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Class goals

Go beyond the linear model to develop models for real-world data

messy data with substantively interesting quirks

Consider broad principles for selecting and deriving models

make and estimate any new model you want

Learn to present the result of any estimation to a broad audience

visuals anyone can understand, not just statistics experts
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messy data with substantively interesting quirks

Consider broad principles for selecting and deriving models

make and estimate any new model you want

Learn to present the result of any estimation to a broad audience

visuals anyone can understand, not just statistics experts

Gateway to CSSS and other classes

Bayesian inference
Hierarchical/multilevel modeling
Event history analysis

Panel data analysis

Social network analysis
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Less “trust me;” more “show me”
Get ready for advanced classes and independent study

2. A fair bit of math
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You won't be required to do proofs — but you may need to derive a new model
Numerical and visual alternatives where available
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Payoff

1. Hard new concepts

Develop a more intuitive understanding of statistics
Less “trust me;” more “show me”

Get ready for advanced classes and independent study

2. A fair bit of math

Unavoidable: we need the precision of mathematics

You won't be required to do proofs — but you may need to derive a new model
Numerical and visual alternatives where available

3. Statistical programming rather than point-and-click

Steep learning curve, but in the end far more powerful

Great for applied research: bring the methods and data to the question
Empowering for any research involving data:

you'll be surprised how many problems can be simplified by programming



MLE for Categorical & Count Data

First half of course focuses on inference about discrete data: categories & counts

Foundational quantitative methods classes focus on the linear regression model

Assume data consist of a systematic component x,;3 and
a continuous, Normally distributed disturbance ¢;

Easy to implement, estimate, and interpret

A reasonable starting place for many analyses, with some robust features

But do the assumptions of linear regression (aka least squares) always fit?

Do they fit with discrete data?












- The number of tests a student fails in a given year?



Limits of the linear regression model

What about these possible response variables?

A voter's choice between a Democrat or a Republican?

A voter's choice among Labour, Lib Dem, SNP, UKIP, and Conservative?
Whether a person rides the bus, drives, or walks to work?

The number of tests a student fails in a given year?

The number of wars fought per decade?



Limits of the linear regression model
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A voter's choice between a Democrat or a Republican?

A voter's choice among Labour, Lib Dem, SNP, UKIP, and Conservative?
Whether a person rides the bus, drives, or walks to work?

The number of tests a student fails in a given year?

The number of wars fought per decade?

Whether someone taunted in a bar ignores it, argues back, or throws a punch






Beyond linear regresion

No. All of these variables violate basic linear regression assumptions
Let's take a closer look the last example . ..
To ignore, argue, or punch — does this escalation follow a uniform pattern?

Problems for linear regression in this case?

Treat categories as interval
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No. All of these variables violate basic linear regression assumptions
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To ignore, argue, or punch — does this escalation follow a uniform pattern?
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Practice: Programming skills to implement, fit, and interpret these models















4. Interpret the results, usually graphically



4. Interpret the results, usually graphically

We'll start on Step 1 today . . .
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And we will for now leave them as mathematical objects

A = {ala az, CL3}

a1 is an element of A, which we write a; € A

A set may also be empty, e.g., B=0 = {}
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An important definition:

If ANC = (), then A and C are disjoint.
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Each subset of €) is an event.

A probability function is defined over all the events in €2 such that

- Pr(A)>0 VA

- Pr(Q)=1



Lightning course in basic probability: Probability
Sets will help us define probability

Suppose we toss a coin twice and record the results.

The universe of possible results is the sample space. It is a set of sets:
() = {{H> H}7 {H7 T}’ {Tv H}7 {Ta T}}

Each subset of €2 is an event.

A probability function is defined over all the events in €2 such that

Pr(A) >0 VA

ANB=0 << Pr(U(4,B))=Pr(A)+ Pr(B)









Lightning course in basic probability: Probability

We'll use these terms a lot:

Pr of a single event Pr(A) marginal probability
Pr of several events Pr(AN B) = Pr(AB) joint probability
Pr of an event given another event Pr(A|B) conditional probability

These concepts are linked by a simple identity:

joint probability

conditional probability =
b J marginal probability



Lightning course in basic probability: Probability

We'll use these terms a lot:

Pr of a single event Pr(A) marginal probability
Pr of several events Pr(AN B) = Pr(AB) joint probability
Pr of an event given another event Pr(A|B) conditional probability

These concepts are linked by a simple identity:

joint probability

conditional probability =
b J marginal probability

Pr(AN B)
Pr(B)

Pr(A|B) =









Lightning course in basic probability: Probability
An example. Suppose Pr(B) = 0.5, Pr(AN B) = 0.4.
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Pr(AN B)
Pr(B)
04
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Pr(A|B) =

0.8

If this doesn’'t seem intuitive, verify with a Venn diagram

Universe T
@ Let's adjust our
diagram to better fit

our example.




Lightning course in basic probability: Probability
An example. Suppose Pr(B) = 0.5, Pr(AN B) = 0.4.

Pr(AN B)
Pr(B)
04
i

Pr(A|B) =
0.8

If this doesn’'t seem intuitive, verify with a Venn diagram

Universe
We know event B

will happen so the
set of possible
outcomes is limited

to those in B’s circle.




Lightning course in basic probability: Probability
An example. Suppose Pr(B) = 0.5, Pr(AN B) = 0.4.

Pr(AN B)
Pr(B)
04
i

Pr(A|B) =

0.8

If this doesn’'t seem intuitive, verify with a Venn diagram

@ If B definitely occurs,
what fraction of the
time does A also

Universe

occure

The ratio of the
intersection of A and
B to the circle B.
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Note that we can re-arrange to find other useful identities:

Pr(AN B) Pr(A|B)Pr(B)
Pr(AN B)

Pr(B) Pr(A[B)










Lightning course in basic probability: Probability
More rules and definitions:

We assumed that if A and B are disjoint, then Pr(AU B) = Pr(A) + Pr(B).

The following holds regardless of whether A and B are disjoint:
Pr(AU B) =Pr(A) + Pr(B) — Pr(AN B)
Again, we verify with a Venn diagram

Universe

The probability that
A or C occurs is just
the sum of their

marginal probabili-

ties because they are
disjoint.
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Universe
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probability of A or B,

we'll double count

their intersection.
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More rules and definitions:

We assumed that if A and B are disjoint, then Pr(AU B) = Pr(A) + Pr(B).

The following holds regardless of whether A and B are disjoint:
Pr(AU B) =Pr(A) + Pr(B) — Pr(AN B)
Again, we verify with a Venn diagram

Universe .
In general, to find

the probability of A
or B we should add

their marginal

probabilities and
subtract their
intersection.




Finally, define independence as holding if Pr(A N B) = Pr(A)Pr(B)
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Lightning course in basic probability: Probability
More rules and definitions:

We assumed that if A and B are disjoint, then Pr(AU B) = Pr(A) + Pr(B).

The following holds regardless of whether A and B are disjoint:

Pr(AU B) =Pr(A) + Pr(B) — Pr(AN B)

Finally, define independence as holding if Pr(AN B) = Pr(A)Pr(B)

Note that when independence holds,

Pr(A|B) Pré)f(;f )
Pr(A|B) = Pr(é)(lg')(B )

Pr(A|B) = Pr(A)












From probability to random variables

We could view social processes such as. . .
wars, education outcomes, policy choices, public opinion. . .

as sets of random events (ie, all possible outcomes) in a sample space

The sample space will generally be HUGE

How can we reduce the space to something manageable?

— map the space to one or more random variables.

Map:

() for coins — X = # of heads
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From probability to random variables

We could view social processes such as. . .
wars, education outcomes, policy choices, public opinion. . .

as sets of random events (ie, all possible outcomes) in a sample space

The sample space will generally be HUGE

How can we reduce the space to something manageable?

— map the space to one or more random variables.

Map:
() for coins — X = # of heads
() for military casualties — D = # of deaths
() for presidential popularity — S = support pres? yes or no
() for economic activity — Y =$GDP

This mapping can produce discrete or continous variables






Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F(x)

For discrete distributions:

f(x) Binomial PDF F(x) Binomial CDF
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Two functions summarize the distribution of a random variable

pdf - probability density function, f(x)

For continuous distributions:

cdf - cumulative density function, F(x)

F) - [ ; f(2)dz

f(x) Normal PDF

08—

0.6 —

04—

0.2 —

F(x) Normal CDF

0.8 —

0.6 —

04—

0.2 —




Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F(x)

For continuous distributions: F(z) = / f(z)dz

f(x) Normal PDF F(x) Normal CDF




Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F(x)

For continuous distributions: F(z) = / f(z)dz

f(x) Normal PDF F(x) Normal CDF




Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F(x)

For continuous distributions: F(z) = / f(z)dz

f(x) Normal PDF F(x) Normal CDF




Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F(x)

For continuous distributions: F(z) = / f(z)dz

f(x) Normal PDF F(x) Normal CDF
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pdf - probability density function, f(x) cdf - cumulative density function, F(x)
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Example probability distributions

1000s of probability distributions are described in the statistical literature
They are mathematical descriptions of RVs based on different assumptions

Choose a probability distribution with assumptions that
match the substance of the social process under study

Let's look at a few distributions to see how this might work

Bear in mind the key distinction between continuous and discrete distributions

Let’s start with the simplest and most fundamental discrete distribution,
the Bernoulli












The Bernoulli distribution

Consider a random variable = with 2 mutually exclusive & exhaustive outcomes
Let there be one parameter, the probability of “success,” labelled 7

Without loss of generality, let z € {0,1} where 1 = success

These assumptions create the Bernoulli distribution (pdf and cdf below):

Bernoulli pdf Bernoulli cdf

Pr(outcome)

tails heads tails heads







1l—7 iftx=0
T ifx=1

fBern(z|T) = {



The Bernoulli distribution

Consider a random variable = with 2 mutually exclusive & exhaustive outcomes
Let there be one parameter, the probability of “success,” labelled 7

Without loss of generality, let z € {0,1} where 1 = success

How do we capture the Bernoulli pdf as an equation?

1l—m7 ifx=0
T ifx=1

fBern (2|T) = {

If we are clever, we can write it much more conveniently:

fBern(ZU|7T) — 7'(96(1 _ 7-‘-)1—3:












Var(z) = E[(z—E())’]



Var(z) = E [(x — E(CE))2]

= E [(ac — 7r)2]



Var(x)

E [(z — E(x))’]
E [(a: — 7r)2]

= Z(xz — 7T)2fBern(xi|7T)

Vi



Var(x)

E [(z — E(z))*]

E [(z — 7r)2]
Y (@ — m) fBern(@i|7)
Vi

(0 — 7)? X fBern(0|7) + (1 — )% X fRern(1]7)
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E [(z — E(z))*]

E [(z — 7r)2]
Y (@ — m) fBern(@i|7)
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(O N 7T)2 X fBern(0|7T) -+ (1 o 7T)2 X fBern(]-'ﬂ-)
(1 —7) + (1 —7)°m
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E [(z — E(z))*]

E [(z — 7r)2]
Y (@ — m) fBern(@i|7)
Vi

(O N 7T)2 X fBern(0|7T) -+ (1 o 7T)2 X fBern(]-'ﬂ-)
(1 —7) + (1 —7)°m
(1l —m)






- votes from a fixed population of voters
(each Washington county’s total votes for Referendum 74)



The binomial distribution

Suppose we observe several Bernoulli random variables and count the successes
(we might imagine that the underlying 1s and Os are lost)

Examples:

number of days in a month that a person was ill

votes from a fixed population of voters
(each Washington county'’s total votes for Referendum 74)

Key assumption: each trial is iid Bernoulli

For the moment, take this to mean (1) that each trial has the same 7 of success
and (2) that the outcome of different trials have no effect on each other's 7's

(Later we will relax this)



The binomial distribution

Suppose we observe several Bernoulli random variables and count the successes
(we might imagine that the underlying 1s and Os are lost)

Examples:

number of days in a month that a person was ill

votes from a fixed population of voters
(each Washington county'’s total votes for Referendum 74)

Key assumption: each trial is iid Bernoulli

For the moment, take this to mean (1) that each trial has the same 7 of success
and (2) that the outcome of different trials have no effect on each other's 7's

(Later we will relax this)

How do we come up with a pdf for these assumptions?


















Let's model the sum of our unobserved trials as a new random variable, X},

M
Xq;: E jSj
G=1

where ¢'s are observations and j's are iid Bernoulli trials within an observation

fein(X;|M,m) = 4 of ways to get X; x  Pr(getting X;)

M M
— (Xz) X H fBern(:C’ij‘Tr)

‘1



Let's model the sum of our unobserved trials as a new random variable, X},

M
Xq;: E jSj
G=1

where ¢'s are observations and j's are iid Bernoulli trials within an observation

fein(X;|M,m) = 4 of ways to get X; x  Pr(getting X;)

M M
— (Xz) X H fBern(:C’ij‘Tr)

‘1

M
— (X) x mhil(1 — o)t T x giR(1 — )T

x M (1 — )t %M

= (X X il X T2 ) e X UM x (1 — )T
i

x (1 —m)7%2 x ..o x (1 — )t oM










, the bernoulll 1s 2 special case ot the binomial where



The binomial distribution

We've already seen the binomial, as our example discrete distribution

f(x) Binomial PDF F(x) Binomial CDF

| — | —
0.8 — 0.8 —
0.6 — 0.6 —
04— 04—
02— I 02— |
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X X

This binomial sums over 10 trials, with each trial having an 0.5 probability of success















2. Only 1 event can occur at a time (almost trivial)



The Poisson distribution

Suppose we count # of events occurring in a period of continuous time
This gives us a single observation in the form of a count
Then we repeat this for another (equal?) period, and so on

To create a distribution for these data, make 3 assumptions:

1. Starting count is zero (trivial)
2. Only 1 event can occur at a time (almost trivial)

3. Pr(an event happens at time ¢t = T') is constant
and independent of Pr(an event happens at time ¢t < T)
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Sometimes assumption 3 is fulfilled exactly (e.g., cosmic radiation)



The Poisson distribution

Suppose we count # of events occurring in a period of continuous time
This gives us a single observation in the form of a count
Then we repeat this for another (equal?) period, and so on

To create a distribution for these data, make 3 assumptions:

1. Starting count is zero (trivial)
2. Only 1 event can occur at a time (almost trivial)

3. Pr(an event happens at time ¢t = T') is constant
and independent of Pr(an event happens at time ¢t < T)

Assumption 3 is not trivial
Sometimes assumption 3 is fulfilled exactly (e.g., cosmic radiation)

But often it's not even close to correct (e.g., phone calls per hour)






e is Euler's number, the only number such that de®/dx = e*)

Interesting properties:

1. E(x) = var(z) = A



The Poisson distribution

Accepting these asumptions leads to the following distribution
(we'll derive later)

exp(—A)\"

!

frois(x|\) = Ve € {0,1,...}, 0 otherwise

(Note: exp(a) = e* = 2.71828...% and is known as the exponential function;
e is Euler's number, the only number such that de®/dx = e*)

Interesting properties:
1. E(x) = var(z) = A

2. If x1, x9, x3,. . . xK are independent Poisson variables such that z; ~ fpois(Tr|Ax),
K K K
then > 1 Tk ~ frois(D_peq Tkl D g k)



The Poisson distribution

Accepting these asumptions leads to the following distribution
(we'll derive later)

exp(—A)\"

!

frois(x|\) = Ve € {0,1,...}, 0 otherwise

(Note: exp(a) = e* = 2.71828...% and is known as the exponential function;
e is Euler's number, the only number such that de®/dx = e*)

Interesting properties:
1. E(x) = var(z) = A

2. If x1, x9, x3,. . . xK are independent Poisson variables such that z; ~ fpois(Tr|Ax),
K K K
then > 1 Tk ~ frois(D_peq Tkl D g k)

3. We can relax the “equal periods” assumption: just replace \; with t;\;,
where 7 indexes observations and ¢ measures their relative length
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Examples of the Poisson distribution
f(x) Poisson PDF F(x) Poisson CDF
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f(x) Poisson PDF
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The Uniform distribution

The Uniform distribution is the simplest continuous distribution

Assumes all members of a real interval [a, b] are equally likely

f(x) Uniform PDF F(x) Uniform CDF
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The Uniform distribution
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The Uniform distribution

The Uniform distribution is the simplest continuous distribution

Assumes all members of a real interval [a, b] are equally likely
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The Uniform distribution

The Uniform distribution is the simplest continuous distribution

Assumes all members of a real interval [a, b] are equally likely

f(x) Uniform PDF F(x) Uniform CDF
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The Uniform distribution

The Uniform distribution is the simplest continuous distribution

Assumes all members of a real interval [a, b] are equally likely

f(x) Uniform PDF F(x) Uniform CDF

0.8 0.8 —

0.6 — 0.6 —

04— 04—
0.2 — 02—
0 0













- Not useful as a model of data

« Useful in computing to take random draws from other distributions
(e.g., all others seen today)
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Not useful as a model of data

Useful in computing to take random draws from other distributions
(e.g., all others seen today)

Often used in Bayesian statistics as a “prior” distribution

Hidden assumption (scale): Uniform is not scale invariant



The uniform distribution

Moments of the Uniform distribution

E(x) = %(a—l—b)
Var(z) = %(b—a)2

Not useful as a model of data

Useful in computing to take random draws from other distributions
(e.g., all others seen today)

Often used in Bayesian statistics as a “prior” distribution
Hidden assumption (scale): Uniform is not scale invariant

Why? Because the choice of a, b is arbitrary and important
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The Normal (or Gaussian) distribution

The Central Limit Theorem holds that the sum of a “large” (N — o0)
number of independently distributed random variables is distributed as

— (7 — u)2]

o) = (2na?) 2 exp | <

The Normal distribution is continuous and symmetric,
with positive probability everywhere from —oo to oo

Many analysts implicitly or explicitly appeal to the central limit theorem
to justify assuming their data is Normally distributed
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The Normal (or Gaussian) distribution

The Central Limit Theorem holds that the sum of a “large” (N — o0)
number of independently distributed random variables is distributed as

— (7 — W]

o) = (2na?) 2 exp | <

The Normal distribution is continuous and symmetric,
with positive probability everywhere from —oo to oo

Many analysts implicitly or explicitly appeal to the central limit theorem
to justify assuming their data is Normally distributed

Moments: E(z) =p Var(z) = o2

The cdf of the Normal has no closed form representation (hard integral):

Py = [ fx = (a0

When we need the cdf, we will rely on numerical approximations (quadrature)



The Normal (Gaussian) distribution

We've already seen the Normal, as our example of a continuous distribution
This special case is known as the Standard Normal distribution

The Standard Normal has mean 0 and variance 1

f(x) Normal PDF F(x) Normal CDF
| — | —
0.8 — 08—
0.6 0.6 —
04— 04—
02— 02—
0 | | | | | | 0 | | | | |
-3 -2 =1 0 | 2 3 -3 -2 =1 0 | 2



The Normal (Gaussian) distribution

We've already seen the Normal, as our example of a continuous distribution
Changing the mean shifts curve's location, but preserves its shape

This Normal has mean 1 and variance 1

f(x) Normal PDF F(x) Normal CDF
| — | —
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0 | | | | | | 0 | | | | | |
-3 -2 =1 0 | 2 3 -3 -2 =1 0 | 2 3



The Normal (Gaussian) distribution

We've already seen the Normal, as our example of a continuous distribution
Changing the mean shifts curve's location, but preserves its shape

This Normal has mean -1 and variance 1

f(x) Normal PDF F(x) Normal CDF
| — | —
0.8 — 08—
0.6 0.6 —
04— 04—
02— 02—
0 | | | | | | 07 | | | | | |
-3 -2 =1 0 | 2 3 -3 -2 =1 0 | 2 3



The Normal (Gaussian) distribution

We've already seen the Normal, as our example of a continuous distribution
Changing the variance shifts curve's shape, but preserves its location

This Normal has mean 1 and variance 2

f(x) Normal PDF F(x) Normal CDF
| — | —
0.8 — 08—
0.6 0.6 —
04— 04—
02— 02—
0 | | | | | | 0 | | | | | |
-3 -2 =1 0 | 2 3 -3 -2 =1 0 | 2 3



The Normal (Gaussian) distribution

We've already seen the Normal, as our example of a continuous distribution
Changing the variance shifts curve's shape, but preserves its location

This Normal has mean 1 and variance 0.2

f(x) Normal PDF F(x) Normal CDF
| — | —
0.8 — 08—
0.6 0.6 —
04— 04—
02— 02—
0 | | | | | | 0 | | | | | |
-3 -2 =1 0 | 2 3 -3 -2 =1 0 | 2 3



Why R?

Real question: Why programming?

Non-programmers are stuck with package defaults

For your substantive problem, these default settings may be

inappropriate (not quite the right model, but “close™)

unintelligible (reams of non-linear coefficients and stars)

Programming allows you to match the methods to the data & question

Get better, more easily explained results.



4. Programming makes replication easy.



- widely use

- the future for most fields

But once you learn one language, the others are much easier



> print(y)
[1] "hello"

> z <- c(15, -3, 8.2)
> print(z)
[1] 15.0 -3.0 8.2



> a <- x72
> print (x)
[1] 2
> print(a)
[1] 4

> b <-z + 10

> print(z)

[1] 15.0 -3.0 8.2
> print (b)

[1] 256.0 7.0 18.2



Introduction to R

> ¢ <= c(w,y)

> print (w)

[1] "gdp" "pop" "income"

> print (y)

[1] "hello"

> print(c)

[1] "gdp" "pop" "income" "hello"

Commands (or “functions”) in R are always written command ()
The usual way to use a command is:

output <- command (input)

We've already seen that c() pastes together variables.

A simple example:

> z <- c(15, -3, 8.2)
> mz <- mean(z)

> print (mz)

[1] 6.733333



Introduction to R

Some commands have multiple inputs. Separate them by commas:
plot(varl,var2) plots varl against var2

Some commands have optional inputs. |If omitted, they have default values.
plot(varl) plots varl against the sequence {1,2,3,. ..}

Inputs can be identified by their position or by name.

plot(x=varl,y=var2) plots var2 against varl



Entering code

You can enter code by typing at the prompt, by cutting or pasting, or from a file

If you haven't closed the parenthesis, and hit enter, R let's you continue with this
prompt +

You can copy and paste multiple commands at once

You can run a text file containing a program using source(), with the name of the
file as input (ie, in "")

| prefer the source () approach. Leads to good habits of retaining code.



Data types

R has three important data types to learn now

Numeric y <- 4.3
Character y <- "hello"
Logical y <- TRUE

We can always check a variable's type, and sometimes change it:

population <- c("1276", "562", "8903")
print (population)
is.numeric(population)

is.character (population)

Oops! The data have been read in as characters, or “strings”. R does not know they
are numbers.

population <- as.numeric(population)






Dataframe

List (to be covered later)



Vectors in R

Vector is R are simply 1-dimensional lists of numbers or strings
Let’'s make a vector of random numbers:

x <- rnorm(1000)

x contains 1000 random normal variates drawn from a Normal distribution with
mean 0 and standard deviation 1.

What if we wanted the mean of this vector?
mean (x)
What if we wanted the standard deviation?

sd (x)



sort (x) [100]

Indexing a vector can be very powerful. Can apply to any vector object.

What if we want a histogram?

hist (x)









Matrices in R
Many ways to make a matrix in R
a <- matrix(data=NA, nrow, ncol, byrow=FALSE)
This makes a matrix of nrow X ncol, and fills it with missing values.

To fill it with data, substitute a vector of data for NA in the command. It will fill up
the matrix column by column.

We could also paste together vectors, binding them by column or by row:

b <- cbind(varl, var2, var3)
c <- rbind(obsl, obs2)



there is one name for each variable & observation



Matrices in R

Matrices are indexed by row and column.

We can subset matrices into vectors or smaller matrices

al1,1] Gets the first element of a

al[1:10,1] Gets the first ten rows of the first column
al,5] Gets every row of the fifth column

al4:6,] Gets every column of the 4th through 6th rows

To make a vector into a matrix, use as.matrix()
R defaults to treating one-dimensional arrays as vectors, not matrices

Useful matrix commands:

nrow() Gives the number of rows of the matrix
ncol() Gives the number of columns
t () Transposes the matrix

Much more on matrices next week.



Dataframes in R

Dataframes are a special kind of matrix used to store datasets
To turn a matrix into a dataframe (note the extra .):
a <- as.data.frame(a)

Dataframes always have columns names, and these are set or retrieved using the
names () command

names(a) <- c("Varl","Var2")
You can access a variable from a dataframe directly using $:
a$Vari

Dataframes can also be “attached”, which makes each column into a vector with the
appropriate name

attach(a)



Loading data

There are many ways to load data to R.
| prefer using comma-separated variable files, which can be loaded with read.csv()

You can also check the foreign library for other data file types

Suppose you load a dataset using
data <- read.csv("mydata.csv")

You can check out the names of the variables using names (data)

And access any variables, such as gdp, using data$gdp



Benefits and dangers of attach()

If your data have variable names, you can also “attach” the dataset like so:

data <- read.csv("mydata.csv")
attach(data)

to access all the variables directly through newly created vectors.

Be careful! attach() is tricky.

1. If you attach a variable data$x in data and then modify x,
the original data$x is unchanged.

2. If you have more than one dataset with the same variable names,
attach() is a bad idea: only one dataset can be attached!

Sometimes attach() is handy, but be careful!



na.strings=c(".","","NA")



Missing data

Many R commands will not work properly on vectors, matrices, or dataframes
containing missing data (NAs)

To check if a variables contains missings, use is.na(x)
To create a new variable with missings listwise deleted, use na.omit

If we have a dataset data with NAs at data[15,5] and data[17,3]
dataomitted <- na.omit(data)

will create a new dataset with the 15th and 17th rows left out

Be careful! If you have a variable with lots of NAs you are not using in your analysis,
remove it from the dataset before using na.omit ()



Mathematical Operations

R can do all the basic math you need

Binary operators:

Logical operators (and, or, not, control-flow and, control-flow not; use parentheses!):
& |V & ||

Math /stat fns:
log exp mean median min max sd var Ccov COr

Set functions (see help(sets)), Trigonometry (see help(Trig) ),

R follows the usual order of operations; if it doubt, use parentheses



Example 1: US Economic growth

Let's investigate an old question in political economy:

Are there partisan cycles, or tendencies, in economic performance?
Does one party tend to produce higher growth on average?

(Theory: Left cares more about growth vis-a-vis inflation than the Right

If there is partisan control of the economy,
then Left should have higher growth ceteris paribus)

Data from the Penn World Tables (Annual growth rate of GDP in percent)

Two variables:

grgdpch The per capita GDP growth rate
party The party of the president (Dem = -1, Rep = 1)



Example 1: US Economic growth

# Load data
data <- read.csv("gdp.csv", na.strings="")
attach(data)

# Construct party specific variables
gdp.dem <- grgdpch[party==-1]
gdp.rep <- grgdpch[party==1]

# Make the histogram

hist(grgdpch,
breaks=seq(-5,8,1),
main="Histogram of US GDP Growth, 1951--2000",
xlab="GDP Growth")



Histogram of US GDP Growth, 1951--2000
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GDP Growth under Democratic Presidents
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GDP Growth under Republican Presidents
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# Make a box plot
boxplot (grgdpch™as.factor(party),
boxwex=0.3,
range=0.5,
names=c ("Democratic\n Presidents",
"Republican\n Presidents"),
ylab="GDP growth",
main="Economic performance of partisan governments")

Note the unusual first input: this is an R formula

vy x1+x2+x3

In this case, grgdpch is being “modelled” as a function of party
boxplot () needs party to be a “factor” or an explicitly categorical variable

Hence we pass boxplot as.factor (party),
which turns the numeric variable into a factor



Box plots: Annual US GDP growth, 1951-2000

Economic performance of partisan governments
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Box plots: Annual US GDP growth, 1951-2000

Economic performance of partisan governments

o)
Annual GDP
growth © —
(percent) — 8
| I
75th 45 |
< — |
median 3.4 |
o mean 3.1 75th 3.2
median 2.4
N | 25th 2.1 * mean 1.7
—_l
o)
o e
. 25th --0.5
O |
|
V- 1
e
<
| o)
I |
Democratic Republican
President President

std dev 1.7 std dev 3.0



Box plots: Annual US GDP growth, 1951-2000

Economic performance of partisan governments
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Box plots: Annual US GDP growth, 1951-2000
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Help!
To get help on a known command x, type help(x) or 7x

To search the help files using a keyword string s, type help.search(s)

Note that this implies to search on the word regression, you should type
help.search("regression")

but to get help for the command 1m, you should type help(1m)

Hard to use Google directly for R help (“r" is kind of a common letter)
Easiest way to get help from the web: rseek.org

Rseek tries to limit results to R topics (not wholly successful)



Installing R on a PC

Go to the Comprehensive R Archive Network (CRAN)
http://cran.r-project.org/

Under the heading “Download and Install R", click on “Download R for Windows"
Click on “base”

Download and run the R setup program.
The name changes as R gets updated;
the current version is “R-3.4.1-win.exe"

Once you have R running on your computer,
you can add new libraries from inside R by selecting
“Install packages” from the Packages menu



Installing R on a Mac

Go to the Comprehensive R Archive Network (CRAN)
http://cran.r-project.org/

Under the heading “Download and Install R”, click on “Download R for MacOS
X’l

Download and run the R setup program.
The name changes as R gets updated;
the current version is “R-3.4.1.pkg"

Once you have R running on your computer,
you can add new libraries from inside R by selecting
“Install packages” from the Packages menu



Editing scripts
Don't use Microsoft Word to edit R code!

Word adds lots of “stuff” to text; R needs the script in a plain text file.

Some text editors:

Notepad: Free, and comes with Windows (under Start — Programs — Accessories).
Gets the job done; not powerful.

TextEdit: Free, and comes with Mac OS X. Gets the job done; not powerful.

TINN-R: Free and powerful. Windows only.
http://www.sciviews.org/Tinn-R/

Emacs: Free and very powerful (my preference). Can use for R, Latex, and any
other language. Available for Mac, PC, and Linux.

For Mac (easy installation): http://aquamacs.org/

For Windows (see the README): http://ftp.gnu.org/gnu/emacs/windows/



Editing data
R can load many other packages’ data files
See the foreign library for commands
For simplicity & universality, | prefer Comma-Separated Variable (CSV) files
Microsoft Excel can edit and export CSV files (under Save As)
R can read them using read.csv()

OpenOffice free alternative to Excel (for Windows and Unix):
http://www.openoffice.org/

My detailed guide to installing social science software on the Mac:
http://thewastebook.com/?post=social-science-computing-for-mac

Focus on steps 1.1 and 1.3 for now; come back later for Latex in step 1.2



Example 2: A simple linear regression

Let's investigate a bivariate relationship

Cross-national data on fertility (children born per adult female) and the percentage
of women practicing contraception.

Data are from 50 developing countries.

Source: Robey, B., Shea, M. A., Rutstein, O. and Morris, L. (1992) “The
reproductive revolution: New survey findings.” Population Reports. Technical Report
M-11.



Example 2: A simple linear regression

# Load data

data <- read.csv("robeymore.csv", na.strings="")
completedata <- na.omit(data)
attach(completedata)

# Transform variables
contraceptors <- contraceptors/100

# Run linear regression
res.lm <- Im(tfr~contraceptors)
print (summary(res.1lm))

# Get predicted values
pred.1lm <- predict(res.lm)



Example 2: A simple linear regression

# Make a plot of the data
plot(x=contraceptors,
y=tfr,
ylab="Fertility Rate",
xlab="% of women using contraception",
main="Average fertility rates & contraception; \n
50 developing countries",
xaxp=c(0,1,5)
)

# Add predicted values to the plot
points(x=contraceptors,y=pred.lm,pch=16,col="red")



Example 2: A simple linear regression

> summary(res.lm)

Call:
Im(formula = tfr ~ contraceptors)

Residuals:
Min 1Q Median 3Q Max
-1.54934 -0.30133 0.02540 0.39570 1.20214

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.8751 0.1569 43.83 <2e-16 **x
contraceptors -5.8416 0.3584 -16.30 <2e-16 **x*
Signif. codes: 0 “**x’ 0.001 ‘%%’ 0.01 ‘x’ 0.05 “.” 0.1 ¢ > 1

Residual standard error: 0.5745 on 48 degrees of freedom
Multiple R-Squared: 0.847, Adjusted R-squared: 0.8438
F-statistic: 265.7 on 1 and 48 DF, p-value: < 2.2e-16



Data and Prediction

Average fertility rates & contraception;
50 developing countries

Fertility Rate

I I I
0.2 0.4 0.6
% of women using contraception







> x$b[2]
[1] 15

> x$giraffe
[1] "hello"

> x[3]
$giraffe
[1] "hello"

> x[["giraffe"]]
[1] "hello"



- Allow us to move lots of variables in and out of functions

- Functions often return lists (only way to have multiple outputs)



# To get the coefficients
res$coefficients

# or
coef (res)

#To get residuals
resPresiduals

#or

resid(res)



1m() basics

# To get the variance-covariance matrix of the regressors
vcov (res)

# To get the standard errors
sqrt (diag(vcov(res)))

# To get the fitted values
predict(res)

# To get expected values for a new observation or dataset
predict (res,

newdata, # a dataframe with same x vars

# as data, but new values
interval = "confidence", # alternative: "prediction"
level = 0.95

)



R lists & Object Oriented Programming

A list object in R can be given a special “class” using the class() function

This is just a metatag telling other R functions that this list object conforms to a
certain format

So when we run a linear regression like this:
res <- 1lm(y~x1+x2+x3, data)
The result res is a list object of class ¢ “1m’’

Other functions like plot () and predict () will react to res in a special way
because of this class designation

Specifically, they will run functions called plot.1m() and predict.1lm()

Object-oriented programming:
a function does different things depending on class of input object






Example 3: Party systems & Redistribution

Cross sectional data on industrial democracies:

povertyReduction Percent of citizens lifted out of poverty
by taxes and transfers

effectiveParties Effective number of parties

partySystem Whether the party system is Majoritarian,
Proportional, or Unanimity (Switzerland)

Source of data & plot: Torben lversen and David Soskice, 2002, “Why do some
democracies redistribute more than others?” Harvard University.

Considerations:

1. The marginal effect of each extra party is probably diminishing,
so we want to log the effective number of parties

2. The party system variable needs to be “dummied out;"
there are several ways to do this



Example 3: Party systems & Redistribution

# Clear memory of all objects
rm(list=1s())

# Load libraries
library(RColorBrewer) # For nice colors

# Load data
file <- "iverRevised.csv"
iversen <- read.csv(file,header=TRUE)

# Create dummy variables for each party system

iversen$majoritarian <- as.numeric(iversen$partySystem=="Majoritarian")
iversen$proportional <- as.numeric(iversen$partySystem=="Proportional")
iversen$unanimity <- as.numeric(iversen$partySystem=="Unanimity")

# A bivariate model, using a formula to log transform a variable
modell <- povertyReduction ~ log(effectiveParties)

Im.resl <- 1Im(modell, data=iversen)

summary (lm.res1)



Example 3: Party systems & Redistribution

Call:
Ilm(formula = modell, data = iversen)

Residuals:
Min 1Q Median 3Q Max
-48.907 -4.115 8.377 11.873 18.101

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 21.80 16.15 1.349 0.2021
log(effectiveParties) 24 .17 12.75 1.896 0.0823 .

Signif. codes: O *x*x*x 0.001 **x 0.01 * 0.05 . 0.1 1

Residual standard error: 19.34 on 12 degrees of freedom
Multiple R-squared: 0.2305,Adjusted R-squared: 0.1664
F-statistic: 3.595 on 1 and 12 DF, p-value: 0.08229






Example 3: Party systems & Redistribution

Call:
Ilm(formula = model2, data = iversen)

Residuals:
Min 1Q Median 3Q Max
-23.3843 -1.4903 0.6783 6.2687 13.9376

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -31.29 26.55 -1.178 0.26588
log(effectiveParties) 26 .69 14.15 1.886 0.08867 .
majoritarian 48.95 17.86  2.740 0.02082 *
proportional 58.17 13.52 4.302 0.00156 *x*

Signif. codes: O **x*x 0.001 *x 0.01 * 0.05 . 0.1 1

Residual standard error: 12.37 on 10 degrees of freedom
Multiple R-squared: 0.7378,Adjusted R-squared: 0.6592
F-statistic: 9.381 on 3 and 10 DF, p-value: 0.002964






Example 3: Party systems & Redistribution

Call:
Ilm(formula = model3, data = iversen)

Residuals:
Min 1Q Median 3Q
-23.3843 -1.4903 0.6783 6.2687

Coefficients:

Max

13.9376

Estimate Std. Error t value Pr(>|t|)

log(effectiveParties) 26 .69
majoritarian 17.66
proportional 26.88
unanimity -31.29

Signif. codes: O **xx 0.001 *x 0.01 * 0.05 .

14.15
12.69
21.18
26.55

1.886
1.392
1.269
-1.178

0.1

0.0887 .

0.1941
0.2331
0.2659

Residual standard error: 12.37 on 10 degrees of freedom
Multiple R-squared: 0.9636,Adjusted R-squared:

F-statistic: 66.13 on 4 and 10 DF,

0.949
p-value: 3.731e-07






Example 3: Party systems & Redistribution

Call:
lm(formula = modeld4, data = iversen)

Residuals:
Min 1Q Median 3Q Max
-22.2513 0.0668 2.8532 4.7318 12.9948

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -14.83 31.42 -0.472 0.64813
log(effectiveParties) 16.78 17.39 0.965 0.35994
majoritarian 16.34 37.65 0.434 0.67445
proportional 56.18 13.70 4.102 0.00267 x*x*
log(effectiveParties) :majoritarian 29.55 30.02 0.984 0.35065

Signif. codes: O **xx 0.001 *x 0.01 *x 0.05 . 0.1 1

Residual standard error: 12.39 on 9 degrees of freedom
Multiple R-squared: 0.7633,Adjusted R-squared: 0.6581
F-statistic: 7.256 on 4 and 9 DF, p-value: 0.006772






Example 3: Party systems & Redistribution

Call:
lm(formula = model5, data = iversen)

Residuals:
Min 1Q Median 3Q Max
-22.2513 0.0668 2.8532 4.7318 12.9948

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -14.83 31.42 -0.472 0.64813
log(effectiveParties) 16.78 17.39 0.965 0.35994
majoritarian 16.34 37.65 0.434 0.67445
proportional 56.18 13.70 4.102 0.00267 x*x*
log(effectiveParties) :majoritarian 29.55 30.02 0.984 0.35065

Signif. codes: O **xx 0.001 *x 0.01 *x 0.05 . 0.1 1

Residual standard error: 12.39 on 9 degrees of freedom
Multiple R-squared: 0.7633,Adjusted R-squared: 0.6581
F-statistic: 7.256 on 4 and 9 DF, p-value: 0.006772



Plotting a best fit line

o
o
—
o _|
(@]
o _|
[o0] |
Belgium

o _| |
M~ Denmilirk

u u Finland

Norwayelerlands
Sweden

60

A
France

Poverty Reduction
50
|

A
United Kingdom A
Germany
| |
g ] Australia Italy
o _
m A
Canada

o _|
AN

A K
8 — United States Switzerland
© | | | | | |

2 3 4 5 6 7

Effective Number of Parties

Let's turn to the code to see how we can make this plot using R base graphics
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R Graphics: Devices

Everything you draw in R must be drawn on a canvas
Must create the canvas before you draw anything
Computer canvasses are devices you draw to

Devices save graphical input in different ways
Sometimes to the disk, sometimes to the screen

Most important distinction: raster vs. vector devices
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Pointalism = raster graphics. Plot each pixel on an n by m grid.



Vector vs. raster

Pixel = Point = Raster
Good for pictures. Bad for drawings/graphics/cartoons.
(Puzzle: isn't everything raster? In display, yes. Not in storage)

Advantages of vector:

Easily manipulable/modifiable groupings of objects

Easy to scale objects larger or smaller/ Arbitrary precision

Much smaller file sizes

Can always convert to raster (but not the other way round, at least not well)
Disadvantages:

A photograph would be really hard to show (and huge file size)

Not web accessible. Convert to PNG or PDF.



Avoid lossy formats whenever possible



Some common graphics file formats

In R, have access to several formats:

win.metafile() wmf, Windows media file
pdf() pdf, Adobe portable data file
postscript() postscript file (printer language)

quartz() opens a screen; Mac only
windows() opens a screen; PC only
x11() opens a screen; works on all machines

Latex, Mac or Unix users can't use wmf

windows (record=TRUE) let's you cycle thru old graphs with arrow keys



High-level graphics commands

In R, High level graphics commands:

produce a standard graphic type
fill in lots of details (axes, titles, annotation)
have many configurable parameters

have varied flexibility

You don't need to use HLCs to make R graphics.
Could use primitive commands to do each task above

Using low levels commands gives more control but takes more time



Some major high-level graphics commands

Graphic
scatterplot

line plot

Bar chart
Histogram
Smoothed histograms
boxplot

Dot plot

Contour plots
image plot

3D surface

3D scatter
conditional plots
Scatterplot matrix
Parallel coordinates
Star plot
Stem-and-leaf plots
ternary plot
Fourfold plot
Mosaic plots

Base command

plot()

plot(. . . type="1")
barplot()

hist()

plot() after density()

boxplot()
dotchart()
contour()
image()

persp()
scatterplot3d()*
coplot()

stars()
stem()
ternaryplot() in vcd
fourfoldplot() in vcd
mosaicplot() in vcd

Lattice command

xyplot()
xyplot(. . . ,type="1")
barchart()
histogram()
densityplot()
bwplot()
dotplot()
contourplot()
levelplot()
wireframe()
cloud()

xyplot()

splom()
parallel()



Scatterplot: plot ()

plot(x, type = "p")

AN — ooo
00©°
o

— — oo
~—~ o?
—
N~ o°
N o°

o©
o0
8 ooo°°°°
| -
= (oY)
| -
(@] — _| 0°°
N | o©
| o
Y :
foYe)
N
| 00
o
P Ho
I I I I I
0 10 20 30 40

Index



X <— sort(rnorm(47))

Line plot: plot(...,type="1")

plot(x, type ="I")

Index

40




(Smoothed) Histograms: densityplot() & others
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Dot plot: dotplot()
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Contour plot: contour()

Maunga Whau Volcano
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3D surface: persp()
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3D surface: wireframe()

ﬂcano\

column




Life.Exp

Conditional plots: coplot ()
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3D scatter: scatterplot3d() in own library

scatterplot3d — 5
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Scatterplot matrix: splom()
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Ternary plot: ternaryplot () In




Star plot: stars()

Motor Trend Cars : full stars()
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Basic customization

For any given high-level plotting command, there are many options listed in help

barplot (height, width = 1, space = NULL,

names.arg = NULL, legend.text = NULL, beside = FALSE,
horiz = FALSE, density = NULL, angle = 45,

col = NULL, border = par("fg"),
main = NULL, sub = NULL, xlab =
xlim = NULL, ylim = NULL, xpd =
axes = TRUE, axisnames = TRUE,
cex.axis = par("cex.axis"), cex.names = par("cex.axis"),
inside = TRUE, plot = TRUE, axis.lty = 0, offset = 0, ...)

ULL, ylab = NULL,

N
TRUE,

Just the tip of the iceberg: notice the ...

This means you can pass other, unspecified commands throough barplot



Some key examples, grouped functionally






ote the distinction between text Iin the plot and outsiae.

Text in the plot is plotted with text ()

Text outside the plot is plotted with mtext (), which was designed to put on titles,
etc.









R defaults to excessive mgp, which looks ugly & wastes space



xlog g r X axis’
ylog Log scale for y axis?

You can also make a logged axis by hand, as we will do now



Scatterplot: Occupational Prestige & Income

Classic data from sociology. Three variables

Prestige of occupations, as rated by surveys
Income of occupations (averaged across males)

Type of occupation (blue collar, white collar, professional)

Data is in R. Look for Duncan.



Income (% of males making > $3500 in $1950)
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> Im.res <- lm(prestige~income+education)

> summary(lm.res)

Call:

Im(formula = prestige ~ income + education)

Residuals:
Min 1Q Median 3Q
-29.5380 -6.4174 0.6546 6.6051 34

Coefficients:

Estimate Std. Error t value
(Intercept) -6.06466 4.27194 -1.420
income 0.59873 0.11967 5.003
education 0.54583 0.09825 5.5565

Signif. codes: 0 “*xx’ 0.001 ‘*x’ 0.01

Max
.6412

Pr(>[t])

0.163

1.05e-05 **x
1.73e-06 *x*x*

0.05 ¢.

> 0.1

Residual standard error: 13.37 on 42 degrees of freedom

Multiple R-Squared: 0.8232,

Adjusted R-squared:

0.82

F-statistic: 101.2 on 2 and 42 DF, p-value: < 2.2e-16

4

b

1



To find the t-statistics & p-values, use the summary () command.

Coefficients:

Estimate Std. Error t value
(Intercept) -6.06466 4.27194 -1.420
income 0.59873 0.11967 5.003
education 0.54583 0.09825 5.5565

Signif. codes: 0 “**x’ 0.001 ‘*x’ 0.01

Note 1.05e-05 = 0.0000105

Or, you could calculate yourself:

1lm.out <- lm(prestige”income+education)
betas <- 1lm.out$coefficients

vcmat <- vcov(lm.out)

ses <- sqrt(diag(vcmat))

tstats <- betas/ses

pvalues <- 2x(1-pt(tstats,42))

Pr(>ltl)

1.
1.

0.163
05e-05 **x
73e-06 **x

‘x> 0.06 ‘.7 0.1 ¢’ 1

H OH H H H H

run linear regression
retrive the of betas
retrieve the var-cov matrix
calc a vector of ses

calc vector of tstats

calc p-values



Confidence intervals for regression coefficients

Standard errors, t-tests, and p-values take expertise to read
They are also subject to misinterpretation

(E.g., smaller p-values do not imply a bigger substantive effect)

Cls turn the standard errors into something everyone can easily understand

To get the 100(1 — )% confidence interval for f,

Hlower

1 — 61 — toz/2,n—k:—10-81

supper

1 — 51 =+ toz/Z,n—k:—la-Bl



Confidence intervals for regression coefficients
How to calculate Cls for coefficients in R

By hand:

lower.95 <- betas - qt(0.025,42)*ses
upper .95 <- betas + qt(0.025,42)*ses

Why are we using qt? Why 0.0257
The easy way:

library(stats)
confint (1lm.out,level=0.95)

2.5 % 97.5 %
(Intercept) -14.6857892 2.5564634
education 0.3475521 0.7441158
income 0.3572343 0.8402313



Confidence intervals for regression coefficients

Using confidence intervals, we can improve the initial summary table:

95% Conf Interval
Variable Estimate Lower Upper

Income 0.60 [0.36, 0.84]
Education 0.55 [0.38, 0.74]
Intercept —6.06  [-14.69, 2.46]

Y 45

S.e.r. 13.4 (this is &)

R? 0.83  (this line optional)

Table 1: Determinants of occupational prestige. Entries are linear regression
parameters and their 95 percent confidence intervals.

Think about everything you put in these tables:

what readers need to see to fully understand your results
what superfluous R output you can delete

how to make the results clear for as large an audience as possible






Perils of stargazing

Statistically Significant?
Substantively Significant?




Perils of stargazing

Statistically Significant?
Substantively Significant?

Unhelpful tabular form:

These estimated 5's will both be starred in regression output.

Often, only the estimate to the right will be significant in a substantive sense

The estimate on the left is a precise zero




Perils of stargazing

Statistically Significant? yes
Substantively Significant? yes, but imprecise




Perils of stargazing

Statistically Significant? yes
Substantively Significant? yes, but imprecise
i X 1.5%%*
! (0.5)
| | | —
-1 0 1 2

These estimated (5's will both be heavily starred in regression output.
They are both substantively significant as well, with identical point estimates

But the orange curve is much more precisely estimated

The blue estimate may be much smaller or larger. Best shown with a CI




Perils of stargazing

0.1 Aninsignificant, probably small effect of
(0.5) unknown sign

How do you verify a null effect? Precise zeros

Sometimes, researchers mistake the precise zero for a positive effect




In this example,

—_—

Prestige, = —6.1 0.60 x Income,. + 0.55 x Education,



In this example,

—_—

Prestige, = —6.1 0.60 x Income,. + 0.55 x Education,
|—14.7,2.6] 10.36,0.84] 0.35,0.74]



Confidence interval for expected values

We can calculate the Cls around Y as well.

——

For example, what is the 95% Cl around Prestige,. in:

——

Prestige, = BO + Bllncomec + BQEducationc

——

The uncertainty in each estimate will “combine” to form the uncertainty in Prestige,.

In this example,

——

Prestige, = —6.1 0.60 x Income,. + 0.55 x Education,
(—14.7,2.6] 0.36, 0.84] 0.35,0.74]

47.7 — —6.1 0.60 x 41.9 + 0.55 X 52.6



Confidence interval for expected values

We can calculate the Cls around Y as well.

/\

For example, what is the 95% Cl around Prestige,. in:

——

Prestige, = BO + Bllncomec + BAQEducationc

—_—

The uncertainty in each estimate will “combine” to form the uncertainty in Prestige,.

In this example,

Pr/est\igec = —6.1 0.60 x Income,. + 0.55 x Education,
(—14.7,2.6] 0.36, 0.84] 0.35,0.74]
47.7 — —6.1 0.60 x 41.9 + 0.55 x 52.6
43.7,51.7] |—14.7, 2.6] 0.36, 0.84] 0.35,0.74]

In words, when income and education are held at their means, we expect that
presitge will equal 47.7 with a 95 % Cl of 43.7 to 51.7.



Confidence interval for expected values

How do we calculate confidence intervals around 3 in R?

1. Estimate the model

2. Choose hypothetical values of the covariate at which you want to calculate ¢ and
it's Cl.

3. Use the predict () function to obtain the expected y and it's Cl

Some examples:

# To get CIs around all the fitted values

res <- 1lm(y~x+z)

pred <- predict(res,interval="confidence",level=0.95)
yhat <- pred[,1]

yhat.lower <- predl[,2]

yhat.upper <- pred[,3]



Confidence interval for expected values

# To get CIs for yhat given a set of hypothetical x & z values
res <- 1lm(y~x+z)

xhyp <- seq(min(x) ,max(x),0.01)

zhyp <- rep(mean(z),length(xhyp))

hypo <- data.frame (x=xhyp,z=zhyp)

pred <- predict(res,newdata=hypo,interval="confidence",level=0.95)
yhat <- pred[,1]

yhat.lower <- predl[,2]

yhat.upper <- predl[,3]

The code above is very useful for adding confidence intervals to a plot.

We can run through a sequence of possible = values, holding z constant,
and predict y and it's confidence interval,
then plot the confidence interval as an envolpe around y

The just add the upper and lower bounds:

lines (x=xhyp,y=yhat.lower,lty="dashed")
lines (x=xhyp,y=yhat.upper,lty="dashed")
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Confidence interval for expected values

Interpretation:

All we can say with 95 percent confidence is that the line
— the relation b/w prestige and income —

lies in this envelope

Very useful to show, especially if the relationship is curved in some way

| prefer shaded regions to dotted lines. (lots of lines gets confusing)
You can make shaded regions using the polygon() command

Just be sure to plot the polygon before you add any points or lines, so it shows up
behind them



Complete code for above figure

# Load the occupation data
library(car)

data(Duncan)
attach(Duncan)

# Regress prestige on education & income
lm.out <- lm(prestige~education+income)

# To get CIs for yhat given a set of hypothetical income & education

xhyp <- seq(min(income) ,max(income),1)

zhyp <- rep(mean(education),length(xhyp))

hypo <- data.frame(income=xhyp,education=zhyp)

pred <- predict(lm.out,
newdata=hypo,
interval="confidence",
level=0.95)

yhat <- pred[,1]

yhat.lower <- pred[,2]

yhat.upper <- predl[,3]

pdf ("yhatexample.pdf" ,horizontal=FALSE,width=5,height=4.5)



plot (y=prestige,x=income,type="n")

# Make the x-coord of a confidence envelope polygon
xpoly <- c(xhyp,

rev (xhyp),

xhyp[1])

# Make the y-coord of a confidence envelope polygon
ypoly <- c(yhat.lower,

rev(yhat.upper),

yhat.lower[1])

# Choose the color of the polygon
col <- "gray"

# Plot the polygon first, before the points & lines
polygon (x=xpoly,

y=ypoly,

col=col,

border=FALSE

)








