease, like the Ebola virus)

A specific model is better when false positives are too costly to wade through (if treating a disease has big side-effects, like many cancers)
Sensitivity and Specificity

We can compute in-sample specificity & sensitivity for any π^* & model

\[\pi^* = 0.50 \]

<table>
<thead>
<tr>
<th>Model</th>
<th>Sensitivity (TPR)</th>
<th>Specificity (TNR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 0: Null</td>
<td>100.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Model 1: Age + Edu</td>
<td>89.1%</td>
<td>33.5%</td>
</tr>
<tr>
<td>Model 2: Age + Edu + Married</td>
<td>88.2%</td>
<td>34.3%</td>
</tr>
</tbody>
</table>

What do these mean? And what do they suggest about model selection?
Sensitivity and Specificity

We can compute in-sample specificity & sensitivity for any π^* & model

\[
\begin{array}{l|cc}
\pi^* = 0.50 & \text{Sensitivity (TPR)} & \text{Specificity (TNR)} \\
\hline
\text{Model 0: Null} & 100.0\% & 0.0\% \\
\text{Model 1: Age + Edu} & 89.1\% & 33.5\% \\
\text{Model 2: Age + Edu + Married} & 88.2\% & 34.3\% \\
\end{array}
\]

What do these mean? And what do they suggest about model selection?

π^* is arbitrary, so why restrict our attention to one threshold?

In our case, better performance occurs at a higher threshold like $\pi^* = 0.65$

\[
\begin{array}{l|cc}
\pi^* = 0.65 & \text{Sensitivity (TPR)} & \text{Specificity (TNR)} \\
\hline
\text{Model 0: Null} & 100.0\% & 0.0\% \\
\text{Model 1: Age + Edu} & 68.2\% & 64.2\% \\
\text{Model 2: Age + Edu + Married} & 68.2\% & 64.2\% \\
\end{array}
\]

What’s changed and why? What else would change if we set $\pi^* = 0.66$?
Receiver Operating Characteristic Plots

Unless we have a π^* of particular interest, we’re more interested in the range of sensitivity and specificity.

We’d also like to understand the tradeoff better, and see the threshold that maximizes their sum.

Receiver operator characteristic plots developed in WWII to evaluate radar operators.

ROC plots show sensitivity & specificity under all thresholds from 0 to 1.

To produce a ROC curve:

1. sort cases from greatest probability of a 1 to least probability.

2. start a line at the origin of the graph and work over the cases:
 - move up $\frac{1}{\text{total positives}}$ for each positive case
 - move right $\frac{1}{\text{total negatives}}$ for each negative case
Above is the ROC plot for Model 1

Note we can read the horizontal axis two ways
ROC plots are easier to interpret if we plot a few example thresholds.

E.g., if we require $\pi^* = 0.8$ to predict a 1, sens $\approx 26\%$ & spec $\approx 91\%$.

M1: Age, Edu

AUC = 0.711
Overlapping ROC plots helps us see which models are better at sensing 1s and which are better at sensing 0s (and at what cost in missed 0s and 1s).
AUC / Concordance Index

The area under the ROC is one measure of GOF (concordance index or AUC).

Models that increase the concordance index are better – even if the model doesn’t change PCP (PCP is hard to move for rare events).

Concordance index is my favorite “one number summary” for logit & probit.

(Aside for economists: AUC of ROC is equivalent to Gini coefficient)

Criticisms of AUC: still arbitrary, with equal weight on each threshold and different penalties for different models (see Hand 2009).

Even with AUC, the shape of the ROC is still useful to study: impossible to fully summarize performance in a single number.
Actual versus Predicted Plots

Plotting y versus \hat{y} is very informative in linear regression

Ideally, all points should be close to the 45° line

Some points will be poorly predicted because of noise (σ^2), but clusters of deviations from the line suggest potential omitted variables

Systematic nonlinearity suggests incorrect functional form

y versus \hat{y} plot for binary data would be as useful

But binary data don’t plot well

Sorting the data by predicted probability has helped so far

Solution: bin the sorted data into ranges of predicted probability
Consider 20 bins, each containing cases with predicted probs in a common interval. 1st bin has cases with $\Pr(\text{Vote}) \in [0\%, 5\%)$; the 2nd has $\Pr(\text{Vote}) \in [5\%, 10\%)$; etc.
Some bins have more cases than others
Let’s ignore bins with fewer than 5 cases (why?)
For each bin, compute avg predicted probability and avg empirical frequency

Scale *area* of circles to number of cases to highlight reliable results
Not bad fit – close to 45° line

A better model would also have most/largest circles near $[0,0]$ or $[1,1]$ (why?)
Worse at predicting low probability cases?

Maybe, but it’s hard to tell with few cases per bin in those ranges
Unless you have tons of data, equally spaced bins are suboptimal.
Better to have variable-width bins with a reasonable number of cases
It does look like the model is a bit worse at predicting the behavior of unlikely voters.
One problem with actual vs predicted plots: they show absolute error. But we're often more interested in relative risk (e.g. for rare events).
The plot at right shows the ratio of actual to predicted probability

“Scales up” errors for low prob events, just as relative risks do compared to first diffs

Relatively speaking, the errors in the lowest bin are larger: we miss by 20%
Model comparison is easy: just overlap AvP and EvP plots.

These models are similar, with generally good performance.

In other cases, careful study of deviations can suggest model improvements.
Out-of-sample tests

Sometimes we’re only (or mostly) interested in inference within a sample

Sample is a census; e.g., how legislators voted on a specific bill

If so, in-sample fit is directly relevant – but still risks overfitting!
Out-of-sample tests

Sometimes we’re only (or mostly) interested in inference within a sample

Sample is a census; e.g., how legislators voted on a specific bill

If so, in-sample fit is directly relevant – but still risks overfitting!

Usually, we’re interested in the sample as a means to infer population parameters

Presidential Turnout: just one sample of voters from one election

If so, in-sample fit is both overconfident and indirect: how would we fit other samples (or the average sample) from the population?
Out-of-sample tests

Sometimes we’re only (or mostly) interested in inference within a sample

Sample is a census; e.g., how legislators voted on a specific bill

If so, in-sample fit is directly relevant – but still risks overfitting!

Usually, we’re interested in the sample as a means to infer population parameters

Presidential Turnout: just one sample of voters from one election

If so, in-sample fit is both overconfident and indirect:
how would we fit other samples (or the average sample) from the population?

Solution: use the in-sample parameter estimates to predict a new test sample

Expensive: need to gather out-of-sample (OOS) data ($) or hold out part of the original sample (so se’s will be larger)

In 2000 ANES, voters told us whether they voted in 1996 – use as an OOS test?
<table>
<thead>
<tr>
<th></th>
<th>1996 Data</th>
<th>2000 Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.156</td>
<td>0.061</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>Age^2</td>
<td>-0.00106</td>
<td>-0.000318</td>
</tr>
<tr>
<td></td>
<td>(0.000192)</td>
<td>(0.000170)</td>
</tr>
<tr>
<td>High School Grad</td>
<td>1.415</td>
<td>1.099</td>
</tr>
<tr>
<td></td>
<td>(0.199)</td>
<td>(0.181)</td>
</tr>
<tr>
<td>College Grad</td>
<td>1.199</td>
<td>1.053</td>
</tr>
<tr>
<td></td>
<td>(0.150)</td>
<td>(0.132)</td>
</tr>
<tr>
<td>Married</td>
<td>0.375</td>
<td>0.373</td>
</tr>
<tr>
<td></td>
<td>(0.122)</td>
<td>(0.110)</td>
</tr>
<tr>
<td>Constant</td>
<td>-5.184</td>
<td>-2.866</td>
</tr>
<tr>
<td></td>
<td>(0.422)</td>
<td>(0.422)</td>
</tr>
<tr>
<td>log likelihood</td>
<td>-863.1</td>
<td>-1028.7</td>
</tr>
<tr>
<td>AIC</td>
<td>1738.2</td>
<td>2069.5</td>
</tr>
<tr>
<td>BIC</td>
<td>1771.1</td>
<td>2102.4</td>
</tr>
<tr>
<td>N</td>
<td>1783</td>
<td>1783</td>
</tr>
</tbody>
</table>

Above are the estimates for each year run *separately*

Good robustness check: are parameters (or better still, the QoIs) similar?
<table>
<thead>
<tr>
<th></th>
<th>1996 Data</th>
<th>2000 Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.156</td>
<td>0.061</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>Age(^2)</td>
<td>−0.00106</td>
<td>−0.000318</td>
</tr>
<tr>
<td></td>
<td>(0.000192)</td>
<td>(0.000170)</td>
</tr>
<tr>
<td>High School Grad</td>
<td>1.415</td>
<td>1.099</td>
</tr>
<tr>
<td></td>
<td>(0.199)</td>
<td>(0.181)</td>
</tr>
<tr>
<td>College Grad</td>
<td>1.199</td>
<td>1.053</td>
</tr>
<tr>
<td></td>
<td>(0.150)</td>
<td>(0.132)</td>
</tr>
<tr>
<td>Married</td>
<td>0.375</td>
<td>0.373</td>
</tr>
<tr>
<td></td>
<td>(0.122)</td>
<td>(0.110)</td>
</tr>
<tr>
<td>Constant</td>
<td>−5.184</td>
<td>−2.866</td>
</tr>
<tr>
<td></td>
<td>(0.422)</td>
<td>(0.422)</td>
</tr>
<tr>
<td>log likelihood</td>
<td>−863.1</td>
<td>−1028.7</td>
</tr>
<tr>
<td>AIC</td>
<td>1738.2</td>
<td>2069.5</td>
</tr>
<tr>
<td>BIC</td>
<td>1771.1</td>
<td>2102.4</td>
</tr>
<tr>
<td>N</td>
<td>1783</td>
<td>1783</td>
</tr>
</tbody>
</table>

Perhaps a more monotonic relationship between turnout & age in 1996 (why?)

Next step is an OOS test: use the 2000 parameters to predict the 1996 outcome
Out-of-sample tests

We can use any goodness of fit measure we like in our OOS test.

Predict 1996 data with 2000 parameters, compare to in-sample 1996 fit using:

- separation plots
- PCP
- ROC
- AUC
- AvP plots

If the outcome were more continuous, you could also compare:

- mean absolute error (MAE)
- RMSE
- coverage of prediction intervals

“Does the model fit out-of-sample nearly as well as in-sample?”

If not, maybe there is overfitting; consider a simpler model

“Is the out-of-sample fit adequate?”

This is a strong test of goodness of fit, unlike in-sample tests
Model 2’s in-sample fit to the 1996 turnout data according to AvP, ROC & AUC

How closely can we approximate this using the 2000 model?
The out-of-sample test of the 2000 model to the 1996 data
Predicts fairly well, but hints of nonlinearity – why?
2000 model expects participation of the elderly to tail off more than it does.

But could that be sample selection bias? Only people who lived to 2000 are sampled!
A truly separate OOS test: predict fresh 2004 ANES data using the 2000 model

But 2004 ANES has massive social desirability bias (78% report voting!)

Pattern of misfit tracks Deufel & Kedar’s (2010) theory of who lies about voting
A good out of sample test is expensive and hard to find. Can we find another way to improve on in-sample testing?
Another way?

Out of sample tests are more persuasive than in-sample: it’s easy to fit the data to which a model has been fitted.

But we often lack an out of sample dataset (or if we have one, we often want to pool it into our analysis).

Can we generate an OOS test using the original data?
Cross-validation

Out of sample tests are more persuasive than in-sample: it’s easy to fit the data to which a model has been fitted.

But we often lack an out of sample dataset (or if we have one, we often want to pool it into our analysis).

Can we generate an OOS test using the original data?

Amazingly, the answer is yes, by exploiting an analogy:

Subsample : Sample :: Sample : Population

If this analogy applies, we should be able to split the data, and accurately predict one half the data using a model fit on the other half.

Could repeat for many different splits (slow & biased but more robust)

Or just leave out one case at a time (fast & unbiased but less robust)

This is **cross-validation**: Using CV to calculate any GOF technique yields more reliable results than in-sample versions of the test.
Cross-validation

To cross-validate, we need an error metric

For linear models, this is usually the absolute prediction error or the root mean squared error

For binary, we’ll start with percent correctly predicted

<table>
<thead>
<tr>
<th></th>
<th>in-sample PCP</th>
<th>cv-PCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>69.99%</td>
<td>69.94%</td>
</tr>
<tr>
<td>Model 2</td>
<td>69.77%</td>
<td>69.56%</td>
</tr>
</tbody>
</table>

Here, CV error is almost equal to in-sample error

Typically it’s higher; sometimes much higher

Persuasive evidence that we have a good fit, not a spurious one

But PCP is a limited GoF test; we can do better
Recall our in-sample fits for Model 1
Now compare to our cross-validated fit – slightly weaker, but still pretty good

Intuition check: How does leave-one-out cross validation work for these tests?
And now we have more faith than ever that Model 2 is a genuine albeit small improvement on Model 1.

When should you use cross-validation? When you care if you’re right
Did it matter that we did “leave-one-out” instead of k-fold CV?

Perhaps repeatedly splitting the data into, say, $k = 5$ equal samples would be more robust?
Did it matter that we did “leave-one-out” instead of k-fold CV?

Intuition: randomly select 80% of cases to “train” the model, then predict remaining 20% “test” cases; repeat & average prediction error
Did it matter that we did “leave-one-out” instead of k-fold CV?

LOOCV vs k-fold CV makes no difference here – but sometimes it might
GOF: statistics versus graphics

Single number GOF tests are like grades:
one number to tell if you’re “good” or “bad”
Always graded on a curve – but not always certain what the curve is

Graphical GOF tests are like evaluations:
Form the basis for targeted improvement
Tells us where the “bad grade” came from

- Did your model fail one test but perform brilliantly otherwise?
- Is your model mediocre across the board?
- Is there a pattern to your model’s failures?

Best GOF tests make you think about the model

Remember! You can use a diagnostic graph to make your paper better even if you don’t have the space to publish the graph in the paper
Another model: lagged vote

Back to 2000 data

There’s one more variable to try: the lagged behavior of the voter

Past behavior looks like a great predictor:

<table>
<thead>
<tr>
<th>vote00</th>
<th>age</th>
<th>hsdeg</th>
<th>coldeg</th>
<th>married</th>
<th>vote96</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>35</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>57</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>63</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>77</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>43</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>47</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>26</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>48</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

...
Wow! What an improvement in fit

We re-use our explanatory variables (Age, HSdeg, Coldeg)

Then add a new control, the lagged dependent variable (LDV)

\[\Pr(Vote_{i,2000}) = \logit^{-1}(x_{i,2000}\beta + \gamma V\text{ote}_{i,1996}) \]

\(t \)-stat for \(\hat{\gamma} = 14.8 \) (\(p \)-value = 0.0000000. . .)

likelihood ratio = 235.7 on 1 df (\(p \)-value = 0.000000. . .)

reduction in BIC = 228.2 (\textit{huge})

PCP = 77.29\% (vs. 69.77\% without LDV or 65.7\% for the null model)
Actual vs. Predicted is much improved: circles have moved towards [0,0] and [1,1]

ROC show huge gains in sensitivity and specificity at most thresholds
<table>
<thead>
<tr>
<th>Variable</th>
<th>M2</th>
<th>M3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.061</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Age2</td>
<td>-0.000318</td>
<td>0.000139</td>
</tr>
<tr>
<td></td>
<td>(0.000170)</td>
<td>(0.000188)</td>
</tr>
<tr>
<td>High School Grad</td>
<td>1.099</td>
<td>0.712</td>
</tr>
<tr>
<td></td>
<td>(0.181)</td>
<td>(0.199)</td>
</tr>
<tr>
<td>College Grad</td>
<td>1.053</td>
<td>0.756</td>
</tr>
<tr>
<td></td>
<td>(0.132)</td>
<td>(0.141)</td>
</tr>
<tr>
<td>Married</td>
<td>0.373</td>
<td>0.283</td>
</tr>
<tr>
<td></td>
<td>(0.110)</td>
<td>(0.119)</td>
</tr>
<tr>
<td>Vote96</td>
<td></td>
<td>1.949</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.132)</td>
</tr>
<tr>
<td>Constant</td>
<td>-2.866</td>
<td>-1.758</td>
</tr>
<tr>
<td></td>
<td>(0.422)</td>
<td>(0.462)</td>
</tr>
<tr>
<td>log likelihood</td>
<td>-1028.7</td>
<td>-910.9</td>
</tr>
<tr>
<td>AIC</td>
<td>2069.5</td>
<td>1835.8</td>
</tr>
<tr>
<td>BIC</td>
<td>2102.4</td>
<td>1874.2</td>
</tr>
<tr>
<td>N</td>
<td>1783</td>
<td>1783</td>
</tr>
</tbody>
</table>

But all our substantive effects have shrunk! Omitted variable bias in M2?
<table>
<thead>
<tr>
<th></th>
<th>M2</th>
<th>M3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.061</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Age^2</td>
<td>-0.000318</td>
<td>0.000139</td>
</tr>
<tr>
<td></td>
<td>(0.000170)</td>
<td>(0.000188)</td>
</tr>
<tr>
<td>High School Grad</td>
<td>1.099</td>
<td>0.712</td>
</tr>
<tr>
<td></td>
<td>(0.181)</td>
<td>(0.199)</td>
</tr>
<tr>
<td>College Grad</td>
<td>1.053</td>
<td>0.756</td>
</tr>
<tr>
<td></td>
<td>(0.132)</td>
<td>(0.141)</td>
</tr>
<tr>
<td>Married</td>
<td>0.373</td>
<td>0.283</td>
</tr>
<tr>
<td></td>
<td>(0.110)</td>
<td>(0.119)</td>
</tr>
<tr>
<td>Vote96</td>
<td>1.949</td>
<td>1.949</td>
</tr>
<tr>
<td></td>
<td>(0.132)</td>
<td>(0.132)</td>
</tr>
<tr>
<td>Constant</td>
<td>-2.866</td>
<td>-1.758</td>
</tr>
<tr>
<td></td>
<td>(0.422)</td>
<td>(0.462)</td>
</tr>
</tbody>
</table>

log likelihood	-1028.7	-910.9
AIC	2069.5	1835.8
BIC	2102.4	1874.2
N	1783	1783

Maybe not: we know Vote96 = f(Age, Educ), so LDV is **absorbing** these variables
Prediction versus Explanation

Prediction and explanation are different goals

Explanation: What is the relationship between some particular x and y?

E.g., “Does age affect the probability of voting, and if so, how much?”

Prediction: What y do we expect to see under given circumstances?

E.g., “What percentage of the voters will turn out in some district?”
Prediction versus Explanation

Prediction and explanation are different goals

Explanation: What is the relationship between some particular x and y?

E.g., “Does age affect the probability of voting, and if so, how much?”

Prediction: What y do we expect to see under given circumstances?

E.g., “What percentage of the voters will turn out in some district?”

When we are *predicting*, we can include or exclude any x to aid fit.

When we are *explaining*, we are usually interested in getting a precise estimate of the effect of a particular x, as suggested by an underlying causal model.
The best *predictive* model is the one with the best fit, with caveats

1. What kind of fit? Out-of-sample or CV

2. Curve-fitting hinders prediction, plus we don’t care what the parameters are *per se*

3. Often relies on a boring mediating or spurious variable: Best predictor of turnout is whether you plan to vote
The best *predictive* model is the one with the best fit, with caveats

1. What kind of fit? Out-of-sample or CV

2. Curve-fitting hinders prediction, plus we don’t care what the parameters are *per se*

3. Often relies on a boring mediating or spurious variable: Best predictor of turnout is whether you plan to vote

The best *explanatory* model depends on which relationship we want to explore

1. May depend on which x we are interested in (i.e., which QoI we want to estimate)

2. We often exclude a better fitting model because it reduces precision of parameters too much

3. This should be done in a principled way – think about mediation, try to sketch the causal model
Conclusions

This week, we’ve seen three crucial steps in maximum likelihood modeling:

1. Model specification and estimation
2. Model interpretation
3. Model re-specification and selection

Though our discussion was in terms of binary choice, much carries over to other models

Even your code will be a good template

Next up: ordered and multinomial choice