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Onwards, from probability to modelling

We’ve worked up from sets and sample spaces

to the idea of random variables distributed according to functions

chosen for the plausibility of their assumptions

Now, we’ll see how this culminates in practical models of social phenomena

The goal henceforth is inference:
using the data we know to uncover things we don’t know yet

Key requirement:
quantifying the uncertainty of our inferences (that’s why we need probability)
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From random variables to models

Suppose we’re studying outcome y (which could be votes, disease incidence, or
unemployment), and we decide y is distributed f

Stochastic component: y ∼ f(µ,α)

Systematic component: µ = g(X,β)

This formulation encompasses all the models in this class.

You are used to seeing linear regression written this way:

yi = xiβ + εi

εi ∼ fN (0, σ
2)

In our notation, this is equivalent to assuming f(·) is the Normal distribution:

yi ∼ fN (µi, σ
2)

µi = xiβ



From random variables to models

By choosing a different distribution to be f(·), we get a new model

Our notation allows this, but the error term format doesn’t (only works for Normal)

For example, the Bernoulli leads to binary choice logit:

yi ∼ fBern(πi)

πi =
1

1 + exp(−xiβ)

And the Poisson leads to Poisson event count regression:

yi ∼ fPois(λi)

λi = exp(xiβ)

and so on. . .



From random variables to models

Notes on stochastic components

Number of parameters in the stochastic component varies by distribution

“Extra” parameters often called nuisance parameters. (Too dismissive?)

Number of stochastic “layers” is variable – we’ll see nested distributions

Notes on systematic components

Systematic component is not always linear

Often a transformation from unbounded xiβ to some range, especially

the positive real numbers, R+

a real interval such as [0, 1]



From random variables to models

Learning from a model often relies on two quantities

Expected values often equal the systematic component: E(y|X,β)

Predicted values are draws from the stochastic component: ỹ|X,β

Computing quantities like these is usually the final goal of inference

To compute these quantities of interest, we need to estimate unknowns like β

The intermediate goal of inference is estimating unknown parameters

We will often denote the set of all parameters (e.g., β and σ2) as θ

In applications, we typically don’t know the values of θ,
so we attempt to infer them from the data, y

In probabilistic terms, we want to learn about θ given y, so we need to find P(θ|y)



From models to inference

A catch: it’s not possible to infer P(θ|y) from y alone Why not?

If we assume a distribution for y, we can solve for P(y|θ). . .

conditional probability =
joint probability

marginal probability

P(θ|y) = P(θ ∩ y)

P(y)

P(y)P(θ|y) = P(θ ∩ y)

P(y|θ) = P(θ ∩ y)

P(θ)

P(θ)P(y|θ) = P(θ ∩ y)

P(y)P(θ|y) = P(θ)P(y|θ)

P(θ|y) =
P(θ)P(y|θ)

P(y)

This famous result is known as Bayes Rule

It shows how to write a conditional probability P(a|b) in terms of its inverse, P(b|a)



From models to inference

P(θ|y) = P(θ)P(y|θ)
P(y)

(Bayes Rule)

So to infer the probability of the parameters θ given the data y,
we need to know P(θ) and P(y) a priori

We can rewrite Bayes rule to replace P(y) with other quantities (integrate it out):

P(y) =

∫
Θ

P(θ ∩ y)dθ

=

∫
Θ

P(θ)P(y|θ)dθ

But P(θ) is not known objectively



From models to inference

P(θ|y) = P(θ)P(y|θ)∫
Θ

P(θ)P(y|θ)dθ
(Bayes Rule)

P(θ) is not known objectively, but we need it to compute P(θ|y)

This creates a fork in the road of inference, with two major schools of thought:

Bayesian inference

1. Make a subjective guess of the a priori P(θ)

2. Then use P(y|θ) to calculate P(θ|y)

Likelihood inference:

1. Give up on calculaing P(θ|y) to avoid making subjective guesses of P(θ)

2. Instead focus on making inferences directly from P(y|θ)



Understanding Bayesian inference: An example

To understand likelihood inference,
it helps to start with Bayesian inference and strip pieces away

To understand the Bayesian logic of inference,
it helps to have an example

Suppose an statistics instructor wants to know
how many hours of work his homeworks take on average

Based on many years of teaching,
he believes (subjectively) that this average is most likely 10 hours per assignment

And he is 95% confident that the average student spends between 6 and 14 hours

This is his prior belief – can he improve on it by gathering a little data?



0 5 10 15 20
Estimate of mean, μ

p(μ)

prior belief    E(μ)=10.00
95% probability μ in [6.08, 13.92]

The instructor’s uncertainty about the average workload corresponds to a
Normal(10,4) prior distribution

To complement these subjective prior beliefs, he surveys 5 random students



0 5 10 15 20
Estimate of mean, μ

p(μ)

prior belief    E(μ)=10.00
95% probability μ in [6.08, 13.92]

y = {11.5, 13.5, 13.8, 17.8, 18.0} mean=14.9, sd=2.9 higher than expected!

The instructor is reluctant to discard his prior knowledge on the basis of a tiny
sample. Can he combine his insights with the data?



0 5 10 15 20
Estimate of mean, μ

Assuming they came from a Normal distribution, what parameters were most likely
to produce a sample with a mean of 14.9 and variance of 8.4?



0 5 10 15 20
Estimate of mean, μ

p(y|μ)

Assuming they came from a Normal distribution, what parameters were most likely
to produce a sample with a mean of 14.9 and variance of 8.4?

The most likely distribution turns out to be Normal(µ =14.9, σ2 =8.4/n)



0 5 10 15 20
Estimate of mean, μ

p(y|μ)

The distribution most likely to produce the sample is Normal(µ =14.9, σ2 =8.4/n)

We call this distribution, p(y|µ) – the probability of seeing the sample y given the
value of the parameter µ – the likelihood



0 5 10 15 20
Estimate of mean, μ

p(μ)

p(y|μ)

prior belief    E(μ)=10.00
95% probability μ in [6.08, 13.92]

Bayesian inference:
using Bayes Theorem to combine the prior distribution and the likelihood

Multiplying these two distributions together & dividing by p(y) yields. . .



0 5 10 15 20
Estimate of mean, μ

p(μ)

p(y|μ)

p(μ|y)

prior belief    E(μ)=10.00
95% probability μ in [6.08, 13.92]

posterior belief    E(μ)=13.49
95% probability μ in [11.38, 15.60]

The posterior distribution: our subjective beliefs about student workload updated to
account for the objective new data we sampled

We now think there’s a 95% probability students work between 11.38 & 15.60 hours



0 5 10 15 20
Estimate of mean, μ

p(μ)

p(y|μ)

p(μ|y)

prior belief    E(μ)=10.00
95% probability μ in [6.08, 13.92]

posterior belief    E(μ)=13.49
95% probability μ in [11.38, 15.60]

Note that our new beliefs compromise between our old beliefs and the data

Also, note that we draw clear but subjective conclusions
about the probability distribution of the sample mean



0 5 10 15 20
Estimate of mean, μ

p(μ)

prior belief    E(μ)=10.00
95% probability μ in [6.08, 13.92]

What if we had drawn a larger sample – say, 50 students

Now we obtain a sample mean of 14.7 and an sd of 3.5



0 5 10 15 20
Estimate of mean, μ

p(μ)

p(y|μ)

prior belief    E(μ)=10.00
95% probability μ in [6.08, 13.92]

Our likelihood is now sharper, because we have a larger sample to work with



0 5 10 15 20
Estimate of mean, μ

p(μ)

p(y|μ)

p(μ|y)

prior belief    E(μ)=10.00
95% probability μ in [6.08, 13.92]

posterior belief    E(μ)=14.43
95% probability μ in [13.50, 15.35]

This more informative likelihood has a stronger influence on the posterior

Our posterior beliefs are closer to the sample mean and more certain than before



0 5 10 15 20
Estimate of mean, μ

p(μ)

p(y|μ)

p(μ|y)

prior belief    E(μ)=10.00
95% probability μ in [6.08, 13.92]

posterior belief    E(μ)=14.43
95% probability μ in [13.50, 15.35]

So far, we have specified informative priors to capture our subjective beliefs

But what if we wanted to be more agnostic?



0 5 10 15 20
Estimate of mean, μ

p(μ) p(y|μ)

prior belief    E(μ)=10.00
95% probability μ in [−9.60, 29.60]

We could instead set a diffuse prior with a high variance

We still believe a priori that the most probable average workload is 10 hours,
but now we consider a wide range of workloads almost as likely



0 5 10 15 20
Estimate of mean, μ

p(μ) p(y|μ)

p(μ|y)

prior belief    E(μ)=10.00
95% probability μ in [−9.60, 29.60]

posterior belief    E(μ)=14.68
95% probability μ in [13.72, 15.63]

Because the prior now offers so little information,
the posterior is dominated by the sampled data



0 5 10 15 20
Estimate of mean, μ

p(μ)
p(y|μ)

p(μ|y)

prior belief    E(μ)=10.00
95% probability μ in [−9.60, 29.60]

posterior belief    E(μ)=14.83
95% probability μ in [12.35, 17.31]

But if the sample is very small, even a diffuse prior can influence the posterior a little



0 5 10 15 20
Estimate of mean, μ

p(μ) p(y|μ)

prior belief    E(μ)=10.00
95% probability μ in [6.08, 13.92]

What do you think will happen
if we combine our original, informative prior with our larger sample?



0 5 10 15 20
Estimate of mean, μ

p(μ) p(y|μ)

p(μ|y)

prior belief    E(μ)=10.00
95% probability μ in [6.08, 13.92]

posterior belief    E(μ)=15.03
95% probability μ in [14.78, 15.27]

In this case, the data dominates almost completely



0 5 10 15 20
Estimate of mean, μ

p(μ)

p(y|p(y|μμ))

p(μ|y)

prior belief    E(μ)=10.00
95% probability μ in [9.76, 10.24]

posterior belief    E(μ)=12.49
95% probability μ in [12.32, 12.67]

In this case, the data dominates almost completely

Of course, a sharp enough prior would force the posterior back into a compromise,



0 5 10 15 20
Estimate of mean, μ

p(μ) p(y|μ)

p(μ|y)

prior belief    E(μ)=10.00
95% probability μ in [6.08, 13.92]

posterior belief    E(μ)=15.03
95% probability μ in [14.78, 15.27]

In this case, the data dominates almost completely

Of course, a sharp enough prior would force the posterior back into a compromise,
but it’s not likely we’d be so certain a priori



0 5 10 15 20
Estimate of mean, μ

p(y|μ)L(µ|y)

This example suggests that if we have a large enough sample,
the likelihood by itself is a good summary of where the most likely values of µ are

The downside of using the likelihood by itself is the loss of clear probability
statements



Likelihood inference

What happens if you treat the prior as an unknown constant?

P(θ|y) =
P(θ)

P(y)
P(y|θ)

L(θ|y) = k(y)P(y|θ)
L(θ|y) ∝ P(y|θ)

The likelihood of the parameters given the data is proportional to
the probability of the data given the parameters

Though we can’t objectively state the probability of a particular θ̂ given y,
we can objectively state the (relative) likelihood of θ̂ over some other θ̂′:

L is a surface in θ space showing which parameter values are more likely than others

We can look at the profile of the likelihood function against each parameter in θ
to see which θ̂’s are likely
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0

likelihood that θ produced the data y

θ

In many cases, the likelihood will approx quadratic, with a single maximum

In this case, the most likely θ appears to be −1.
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0

likelihood that θ produced the data y

θ

The most likely θ produces 
the largest likelihood

θ’s get less likely as the get farther from −1,
but the likelihood profile reminds us values near −1 are almost as likely to be true

And even somewhat distant values could be the true θ



−3 −2 −1 0 1 2 3
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likelihood that θ produced the data y

θ

The most likely θ produces 
the largest likelihood

Note we cannot attach probabilities to each θ (the vertical axis is L, not P)

This is the main difference between likelihood inference and Bayesian inference



−3 −2 −1 0 1 2 3

−15000

−10000

−5000

0

likelihood that θ produced the data y

θ

What if the likelihood is “flat” around the mean?

Here, the most likely θ appears to be 0. . .



−3 −2 −1 0 1 2 3

−15000

−10000

−5000

0

likelihood that θ produced the data y

θ

A flat maximum 
likelihood makes 
the most likely θ 
uncertain

But θ’s as far away as −0.5 and 0.5 seem equally likely

(What does this remind you of from your past methods classes?)



−3 −2 −1 0 1 2 3

−15000

−10000

−5000

0

likelihood that θ produced the data y

θ

A flat maximum 
likelihood makes 
the most likely θ 
uncertain

Flat L ⇒ insufficient information to discriminate among parameter values

Mean by itself will be a misleading summary here (what would be better?)
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likelihood that θ produced the data y

θ

How would you summarize this case?



−3 −2 −1 0 1 2 3

−2000

−1000

0

1000

2000

likelihood that θ produced the data y

θ

Is the most 
likely θ here?

How would you summarize this case?



−3 −2 −1 0 1 2 3

−2000

−1000

0

1000

2000

likelihood that θ produced the data y

θ

Is the most 
likely θ here?

Or is 
it here?

In unusual cases, the likelihood may have multiple modes or maxima

In this example, the most likely θ appears to be either around 2 or −2



−3 −2 −1 0 1 2 3

−2000
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2000

likelihood that θ produced the data y

θ

Is the most 
likely θ here?

With multiple 
maxima it’s 
hard to say!

Or is 
it here?

But θ’s in between are less likely

The mean by itself will be a very bad summary here –
it’s clearly not a particularly likely value
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−2000
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likelihood that θ produced the data y

θ

Is the most 
likely θ here?

With multiple 
maxima it’s 
hard to say!

Or is 
it here?

If we have many parameters, multimodal surfaces can be very hard to summarize

Fortunately, we won’t encounter such likelihoods in this class,
but they are could occur in complex or unusual models



Profile Likelihoods: Example

Let’s look at some real data

The turnout in 39 counties for the 2004 Washington State gubernatorial election

A good model of turnout would incorporate each county’s unique features

We’re going to estimate an oversimplified model for pedagogical purposes

(This is not a model we would want to use for anything important)

We’ll assume voters in each county have the same probability of turning out

Under this assumption, each county’s turnout can be treated as a binomial RV

To find the ML estimate of the common turnout rate (i.e., π), we calculate L



Profile Likelihoods: Example

For now, I’ll give you the likelihood for the binomial (you’ll derive as HW)

L (π|y,M) ∝
n∏

i=1

Mi!

yi!(Mi − yi)!
πyi(1− π)Mi−yi

A practical problem: raising π’s to large numbers will give R a headache

Transform L to maintain the same maximum, but less extreme values?

Let’s try logL. In this case

logL (π|y,M) ∝
n∑

i=1

yi log π +

n∑
i=1

(Mi − yi) log(1− π)

Because likelihoods are a relative measure only,
we’re allowed to drop any terms that do not depend on estimated parameters;
what remains are sufficient statistics of logL



0 0.2 0.4 0.6 0.8 1

−12,000,000

−10,000,000

−8,000,000

−6,000,000

−4,000,000

−2,000,000

log−likelihood that π produced the sample

Probability of voting, π

How do we use the likelihood to learn about the unknown parameter π?

Consider different π’s in the possible range [0, 1] and calculate logL for each

Then plot the logL’s against the π’s to produce a profile likelihood
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−12,000,000

−10,000,000

−8,000,000

−6,000,000

−4,000,000

−2,000,000

log−likelihood that π produced the sample

Probability of voting, π

Remember that likelihoods (and log-likelihoods) are relative measures only

Higher likelihoods indicate more likely parameter values

But we don’t know the probability an estimate of the parameter is correct
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log−likelihood that π produced the sample

Probability of voting, π

Why do I show log-likelihoods here, instead of the likelihood itself?

Does it make a difference for assessing the most likely parameter values?
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Probability of voting, π

Using the likelihood or its log makes no difference statistically

The likelihood and log-likelihood have the same maximum
and the same ordering of likely parameter values,
so we can use whichever is more convenient for our computers
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Probability of voting, π

Zoom in...

Is there a clear maximum of this likelihood?

What parameter value does the maximum indicate as most likely?

Let’s zoom in and see. . .
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Probability of voting, π

The maximum likelihood occurs near π = 0.8
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Zoom in...

The maximum likelihood occurs near π = 0.8

Let’s sharpen the estimate by zooming in closer
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What happens when I zoom in?

I calculate the likelihood again for a finer set of π’s near the maximum likelihood

This is known as an iterative search using a grid method
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Zoom in...

We can iterate the search yet again,
computing the likelihood for a still finer grid of candidate parameter values
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Repeating the grid search helps us find the precise value of π than maximizes L
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Zoom in...

Repeating the grid search helps us find the precise value of π than maximizes L

We’ll iterate once more, but notice that the differences in L are getting very small
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Our final iteration suggests that a π around 0.7998 maximizes the likelihood

But we shouldn’t trust all those digits: the likelihood is very flat for π ≈ 0.80

We can, however, be confident π is not too far from 0.80
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In fact, the mean turnout rate for the state was 0.7998

So have we just found a fancy way to calculate the mean?

We’ve learned something else: Relative likelihood of different values of π
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We have also tested the idea of using likelihood to estimate an unknown

If it works for estimating means,
it may also work to estimate unknown regression coefficients



Maximum likelihood

If we are reasonably sure that our likelihood is unimodal

Or we find the global maximum to be much higher than other modes

And we find the surface to be narrowly peaked around the max, then

An attractive summary of L is its maximum,
and in particular,

the values of θ at the maximum L

Maximum likelihood estimation entails finding those θ̂ML’s

In practice, it will prove easier (& equivalent) to find the max of logL



How to derive maximum likelihood estimators

. . . in four easy steps:

1. Express the joint probability of the data,
using the chosen probability distribution

2. Convert the joint probability to the likelihood
(trivial, as they are proportional)

3. Simplify the likelihood for easy maximization
(take logs and reduce to “sufficient statistics”)

4. Substitute in the systematic component

Now we have something easy to maximize,
and will be able to estimate the parameters given the data



MLE for a Normally distributed response

Step 1: Express the joint probability of the data using the Normal distribution

P
(
y1|µ1, σ

2
)

= fN
(
y1|µ1, σ

2
)

P
(
y1, y2|µ1, µ2, σ

2
)

= fN
(
y1|µ1, σ

2
)
× fN

(
y2|µ2, σ

2
)

P
(
y1, y2, . . . , yi, . . . yn|µi, σ

2
)

=

n∏
i=1

fN
(
yi|µi, σ

2
)

P
(
y|µ, σ2

)
=

n∏
i=1

(
2πσ2

)−1/2
exp

(
−(yi − µi)

2

2σ2

)

Note that we assume yi, . . . , yn are iid:
Our biggest assumption to date



MLE for a Normally distributed response

Step 2: Convert the joint probability to the likelihood

L
(
µ, σ2|y

)
∝ P

(
y|µ, σ2

)
L
(
µ, σ2|y

)
= k(y)P

(
y|µ, σ2

)
L
(
µ, σ2|y

)
= k(y)

n∏
i=1

(
2πσ2

)−1/2
exp

(
−(yi − µi)

2

2σ2

)



Step 3: Simplify the likelihood for easy maximization

L
(
µ, σ2|y

)
= k(y)

n∏
i=1

(
2πσ2

)−1/2
exp

(
−(yi − µi)

2

2σ2

)

logL
(
µ, σ2|y

)
= log

n∏
i=1

(
k(yi)×

(
2πσ2

)−1/2
exp

(
−(yi − µi)

2

2σ2

))

logL
(
µ, σ2|y

)
=

n∑
i=1

(
log k(yi)−

1

2
log
(
2πσ2

)
− (yi − µi)

2

2σ2

)

logL
(
µ, σ2|y

)
=

n∑
i=1

log k(yi)−
1

2

n∑
i=1

log
(
2πσ2

)
−

n∑
i=1

(yi − µi)
2

2σ2

logL
(
µ, σ2|y

)
=

n∑
i=1

log k(yi)−
1

2

n∑
i=1

log(2π)− 1

2

n∑
i=1

log σ2 − 1

2

n∑
i=1

(yi − µi)
2

σ2

logL
(
µ, σ2|y

)
∝ −1

2

n∑
i=1

log σ2 − 1

2

n∑
i=1

(yi − µi)
2

σ2

Note the last step reduces to sufficient statistics for logL
(
µ, σ2|y

)



MLE for a Normally distributed response

Step 4: Substitute in the systematic component

logL
(
µ, σ2|y

)
∝ −1

2

n∑
i=1

log σ2 − 1

2

n∑
i=1

(yi − µi)
2

σ2

µi = xiβ

logL
(
β, σ2|y

)
∝ −1

2

n∑
i=1

log σ2 − 1

2

n∑
i=1

(yi − xiβ)
2

σ2



MLE for a Normally distributed response

logL
(
β, σ2|y

)
= −1

2

n∑
i=1

log σ2 − 1

2

n∑
i=1

(yi − xiβ)
2

σ2

Note some interesting feature of this MLE:

• logL ↑ as the sum of squared errors ↓

• MLE for normal data is the estimator that minimizes the squared errors

• In the Normal case, least squares (LS) is the MLE

• Note that we now have a justification for LS over, say, minimizing absolute error

• In other words, we have derived LS from first principles



So what?

We already know least squares, so has all this theory gotten us anywhere?

Yes

Use the same steps to derive an MLE for any probability distribution

Can produce & use models closer to how we, as scientists, think our data behaves

Only limit now is our creativity

So let’s derive something interesting, but not too different from LS
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Linear regression models assume errors are homoskedastic

Homoskedastic = constant error variance

The model assumes same σ2 for all cases: yi ∼ N (µi, σ
2)
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What if errors are heteroskedastic, yi ∼ N (µi, σ
2
i )? Two problems arise:

1. se(β̂) may be biased robust standard errors attempt to fix

2. Estimates of β̂ will be inefficient robust standard errors do not fix
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Why does heteroskedasticity make linear regression inefficient?

Observations with higher variance in errors contain less information

Observations with lower variance tend to be very close to the regression line
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But heteroskedasticity is a “problem” only because we assumed it didn’t exist

We don’t ever talk about the problem of “non-constant means” because we have µi

What if included σ2
i as part of the model?



Bigger question

What if the heteroskedasticity is the interesting part of the data?

Suppose. . .

1. Roughly balanced powers are a necessary (but not sufficient) condition for war,
making war/peace more variable?

2. Privatizing social services doesn’t lower average welfare (much), but increases the
variability of (say) health outcomes by increasing risk of non-coverage?

Linear regression won’t answer these questions well

Can we model variance directly using maximum likelihood?



MLE for a heteroskedastic Normal response

Heteroskedasticity isn’t a flaw but a real feature of the data

With maximum likelihood, we can now model it explicitly:

• I.e., derive a model that explicitly allows for heteroskedasticity

• and parameterize it (model heteroskedasticity as a function of covariates)

• example: we could show that x1 not only ↑’s the mean, it also ↑’s the variance



MLE for a heteroskedastic Normal response

To derive the MLE for a heteroskedastic Normal model, we need to specify the

stochastic component
yi ∼ fN (µi, σi

2)

systematic components

µi = xiβ

σ2
i = exp(ziγ)

Notice the difference from linear regression:
σ2
i has an extra systematic component

Why do we model σ2
i as exponential?



MLE for a heteroskedastic Normal response

The derivation of the heteroskedastic MLE largely reproduces the homoskedastic case

Just add subscripts to the σ2’s!

P
(
y|µ,σ2

)
=

n∏
i=1

fN
(
yi|µi, σ

2
i

)
P
(
y|µ,σ2

)
=

n∏
i=1

(
2πσ2

i

)−1/2
exp

[
−(yi − µi)

2

2σ2
i

]
. . .

logL
(
β,σ2|y

)
∝ −1

2

n∑
i=1

log σ2
i −

1

2

n∑
i=1

(yi − µi)
2

σ2
i

logL (β,γ|y) ∝ −1
2

n∑
i=1

ziγ −
1

2

n∑
i=1

(yi − xiβ)
2

exp(ziγ)

Now we just find the parameters (β’s and γ’s) that maximize this likelihood
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A good way to test a new model: use it on Monte Carlo data

1. Simulate data with known parameters and an appropriate distribution

2. Attempt to recover the true parameters with the model
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Above data (N = 1500) are drawn from this heteroskedastic distribution

yi ∼ N (µi, σ
2
i )

µi = β0 + β1xi

σ2
i = exp(γ0 + γ1xi)
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Above data (N = 1500) are drawn from this heteroskedastic distribution

yi ∼ N (µi, σ
2
i )

µi = 0 + 15xi

σ2
i = exp(1 + 3xi)
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Linear regression Heteroskedastic MLE

fit fit

Expected values from the heteroskedastic MLE closely match
those from linear regression

Not a surprise: these models model the mean of yi|xi in the same way



0 0.2 0.4 0.6 0.8 1

−5

0

5

10

15

20

25

30

x

y

0 0.2 0.4 0.6 0.8 1

−5

0

5

10

15

20

25

30

x

y

Linear regression Heteroskedastic MLE

95% prediction interval 95% prediction interval

Key test is to compare prediction intervals (not confidence intervals – why?)

Predicted values are draws from the stochastic component of the model

95% of the data should lie in the 95% prediction interval
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Unlike linear regression, the heteroskedatic MLE accurately captures relationships
between the variance of yi and the levels of covariates xi

We’ve built a “new” model to better fit the substantive behavior of our data,
and estimated it using maximum likelihood



Finding maximum likelihood estimates: analytical solutions

We’ve turned a hard problem finding most likely parameter values
. . . into an easy one maximizing a single function

Ideally, we’d just use calculus to find the maximum

For the turnout example,
we just need the derivative of a binomial distribution with a fixed π

d logL(π|y)
dπ

=
1

π

n∑
i

yi +
1

π − 1

n∑
i

Mi − yi

Plugging in y and M, setting equal to 0, and solving for π reveals
π̂ML = 0.7998137511 . . .

To confirm this is a maximum, check the second derivative

d2 logL(π|y)
dπ2

= − 1

π2

n∑
i

yi +
1

(π − 1)2

n∑
i

Mi − yi

Plugging in y, M, and π̂ML yields −21911001, confirming a maximum



Finding maximum likelihood estimates: analytical solutions

With a few exceptions (such as linear regression),
we lack analytic solutions for MLEs

Instead, we use numerical methods:
Have the computer search and test many possible solutions iteratively

Iterative search

1. Start with an initial guess

2. Use your current guess to seek a new best guess

3. Repeat step 2 until “convergence”: e.g., the local derivative of L(θ|y) ≈ 0

Many search algorithms are available,
ranging from brute force to inspired and elegant approaches



Numerical Methods of Optimization

Grid search brute force: casting ever-finer nets
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1D grid search: compute L(θ|y) for each

parameter 1

We’ve already seen the grid search applied to the turnout example

Grid search works well for maximizing a single unknown parameter,
especially when the likelihood is globally concave

If you have doubts about concavity,
could use a very fine mesh and check to see if there is more than a single peak

This adds computation time: number of points x number of iterations
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1D grid search: compute L(θ|y) for each

parameter 1

We compute the above 11 values of the likelihood given hypothetical values of π

. . . select the highest pair
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1D grid search: compute L(θ|y) for each

parameter 1

We compute the above 11 values of the likelihood given hypothetical values of π

. . . select the highest pair

. . . then repeat the exercise between those two π’s

. . . and iterate until the desired precision is reached (convergence)

Earlier, 5 iterations provided us with convergence to 3 digits (0.799. . . )
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But what if you have 2 unknown parameters?

Now you need to compute every pair of possible values:
112 = 121 calculations per iteration
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Now we choose the square of the grid with the highest values,
and repeat the grid inside the square

If we needed 5 iterations here, we’d do a total of 605 computations
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3D grid search: compute L(θ|y) for each

What if there are three unknown parameters?

Now there are 113 = 1331 computations per iteration
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3D grid search: compute L(θ|y) for each

As the number of parameters rises, grid search becomes computationally infeasible

A regression model with 10 unknown parameters is hardly unusual,
but would take 1110 = 25, 937, 424, 601 computations per iteration to estimate



Numerical Methods of Optimization

Grid search brute force: casting ever-finer nets

Gradient descent/ascent step-by-step hill-climbing

Newton-Raphson, Nelder-Mead, BFGS
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Suppose we want to find the maximum of this binomial likelihood
without using analytic derivatives or brute force



0.5 0.6 0.7 0.8 0.9

−2.4

−2.2

−2.0

−1.8

Probability of voting, π

lo
g 

L(
π|

y)
 in

 m
ill

io
ns

Starting value

Instead, let’s assume it’s twice differentiable and globally concave,
and propose a randomly selected point π as a candidate maximum
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Starting value

Using the data, we calculate the log likelihood at the candidate π. . .
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Starting value

d log L(π|y)
d π

And compute a local approximation of the derivative,
which turns out to be positive
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Step

d log L(π|y)
d π

This suggests we should step to the right to find a new candidate π
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New guess of π

. . . and repeat the process
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We iterate, taking bigger or smaller steps,
as suggested by our gradient search algorithm
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Gradient = a derivative computed across one or more dimensions

This algorithm can climb hills or 1, 2, or many dimensions
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At each step, we shift our candidate along each dimension (parameter),
tending to take bigger steps in directions that are “steep”
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Like climbing a hill blindfolded:

To reach the top fast, step in whichever direction rises fastest, turning as needed
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So far, each step has brought us closer to the top of the hill
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But overstepping is likely to happen eventually. . .

The derivative now suggests we should move back to the left, just a little
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From here, I’ve omitted dozens of small steps zeroing in on the maximum
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MLE of π

= 0
d log L(π|y)

d π

Within 50 or so steps, we find a parameter that produces a zero gradient

We treat the final candidate π as our MLE
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MLE of π

= 0
d log L(π|y)

d π

The same logic applies even if there are many k parameters θ to estimate
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MLE of π

= 0
d log L(π|y)

d π

In that case, the “hill” of the likelihood exists in k + 1 space

The gradient is a k-vector of derivatives, ∂ logL(θ|y)/∂θ
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MLE of π

= 0
d log L(π|y)

d π

In general, another name for the gradient of the likelihood wrt some particular θ
is the score of the likelihood with respect to θ
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MLE of π

= 0
d log L(π|y)

d π

At the MLE, the score is 0;
large scores away from the MLE suggest the likelihood is sensitive to the parameter θ
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We assumed our likelihood surface was globally concave – what if it isn’t?

(Note this is an invented curve, not a likelihood from a particular distribution)
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= 0
d log L(μ|y)

d μ

If we had started at µ = 0.5, or any µ < 1,
we’d have found this local maximum as our “MLE”
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= 0
d log L(μ|y)

d μ

= 0
d log L(μ|y)

d μ

But the global maximum is far to the right, near µ = 1.4

Starting values above µ = 1 would find this maximum
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MLE of μMLE of μ

= 0
d log L(μ|y)

d μ

= 0
d log L(μ|y)

d μ

Only the global maximum is the MLE of µ

If you suspect local maxima, try multiple starting values



Numerical Methods of Optimization

Grid search brute force: casting ever-finer nets

Gradient descent/ascent step-by-step hill-climbing

Newton-Raphson, Nelder-Mead, BFGS

Simulated annealing metallurgy metaphor

melt-freeze-repeat

Genetic algorithms natural selection on population of sol’ns

mutate-select-repeat

Particle swarm optimization semi-autonomous agents

search and share solutions

Markov-chain Monte Carlo (MCMC) draw correlated series

Gibbs sampler, Metropolis-Hastings, of random numbers

Hamiltonian Monte Carlo converging in probability

to a target distribution



Numerical Methods of Optimization

Method Virtues Limitations

Grid search very slow
can find local maxima

Gradient descent very fast can find local maxima
scales well needs smooth surfaces

Simulated annealing avoids local maxima imprecise
works with discontinuities scales poorly

Genetic algorithms minimal assumptions can find local maxima
scales poorly

Particle swarm minimal assumptions convergence uncertain
optimization scales poorly

Markov chain convergence guaranteed slow
Monte Carlo modest assumptions hard to assess



Statistical properties of MLEs

1. Minimum variance unbiasedness

• MVU is the unbiased estimator with least variance (highest efficiency)
• If an unbiased minimum variance estimator exists, it’s the MLE
• Even if no unbiased estimator, ML picks an efficient one

2. Invariance to reparameterization

• If est of α is α̂ML, then est of β = f(α) is β̂ML = f(α̂ML)
• But E(f(α)) 6= f(E(α)) for most f(·),

so choice of parameterization can cause bias in small samples (e.g., for σ2)
• Not a problem in the limit (see below)

3. Invariance to sampling plans

• Estimate depends on data only through likelihood
• Estimator same regardless of sample size, n
• You can stop sampling anytime you are pleased with precision



Statistical properties of MLEs

Asymptotic properties:

1. Consistency

• MLE collapses to a spike over true parameter values as n→∞

2. Asymtoptic Normality

• For large n, sampling distribution of θ̂ becomes Normally distributed
• Allows for easy caculation of standard errors, confidence intervals, etc

3. Asymptotic Efficiency

• As n→∞, the MLE tends to be the estimator with lowest error



Two kinds of precision

Using gradient search, we can find the maximum of the likelihood function
to whatever level of precision (number of computed digits) we desire

But can we trust the maximum of the likelihood
to be a good summary of the true parameter value?

This is a different kind of precision

How precise – in the sense of being certain to be correct –
is our estimate of the population parameter?

Bayesian inference would answer this with a probability interval:
95% subjective probability the true parameter lies in [lower,upper]

But we’d need the posterior P(θ|y) to compute this

In likelihood inference we don’t attempt to estimate the posterior,
just the likelihood



Precision of maximum likelihood estimators

We’ve given up (for now) on calculating P(θ|y)

But we’d still like some idea of how certain are estimates are to be (approx) right

For example, measures of uncertainty we’d like to have include

• standard errors of θ̂

• confidence intervals around θ̂, ŷ, etc.

In general, these result from a description of the likelihood surface

Intuitively, the more L(θ|y) looks like a tall peak around θ̂,
the more certain we are about θ̂ being right

The more L(θ|y) is spread out, the less certain we are about θ̂



MLE standard errors: Normal approximation

In the linear regression case & other cases asymtoptically,
we can summarize the curvature in L(µ, σ2|y) around the MLE as:

logL(µ, σ2|y) = − 1

2σ2

n∑
i=1

(yi − µ)2

= − 1

2σ2

n∑
i=1

(
y2i − 2yiµ+ µ2

)
= −

∑n
i=1 y

2
i

2σ2
+

∑n
i=1 yi
σ2

µ− n

2σ2
µ2

The key to curvature is the coefficient of µ2, which is − n

2σ2

This implies a concave parabola descending faster as

n gets larger and σ2 gets smaller
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To see how a non-Normal likelihoods approximate the Normal,
we return to the Binomial turnout example

The approximation of the Normal to the Binomial is not perfect
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Two problems with the Normal approximation:

1. π̂Normal is slightly high (peak of likelihood is too far right)

2. se(π̂Normal) is overconfident (curvature of likelihood is too steep)
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We wouldn’t want to use the Normal in place of the Binomial here

But the parameterization of the Normal helps reveal
how the likelihood gets sharper when there is more information in the data
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Suppose we shrunk the variance of the outcome by 10 times,
so that each observation had more signal and less noise

The likelihood gets much steeper (and se’s much smaller)
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Suppose instead we had 10x more observations with the original variance

Same benefit – steeper curve; smaller standard errors

Can we formalize this for the general case?



The score vector and the Fisher information matrix

Recall that at the MLE, we expect the derivative of the likelihood
with respect to each parameter θ (the score) to be zero:

∂ logL(θ̂|y)
∂θ

= 0

Now calculate the variance of the score, recalling it has expectation 0,
and assuming L(θ̂|y) is twice differentiable with respect to θ:

var

(
∂ logL(θ̂|y)

∂θ

)
= E

(∂ logL(θ̂|y)
∂θ

− E

(
∂ logL(θ̂|y)

∂θ

))2


= E

(∂ logL(θ̂|y)
∂θ

− 0

)2


= E

((
∂ logL(θ̂|y)

∂θ

)2)
= −E

(
∂2L(θ̂|y)
∂θ∂θ′

)
yielding a k × k matrix known as the Fisher

information, I(θ̂|y)



MLE standard errors

Define the Fisher information of the likelihood as

I(θ̂|y) = −∂
2 logL(θ̂|y)
∂θ∂θ′

i.e., a k × k matrix of 2nd derivatives of the likelihood
with respect to the k parameters θ

Asymptotically, the variance covariance matrix is related to the information:

Var(θ̂|y) = −

[
∂2 logL(θ̂|y)

∂θ∂θ′

]−1

MLE standard errors are given by the square roots of the diagonal
of the inverse of the matrix of second derivatives (the Hessian matrix)

Note we can only invert the Hessian if it is positive definite!
guaranteed in theory
may fail computationally for complex or low-information likelihoods



MLE standard errors: Turnout Example

Because there’s just one parameter (π̂MLE = 0.7998),
the information matrix for the turnout example is a 1× 1:

I(θ̂|y) = −∂
2 logL(θ̂|y)
∂θ∂θ′

= 21911001

The variance-covariance matrix is also 1× 1

Var(θ̂|y) = −

[
∂2 logL(θ̂|y)

∂θ∂θ′

]−1
= 4.56× 10−8

The square root gives the standard error of π̂MLE = 0.0002136

Assuming π̂ is asymptotically normal implies a 95% CI of [0.7994, 0.8002]



MLE standard errors: Heteroskedasticity Example

With four parameters in the heteroskedasticity example (β0, β1, γ0, γ1),
the information matrix is a symmetric 4× 4

I(θ̂|y) =


179.3 48.66 0.0001460 0.00004229
48.66 22.85 0.00004206 0.3980

0.0001460 0.00004206 750.0 377.7
0.00004229 0.3980 377.7 254.0



The variance-covariance matrix is also symmetric 4× 4

Var(θ̂|y) =


0.01320 −0.02811 −0.00008838 0.0001755
−0.02811 0.1036 0.0003258 −0.0006469
−0.00008838 0.0003258 0.005313 −0.007902
0.0001755 −0.0006469 −0.007902 0.01569



The standard errors of our parameter estimates are the square roots of the diagonal

So for example, γ̂1 = 3.247 and se(γ1) = 0.1253, for a 95% CI of [3.007, 3.497]



Practically speaking. . .

So how do we do this in R?

Overview:

1. Use a generic optimizer to maximize logL. optim() is good

2. Get from optim() the value of logL at its maximum,
the corresponding parameter point estimates,
and the variance-covariance matrix of the parameter estimates

3. Construct any desired summary, statistic, or goodness of fit test from these



An example: MLE for normal data

We’re going to write R code to estimate the Normal linear model by ML

This code, with small changes, will suffice for many other MLEs

Where to start?

It helps when writing a program to first think through what the program needs to
accomplish, in the order it needs to be done.

Writing out a plain English version of the algorithm is called “pseudo-code.”



An example: MLE for normal data

Pseudo-code for Normal MLE:

1. Load needed libraries

2. Create an artificial dataset (with known properties)

3. Fit the data with LS

4. Fit the data with ML

5. Simulate quantities of interest (QoI’s) from the MLE

6. Plot the simulated QoI’s with confidence intervals




