
Missing Data and 
Multiple Imputation

Christopher Adolph

Political Science and CSSS
University of Washington, Seattle

POLS 510 � CSSS 510

Maximum Likelihood Methods 
for the Social Sciences

Vincent van Gogh  The Bedroom  1888 



x̄

ȳ

Using a random sample

β̂1= 1.03 (se = 0.14)

Suppose the population relationship between x and y is y = x+ ε, ε ∼ N (0, 1)

If we randomly sample 50 cases, we recover β̂1 close to the true value of 1
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Using a random sample
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ȳ

Sampling only y < ȳ

β̂1= 1.03 (se = 0.14)

Suppose we have sample selection bias: we can only collect cases with low y

What happens if we run a regression on the orange dots only?
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Using a random sample

x̄

ȳ

Sampling only y < ȳ

β̂1= 1.03 (se = 0.14) β̂1= 0.48 (se = 0.16)

This pattern of missingness biased our result biased towards 0,
whether we selected cases intentionally or had them selected for us by accident

Why? Selecting on y truncates the variation in outcomes, but not in covariates
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ȳ

Sampling only y < ȳ

β̂1= 1.03 (se = 0.14) β̂1= 0.48 (se = 0.16)

If I call this sample selection bias or compositional bias,
all would agree I have a serious problem

If I say “I had some missing data, so I listwise deleted,” would you object as strongly?



Agenda

Why listwise deletion can be harmful

Why crude methods of imputation are no cure

A generic approach to multiple imputation

When multiple imputation is most needed

Alternative methods of multiple imputation

Practical considerations



Sources

The methods and ideas emphasized here come from:

Gary King et al (2001) “Analyzing Incomplete Political Science Data: An Alternative
Algorithm for Multiple Imputation”, American Political Science Review

James Honaker and Gary King (2010) “What to Do about Missing Values in
Time-Series Cross-Section Data”, American Journal of Political Science

Stef van Buuren and Karin Groothuis-Oudshoorn (2011) “mice: Multivariate
Imputation by Chained Equations in R.” Journal of Statistical Software

while the classic source on missing data imputation is

Roderick Little and Donald Rubin (2002), Statistical Analysis with Missing Data,
2nd Ed., Wiley.

From a certain point of view, all inference problems are missing data problems;
we could just treat unknown parameters as “missing data”

For today, we will just consider missingness in the data itself



A Monte Carlo experiment

yi = −1× xi + 1× zi + εi

[
xi
zi

]
∼ MVN

([
0
0

]
,

[
1 −0.5
−0.5 1

])

ε ∼ N(0, 4)

We will create some data using this model, then delete some of it,
and compare the effectiveness of different methods of coping with missing data

In our data, y and zi are always observed, but xi is sometimes missing

In our setup, we allow this to happen 3 different ways. . .



A Monte Carlo experiment

yi = −1× xi + 1× zi + εi

[
xi
zi

]
∼ MVN

([
0
0

]
,

[
1 −0.5
−0.5 1

])

ε ∼ N(0, 4)

Missing at random given zi. Probability of missingness a function of quantile of zi:
60% at min zi, 30% at 25th percentile of zi, 0% at median and above

Missing at random given yi. Probability of missingness a function of quantile of yi:
60% at min yi, 30% at 25th percentile of yi, 0% at median and above

Missing completely at random. In addition to the above conditional missingness,
20% of the time, xi is missing regardless of the values of zi and yi



A Monte Carlo experiment

yi = −1× xi + 1× zi + εi

[
xi
zi

]
∼ MVN

([
0
0

]
,

[
1 −0.5
−0.5 1

])

ε ∼ N(0, 4)

Net effect of three patterns of missingness: xi missing about 60% of the time

In our experiments, we will simulate 200 observations:

about 120 will be missing, and about 80 will be full observed

Exact number of missing cases will vary randomly from dataset to dataset



A Monte Carlo experiment

Democracyi = −1× Inequalityi + 1×GDPi + εi

[
Inequalityi

GDPi

]
∼ MVN

([
0
0

]
,

[
1 −0.5
−0.5 1

])

ε ∼ N(0, 4)

It may help to imagine some context, but remember this example is fictive:

Imagine democracy is hampered by inequality and aided by development,

Inequality tends to be lower in developed countries,

Poorer countries & non-democracies less likely to collect/publish inequality data,

And sometimes even rich democracies fail to collect such complex data



I will generate many datasets from this true model

as part of the Monte Carlo experiement

But to illustrate how data goes missing and get imputed,

I’ll show what happens to the first 6 cases of the first Monte Carlo dataset

First, let’s establish a baseline:

what we would find if we could use the full dataset. . .
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Above shows the first differences we’d get if we fully observed our 200 cases

Our goal henceforth is to reproduce these effects & 95% CIs as closely as possible
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For all first difference plots, I’ve actually averaged results after
running the whole experiment (creating a dataset, then estimating the model) 1000×

This eliminated Monte Carlo error,
and shows us what will happen on average for each missing data strategy
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To make the example easier to follow,
I’ve replaced x, y, and z with our fictive variable names

Of course, we don’t have any real evidence on this hypothetical research question;
all the data are made up



Costs of listwise deletion

Our dataset contains 3 variables and 200 cases

But for about 120 of our cases, a single variable has a missing value

This means that only 120/(3× 200) = 20% of our cells are missing

But listwise deletion will remove 60% of our cases,
increasing standard errors considerably

We’ve thrown away 240 cells containing actual data – half the observed cells

Imagine collecting your dataset by hand, then tossing half of it the trash

But this isn’t just wasted data collection effort:

listwise deletion is statistically inefficient

and often creates statistical bias
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Listwise deletion Listwise deletion

In our hypothetical example, listwise deletion is biased:
the relationship between Democracy & Inequality is attenuated

It’s also inefficient: CIs are wider than they should be,
so we might fail to detect significant relationships because of missingness
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Listwise deletion Listwise deletion

Why did we listwise delete?

Why not drop Inequality from the model instead?
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Omitted!

Even if we didn’t care about estimating the relationship between Inequality and GDP,
we still need it in the model

Including Inequality is necessary to get unbiased estimates of the effect of GDP,
because it is correleted with both Inequality & Democracy



Crude imputation methods don’t help

Listwise deletion just trades one problem – omitted variable bias –
for another – inefficiency and possible bias from sample selection

The latter occurs, as in the introductory example, when the missingness of a
covariate is correlated with the value of the outcome

If both approaches are statistically flawed, what about filling in the missing data?

This approach called imputation, and there are obvious crude methods:

Mean imputation Fill in missing xi’s with unconditional expected values, x̄i

Single imputation Fill in missing xi’s with conditional expected values, E(xi|yi, zi)

Neither crude approach works

Both are worse than listwise deletion most of the time



Above are the first six observations, now showing the effects of missing data

Mean imputation says to replace each NA with the observed mean of that variable



Above are the first six observations, now showing the effects of missing data

Mean imputation says to replace each NA with the observed mean of that variable

The observed mean of Inequality is −0.23
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A visual representation of the first 20 cases, with non-missing cases ringed in black
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Sorting the cases by level of Inequality will aid comparison across methods
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The mean-imputation completed dataset Remind you of anything?
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We’ve created a mixed distribution: half real data, half very different!
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Mean imputation Mean imputation

Mean imputation biases coefficients for missing variables downwards

And biases correlated observed variables upwards

Why did this happen?



Why mean imputation doesn’t work

1. Filling in missings with the mean assumes
there’s no relationship among our variables

But the whole reason for the model is to measure the conditional relationship!

For example, we to fill in the sixth observation, we need
E(Inequality6|Democracy6,GDP6), not the unconditional E(Inequality)

If Democracy is low in case 6,
and if Democracy is inversely correlated with Inequality,
we should fill in a high value, not an average one

Filling in the unconditional mean biases β̂Democracy towards zero

2. Missing data has also biased our estimate of the mean,
and we’ve translated that bias into our imputations

The true sample mean of Inequality in the fully observed data is −0.03, not −0.23



Mean imputation failed because we didn’t take the model into account

If our variables are correlated – and we think they are –
we need to condition on that correlation when imputing



Suppose that we fit the following model for our fully observed cases:

Inequalityi = γ0 + γ1GDPi + γ2Democracyi + νi

And then use the fitted values to fill-in missing values of Inequality j:

E(Inequalityj) = γ̂0 + γ̂0GDPj + γ̂2Democracyj



This seems better:
the imputed Inequality values at least seem consistent with the rest of the data

As noted, observation 6 has low democracy and is imputed to have higher inequality

But actually, what we’ve done is worse than before
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Our imputations still miss by a lot – yet we treat them as data
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For example, case 6 had a large random error – it’s much lower than expected
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Single imputation biases imputed variables upwards

And biases correlated observed variables downwards

Why did this happen?



Why single imputation doesn’t work

1. We assumed any missing values were exactly equal to
their conditional expected values, with no error

But randomness is fundamental to all real world variables –
none of our other variables are deterministic functions of covariates

→ we’ve assumed that the cases we didn’t see are more consistent with our model
than the cases we did see!

This leads to considerable overconfidence, and biases our β’s upwards

2. How would we implement this approach consistently across cases
if different or multiple variables are missing?

3. The linear model of Inequality is still estimated using listwise deletion,
so the bias from LWD still passes on to our imputations

This last objection suggests an infinite regress – how do we escape it?



Multiple imputation

Goals: (1) treat all observed values in our original data as known with certainty;
(2) summarize the uncertainty about missing values implied by the observed data

Specifically, the method should

1. Impute our missing values conditional on the structure of the full dataset

2. Include the uncertainty in our estimation of the missings,
as we’ll never be sure we have the right estimates

3. Includes the randomness of real world variables,
which can’t be exactly predicted even by the true model

Multiple imputation is a family of methods that achieve these goals

Unless stringent assumptions are met, MI improves on listwise deletion

We start with the King, Honaker et al method known as Amelia



How Amelia works

Take all the data – the outcome, covariates, even “auxilliary variables” correlated
with them but not part of the model – and place them in a matrix D

Call the known elements of this matrix Dobs, and the missing elements Dmiss

Key assumption of Amelia: all these variables are jointly multivariate normal

D
iid∼ Multivariate Normal(µ,Σ)

To impute missing elements of D, we first need to estimate µ and Σ

The iid MVN assumption implies this likelihood for the joint distribution of the data

L(µ,Σ|D) =

N∏
i=1

fMVN (di|µ,Σ)

where di refers to the ith observation in the dataset D



How Amelia works

L(µ,Σ|D) =

N∏
i=1

fMVN (di|µ,Σ)

If we knew the true µ and Σ, we could use them to draw several predicted values of
the missing values Dmiss and fill them into several new predicted “copies” of our
dataset D̃

Each copy of the dataset would contain the known values for Dobs,
but a different set of predicted draws for D̃miss

Variation across D̃miss would summarize uncertainty about these imputations,

while the mean value of D̃miss would capture the expected value the missing data

Often even a small number of imputed datasets is enough to summarize uncertainty



How Amelia works

L(µ,Σ|D) =

N∏
i=1

fMVN (di|µ,Σ)

But we don’t know the true µ and Σ

If we try to estimate them from Dobs only using listwise deletion,
we will have biased estimates, as in single imputation



How Amelia works

L(µ,Σ|D) =

N∏
i=1

fMVN (di|µ,Σ)

Instead, we use a method called Expectation Maximization (EM)
which iterates back and forth between two steps:

Expectation step Use the estimates µ̂ and Σ̂ to fill in missing data Dmiss

Maximization step Use the filled-in matrix D to estimate µ̂ and Σ̂

To get this “chicken-and-egg” process rolling, we supply starting values for µ̂ and Σ̂

Then we iterate back-and-forth until convergence
and never need to delete any rows with missing data

Naturally, there are a few extra pieces to the model
Bayesian priors, empirical priors, etc.
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µ̂ and Σ̂ allow us to compute posterior distributions over each missing datum
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We summarize uncertainty with 5 (or 10, or more) draws from these posteriors
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Across MC runs, Amelia’s posteriors over missing values have correct coverage



Imputed dataset 1

We end up with not one but five or more imputed datasets

Collectively, these datasets provide the central tendency

and uncertainty of the missing cases



Imputed dataset 2

We need to run all our analyses in parallel on the five datasets,

then combine the results using simulation



Imputed dataset 3

Specifically, take one-fifth of your simulated β̂’s from each of your five analyses,

then rbind() them together before computing counterfactual scenarios



Imputed dataset 4

zelig() in the Zelig package can automate this for you,

but it only works for certain statistical models



Imputed dataset 5

Instead, I recommend you write your own code, which is more flexible

Here’s the multiple imputation workflow. . .
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Step 1: Perform multiple imputation to create m = 5 or more imputation datasets

(Very time consuming, especially if run multiple times under different assumptions)

Imputing splits the analysis into M streams,
so it helps to loop over the imputed datasets for each subsequent step



D̃1́

D̃2́

D̃3́

D̃4́

D̃5́

D̃1

D̃2

D̃3

D̃4

D̃5

Impute Process

construct 
any add’l 
variables 
from D̃m

dataset 
comprised 
of Dobs and 

Dmiss

imputed 
datasets 

with  Dmiss 

filled in

D

Step 2: Construct additional variables from the imputed datasets

E.g., interaction terms, sums of components, or other products and sums

(e.g., if you impute GDP and popuation,
construct GDP per capita after all missings in either are imputed)
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Step 3: Estimate the analysis model separately on each dataset m,
and save each set of estimates θm and variance-covariance matrix V(θ̂m)

Each model should be the same, so use a loop or lapply()
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Step 4: Draw sims/M sets of simulated parameters from each of the M analyses

Use mvrnorm() as usual for this step, but in a loop over the M analysis runs
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Step 5: Combine the M sets of simulated parameters into a single matrix using
rbind()

This brings the M = 5 streams of the analysis back together;
after this step, we only need to do things once for the whole analysis
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Step 6: Produce counterfactual scenarios and graphics as usual

The code for this step can be exactly the same as for a non-imputation analysis

You may wish to average the M = 5 datasets at this stage for computing factual
and counterfactual values of the covariates
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Success! We have closely matched the original full data results

We’ve gotten more information & precision out of our data than with LWD,
and not added any bias despite imputing
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Will multiple imputation always work this well?

Should we ever listwise delete instead?



Outcome y is missing as a function of. . .

Itself Covariate x Covariate z Auxilliaries None of these
NI MAR MAR MAR MCAR

LWD Biased* Inefficient
MI Biased

Covariate x is missing as a function of. . .

Outcome y Itself Covariate z Auxilliaries None of these
MAR NI MAR MAR MCAR

LWD Biased Inefficient† Inefficient Inefficient Inefficient‡

MI Biased

Choose the row with your method for dealing with missing data:
either listwise deletion or multiple imputation

Each column describes a potential mechanism by which missingness occurs

Your method has all the problems listed in the relevant cells

If you have all blank cells, your method is unbiased and efficient



Outcome y is missing as a function of. . .

Itself Covariate x Covariate z Auxilliaries None of these
NI MAR MAR MAR MCAR

LWD Biased* Inefficient
MI Biased

Covariate x is missing as a function of. . .

Outcome y Itself Covariate z Auxilliaries None of these
MAR NI MAR MAR MCAR

LWD Biased Inefficient† Inefficient Inefficient Inefficient‡

MI Biased

Non-ignorable (NI) missingness. After controlling for observables, whether a
datum is missing depends on the missing datum. Unbiased imputation impossible

Missing at random (MAR). Pattern of missingness is related to observed values in
dataset, and seemingly purely random once that pattern is controlled for

Missing completely at random (MCAR). Pattern of missingness is uncorrelated
with all variables in the model, and thus seemingly purely random



Outcome y is missing as a function of. . .

Itself Covariate x Covariate z Auxilliaries None of these
NI MAR MAR MAR MCAR

LWD Biased* Inefficient
MI Biased

Covariate x is missing as a function of. . .

Outcome y Itself Covariate z Auxilliaries None of these
MAR NI MAR MAR MCAR

LWD Biased Inefficient† Inefficient Inefficient Inefficient‡

MI Biased

∗ Logit unbiased in this case if missingness does not depend on covariates

† It’s complicated: unbiased if missingness of x only depends on x (!)
or other covariates; biased if also depends on y

‡ Assumes you have multiple covariates, ≥ 1 of which is observed when x is missing

Can you identify cases/assumptions where LWD is superior to MI?



Outcome y is missing as a function of. . .

Itself Covariate x Covariate z Auxilliaries None of these
NI MAR MAR MAR MCAR

LWD Biased* Inefficient
MI Biased

Covariate x is missing as a function of. . .

Outcome y Itself Covariate z Auxilliaries None of these
MAR NI MAR MAR MCAR

LWD Biased Inefficient† Inefficient Inefficient Inefficient‡

MI Biased

Most applications of LWD have efficiency costs: MI can produce more efficient results

If pattern of missinging in y depends on x, or vice versa, then LWD will be biased and
MI can repair the bias – provided missingness can be predicted using observed data

If the pattern of missingness in y (or x) depends on the values of y (or x) that are
missing, no method can eliminate bias, but careful use of MI may help sometimes



Outcome y is missing as a function of. . .

Itself Covariate x Covariate z Auxilliaries None of these
NI MAR MAR MAR MCAR

LWD Biased* Inefficient
MI Biased

Covariate x is missing as a function of. . .

Outcome y Itself Covariate z Auxilliaries None of these
MAR NI MAR MAR MCAR

LWD Biased Inefficient† Inefficient Inefficient Inefficient‡

MI Biased

Common misconception: “you can’t impute missing values of an outcome variable”

1. No benefit to MI if only y has missings & no auxiliary variables present

2. Shouldn’t impute if only y has missings in a logistic regression & no aux help

3. Should impute y as needed for imputation models of missing covariates,
or any time helpful auxillary variables correlated with y are available



Outcome y is missing as a function of. . .

Itself Covariate x Covariate z Auxilliaries None of these
NI MAR MAR MAR MCAR

LWD Biased* Inefficient
MI Biased

Covariate x is missing as a function of. . .

Outcome y Itself Covariate z Auxilliaries None of these
MAR NI MAR MAR MCAR

LWD Biased Inefficient† Inefficient Inefficient Inefficient‡

MI Biased

Finally, multiple imputation is not magical

1. MI can’t help if all of your covariates and auxilliaries are missing for a case

2. May fail if you try to impute a dataset that has a very high percentage of missing
values, or some variables which are almost never observed

You may need to give up on some variables in this case (exclude from your study)



Special considerations for effective use of Amelia

Key issue: managing assumption data are jointly Multivariate Normal

• transform continous variables to be as close to Normal as possible,
e.g., through log, logit, or quadratic transformations

• tell your imputation model which variables are ordered or categorical –
note King et al recommend treating binary variables as MVN

• check available diagnostics to make sure imputation worked

Two additional best practices for all multiple imputation methods:

• include in the imputation as many well-observed variables related to your partially
observed variables as you can find

These auxilliary variables don’t need to be in the analysis model later

• every variable in the analysis model must also be in the imputation model



Multiple Imputation beyond Amelia

Multiple imputation can be generic, like Amelia, or purpose-built

The latter is often superior, if you have theoretical insights into the nature of your
missing data

But Amelia isn’t the only generic imputation method



Two approaches to generic multiple imputation

Joint modeling Specifies a joint distribution of all data

Work well – and firmly grounded statistically – to the extent assumptions fit

Examples: Amelia and other fully Bayesian MI methods

Fully conditional specification Allow ad hoc models for each variable

Avoids blanket assumptions like Amelia’s Multivariate Normal

Disadvantages: lacks clear statistical foundations;

can be slower than Amelia;

doesn’t handle time series or time series cross-section as well

Examples: MICE (discussed here), mi, Hmisc



Multiple Imputation by Chained Equations (MICE)

The MICE algorithm

Step 1. Fill in Xmiss with starting values, such as the unconditional column means

Step 2. Cycle through the columns k of X:

Step 2i. Reset filled-in missings in xk to NA

Step 2ii. Fit a regression of xobs
k on (some subset of) x¬k using an

appropriate MLE: e.g., MNL for categories; Quasipoisson for counts

Step 2iii. Draw predicted values from this model to fill in xmiss
k

Step 3. Repeat (2) p times (e.g., p = 10) to construct one imputed dataset

Step 4. Repeat (3) m times (e.g., m = 10) to construct m imputed datasets

MICE offers user flexibility in step 2ii: choosing appropriate MLEs for each variable



Variable type Default MLE in MICE

Binary Logistic regression
Ordered categories Ordered logit

Unordered categories Multinomial logit
Numeric Predictive mean matching

MICE will try to guess the type of variable based on R data types

Specifically, it will only deviate from “predictive mean matching”
if the data is a factor

Because data types can be other than expected,
I strongly recommend setting the MLE for each column of data yourself

You can even provide MICE a custom MLE for a data column or variable type



Variable type Default MLE in MICE

Binary Logistic regression
Ordered categories Ordered logit

Unordered categories Multinomial logit
Numeric Predictive mean matching

Predictive mean matching is a semiparameteric technique

Step 2ii. for PMM has four parts:

Step a. For column k, regress xobs
k on the other columns in X

Step b. Draw a set of parameters γ̃’s from this regression’s predictive distribution

Step c. Use γ̃ to compute predicted values x̃k for each observed and missing xk

Step d. For each x̃miss
k , sample observed cases with similar predicted values

Then use a corresponding xobs
k (selected randomly) as the new imputation of xmiss

k



Variable type Default MLE in MICE

Binary Logistic regression
Ordered categories Ordered logit

Unordered categories Multinomial logit
Numeric Predictive mean matching

Is predictive mean matching superior to assuming a Normal distribution?

Virtues: Produces predicted values that look like the distribution of xobs
k

More robust to misspecification, heteroskedasticity, deviations from simple
transformations (or from linearity, if none are provided)

Downsides: Statistical properties of this procedure unknown (unknowable?);
may be overconfident when imputing missing values far from mean

What does MICE with predictive mean matching make of our data?
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Compared to Amelia, PMM produces similar but smaller dist’s of each missing datum
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Recall that Amelia’s imputations were drawn from intervals with appropriate coverage
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The MICE PPM prediction intervals are too narrow, especially at high certainty
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This leads to slightly more confident – or concentrated – imputations than Amelia
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The extra confidence appears misplaced – MICE PMM is biased in our case

Why? PMM relies on the existence of close matches in the observed data

Here, extremely high values of inequality are scarce
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What if we use MICE, but again assume Inequality is Normally distributed?

Using the correct model reduces the bias –

though in real data analysis, we don’t usually know the correct model



−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4

change in "Democracy" given "Inequality" + 1

Full data

Listwise deletion

Amelia

MICE PMM

MICE Norm

+0.4 +0.6 +0.8 +1 +1.2 +1.4 +1.6

change in "Democracy" given "GDP" + 1

●

●

●

●

●

●

●

●

●

●

We have four options for coping with missing data: how do they stack up?

All three imputation techniques improve on listwise deletion,
especially for estimating coefficients of variables less often missing

In data that are truly multivariate normal, Amelia outperforms MICE

PMM does relatively poorly – but perhaps this was an unfair test?
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MICE is often recommended for datasets with binary or categorical data

Let’s dichotomize Inequality into “high” and “low”,
treating the current x as a latent variable with a cutpoint at 0

The pattern of missingingness stays the same
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We now consider four imputation schemes:
(1) Amelia, (2) Amelia for nominal variables,

(3) MICE PMM, (4) MICE with logistic regression

Amelia and MICE logreg have similar good performance

MICE PMM and Amelia for nominal variables fare worse –
note Amelia’s authors recommend treating binary variables as MVN



Which MI method to use with real data?

Perhaps this latest Monte Carlo experiment still stacks the deck in favor of Amelia

The data were originally Multivariate Normal before Inequality was dichotomized

A fairer test of Amelia vs MICE would be a real-world dataset with an unknown DGP

. . . Such as your dataset

But then how could we know which method worked better?

Overimputation!

1. Propose a missingness model for your data

2. Delete some of the observed data using this model

3. See whether Amelia or MICE recovers the deleted data better



Application: 2004 Washington Governor’s Race

Recall, again, our binomial distribution example:
the number of voters who turned out in each of the 39 Washington counties in 2004

Our outcome variable

voters – the count of registered voters who turned out

non-voters – the count of registered voters who stayed home

Our covariates

income – the median household income in the county in 2004

college – the % of residents over 25 with at least a college degree in 2005

College is only available for the 18 largest counties; the rest are fully observed

I use multiple imputation by Amelia to fill in the missings

Would it have mattered if I used MICE instead?
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Amelia is a bit overconfident – pretty good given only 18 datapoints!
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MICE PMM is worryingly overconfident How much substantive difference?
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Above are the Amelia-based results from several weeks ago. . .
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and these are the MICE PMM results for the same models

Substantively different, but you might use same words to describe them

“Significant, large positive effects of college, especially in the Beta-Binomial;

insignificant effects of income controlling for college in the Beta-Binomial”
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For the sake of comparison, the listwise deletion expected values

While this doesn’t look very different from Amelia,

the t-statistic for College has shrunk from 2.2 to 2.0

Nudge both down another tenth, and MI would have be the difference

between a significant result and a non-significant one



Concluding thoughts

Multiple imputation using generic methods is usually
more efficient and less biased than listwise deletion

Imputation methods vary in assumptions and techniques,
and work best when assumptions are closely met

But even if the assumptions are a bit off or unverifiable,
MI is still usually a better bet than LWD

With a good set of observed covariates and auxilliaries,
even different MI techniques can lead to the same results

Auxilliaries can be critical

In the turnout example, I used the 2005 high school graduation rate –
available in all counties – as an auxilliary variable

Improved imputation considerably and led Amelia and MICE to agree



Implementing Amelia for cross-sectional data

In R, the amelia() function in the Amelia package does multiple imputation for
cross-sectional, time series, and TSCS data

For cross-sectional data, it’s usually very easy to make your imputed datasets:

library(Amelia)

# Run Amelia and save imputed data, and number of imputed datasets

nimp <- 5 # Use nimp=5 at minimum; 10 often a good idea

amelia.res <- amelia(observedData, m=nimp)

miData <- amelia.res$imputations

MiData is a list object with nimp elements, each of which is a complete dataset

Then run your analysis nimp times in a loop, saving each result in a list object:

# Run least squares on each imputed dataset,

# and save results in a list vector

mi <- vector("list", nimp)

for (i in 1:nimp) {

mi[[i]] <- lm(y ~ x + z, data=miData[[i]])

}



Implementing MICE for cross-sectional data

In R, the mice() function in the mice package does multiple imputation for
cross-sectional data

The usage is slightly different from Amelia

library(mice)

# Run mice and save imputed data, and number of imputed datasets

nimp <- 5 # Use nimp=5 at minimum; 10 often a good idea

miceData <- mice(observedData, m=nimp, method="pmm")

# method can be a vector w/ diff method for each var

miceData is a list object with many elements; see ?mice

Then run your analysis nimp times in a loop, saving each result in a list object:

# Run least squares on each imputed dataset,

# and save results in a list vector

mi <- vector("list", nimp)

for (i in 1:nimp) {

mi[[i]] <- lm(y ~ x + z, data=complete(miceData, i))

}



Multiple imputation for cross-sectional data

Regardless of imputation method, combine the results by drawing one-nimpth of
your simulated β’s from each model, like so:

# Draw 1/nimp of the beta simulations from each run of least squares

sims <- 10000

simbetas <- NULL

for (i in 1:nimp) {

simbetas <- rbind(simbetas,

mvrnorm(sims/nimp, coef(mi[[i]]), vcov(mi[[i]]))

)

}

From this point, you can simulate counterfactuals as normal using simcf

NB: you will need to either select an imputed dataset for computing means of
variables, or average them all

Alternatively, you could have zelig() automate all of this, as Zelig knows what to
do with Amelia objects

But it’s usually best to write your own code for flexibility
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Overimputation diagnostic: 90% of colored lines should cross the black line
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pdf("overimputeX.pdf")

overimpute(amelia.res, var="x")

dev.off()

We did something similar earlier using MC data;
you could cook up your own version if you like




