Maximum Likelihood Methods for the Social Sciences
POL 510 · CSS 510

Introduction to the Course, Probability, and R

Christopher Adolph

Political Science and CSSS
University of Washington, Seattle
Class goals

Go beyond the linear model to develop models for real-world data

messy data with substantively interesting quirks
Class goals

Go beyond the linear model to develop models for real-world data

messy data with substantively interesting quirks

Consider broad principles for selecting and deriving models

make and estimate any new model you want
Class goals

Go beyond the linear model to develop models for real-world data

messy data with substantively interesting quirks

Consider broad principles for selecting and deriving models

make and estimate any new model you want

Learn to present the result of any estimation to a broad audience

visuals anyone can understand, not just statistics experts
Class goals

Go beyond the linear model to develop models for real-world data

messy data with substantively interesting quirks

Consider broad principles for selecting and deriving models

make and estimate any new model you want

Learn to present the result of any estimation to a broad audience

visuals anyone can understand, not just statistics experts

Gateway to CSSS and other classes

Bayesian inference

Hierarchical/multilevel modeling

Event history analysis

Panel data analysis

Social network analysis

...
Challenges

1. Hard new concepts
Challenges

1. Hard new concepts

2. A fair bit of math
Challenges

1. Hard new concepts
2. A fair bit of math
3. Statistical programming rather than point-and-click
Payoff

1. Hard new concepts
Payoff

1. Hard new concepts
 - Develop a more intuitive understanding of statistics
Payoff

1. Hard new concepts
 - Develop a more intuitive understanding of statistics
 - Less “trust me;” more “show me”
1. Hard new concepts

- Develop a more intuitive understanding of statistics
- Less “trust me;” more “show me”
- Get ready for advanced classes and independent study
Payoff

1. Hard new concepts
 - Develop a more intuitive understanding of statistics
 - Less “trust me;” more “show me”
 - Get ready for advanced classes and independent study

2. A fair bit of math
Payoff

1. Hard new concepts
 - Develop a more intuitive understanding of statistics
 - Less “trust me;” more “show me”
 - Get ready for advanced classes and independent study

2. A fair bit of math
 - Unavoidable: we need the precision of mathematics
Payoff

1. Hard new concepts
 - Develop a more intuitive understanding of statistics
 - Less “trust me;” more “show me”
 - Get ready for advanced classes and independent study

2. A fair bit of math
 - Unavoidable: we need the precision of mathematics
 - You won’t be required to do proofs – but you may need to derive a new model
Payoff

1. Hard new concepts
 - Develop a more intuitive understanding of statistics
 - Less “trust me,” more “show me”
 - Get ready for advanced classes and independent study

2. A fair bit of math
 - Unavoidable: we need the precision of mathematics
 - You won’t be required to do proofs – but you may need to derive a new model
 - Numerical and visual alternatives where available
Payoff

1. Hard new concepts
 - Develop a more intuitive understanding of statistics
 - Less “trust me;” more “show me”
 - Get ready for advanced classes and independent study

2. A fair bit of math
 - Unavoidable: we need the precision of mathematics
 - You won’t be required to do proofs – but you may need to derive a new model
 - Numerical and visual alternatives where available

3. Statistical programming rather than point-and-click
Payoff

1. Hard new concepts
 - Develop a more intuitive understanding of statistics
 - Less “trust me,” more “show me”
 - Get ready for advanced classes and independent study

2. A fair bit of math
 - Unavoidable: we need the precision of mathematics
 - You won’t be required to do proofs – but you may need to derive a new model
 - Numerical and visual alternatives where available

3. Statistical programming rather than point-and-click
 - Steep learning curve, but in the end far more powerful
Payoff

1. Hard new concepts
 - Develop a more intuitive understanding of statistics
 - Less “trust me,” more “show me”
 - Get ready for advanced classes and independent study

2. A fair bit of math
 - Unavoidable: we need the precision of mathematics
 - You won’t be required to do proofs – but you may need to derive a new model
 - Numerical and visual alternatives where available

3. Statistical programming rather than point-and-click
 - Steep learning curve, but in the end far more powerful
 - Great for applied research: bring the methods and data to the question
Payoff

1. Hard new concepts
 - Develop a more intuitive understanding of statistics
 - Less “trust me;” more “show me”
 - Get ready for advanced classes and independent study

2. A fair bit of math
 - Unavoidable: we need the precision of mathematics
 - You won’t be required to do proofs – but you may need to derive a new model
 - Numerical and visual alternatives where available

3. Statistical programming rather than point-and-click
 - Steep learning curve, but in the end far more powerful
 - Great for applied research: bring the methods and data to the question
 - Empowering for any research involving data:
 you’ll be surprised how many problems can be simplified by programming
MLE for Categorical & Count Data

First half of course focuses on inference about discrete data: categories & counts

Foundational quantitative methods classes focus on the linear regression model

- Assume data consist of a systematic component $x_i\beta$ and a continuous, Normally distributed disturbance ε_i
- Easy to implement, estimate, and interpret
- A reasonable starting place for many analyses, with some robust features

But do the assumptions of linear regression (aka least squares) always fit?

Do they fit with discrete data?
Limits of the linear regression model

What about these possible response variables?

- A voter’s choice between a Democrat or a Republican?
Limits of the linear regression model

What about these possible response variables?

- A voter’s choice between a Democrat or a Republican?
- A voter’s choice among Labour, Lib Dem, SNP, UKIP, and Conservative?
Limits of the linear regression model

What about these possible response variables?

- A voter’s choice between a Democrat or a Republican?
- A voter’s choice among Labour, Lib Dem, SNP, UKIP, and Conservative?
- Whether a person rides the bus, drives, or walks to work?
Limits of the linear regression model

What about these possible response variables?

- A voter’s choice between a Democrat or a Republican?
- A voter’s choice among Labour, Lib Dem, SNP, UKIP, and Conservative?
- Whether a person rides the bus, drives, or walks to work?
- The number of tests a student fails in a given year?
Limits of the linear regression model

What about these possible response variables?

- A voter’s choice between a Democrat or a Republican?
- A voter’s choice among Labour, Lib Dem, SNP, UKIP, and Conservative?
- Whether a person rides the bus, drives, or walks to work?
- The number of tests a student fails in a given year?
- The number of wars fought per decade?
Limits of the linear regression model

What about these possible response variables?

- A voter’s choice between a Democrat or a Republican?
- A voter’s choice among Labour, Lib Dem, SNP, UKIP, and Conservative?
- Whether a person rides the bus, drives, or walks to work?
- The number of tests a student fails in a given year?
- The number of wars fought per decade?
- Whether someone taunted in a bar ignores it, argues back, or throws a punch
Beyond linear regression

No. All of these variables violate basic linear regression assumptions
Beyond linear regression

No. All of these variables violate basic linear regression assumptions.

Let's take a closer look at the last example . . .

To ignore, argue, or punch – does this escalation follow a uniform pattern?

Problems for linear regression in this case?

Treat categories as interval

\[\hat{\beta}_i = 0.25 \ (p = 0.22) \]
Beyond linear regression

No. All of these variables violate basic linear regression assumptions

Let’s take a closer look the last example . . .

To ignore, argue, or punch – does this escalation follow a uniform pattern?

Problems for linear regression in this case?

\[
\hat{\beta}_i = 0.25 \quad (p = 0.22)
\]
Beyond linear regression

No. All of these variables violate basic linear regression assumptions.

Let’s take a closer look the last example . . .

To ignore, argue, or punch – does this escalation follow a uniform pattern?

Problems for linear regression in this case?

Treat categories as interval

<table>
<thead>
<tr>
<th>Ignore</th>
<th>Argue</th>
<th>Punch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\hat{\beta}_i = 0.25 \ (p = 0.22) \]

True intervals between categories

<table>
<thead>
<tr>
<th>Ignore</th>
<th>Argue</th>
<th>Punch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\hat{\beta}_i = 0.34 \ (p = 0.11) \]
Beyond linear regression

No. All of these variables violate basic linear regression assumptions

Let’s take a closer look the last example . . .

To ignore, argue, or punch – does this escalation follow a uniform pattern?

Problems for linear regression in this case?

Treat categories as interval

- Punch
- Argue
- Ignore

True intervals between categories

- Punch
- Argue
- Ignore

β̂_1 = 0.25 (p = 0.22)

β̂_1 = 0.34 (p = 0.11)
Beyond linear regression

In this class, you’ll learn three things:
Beyond linear regression

In this class, you’ll learn three things:

Theory: Probability models to deal with discrete and categorical data
Beyond linear regression

In this class, you’ll learn three things:

Theory: Probability models to deal with discrete and categorical data

Application: Selecting and presenting models to uncover substantive relationships
Beyond linear regression

In this class, you’ll learn three things:

Theory: Probability models to deal with discrete and categorical data

Application: Selecting and presenting models to uncover substantive relationships

Practice: Programming skills to implement, fit, and interpret these models
Getting started

In particular, we'll follow a four step procedure:
Getting started

In particular, we'll follow a four step procedure:

1. Identify a probability model for a dependent variable
Getting started

In particular, we'll follow a four step procedure:

1. Identify a probability model for a dependent variable

2. Derive an estimator for it
Getting started

In particular, we'll follow a four step procedure:

1. Identify a probability model for a dependent variable
2. Derive an estimator for it
3. Fit the model and check the goodness of fit
Getting started

In particular, we'll follow a four step procedure:

1. Identify a probability model for a dependent variable
2. Derive an estimator for it
3. Fit the model and check the goodness of fit
4. Interpret the results, usually graphically
Getting started

In particular, we'll follow a four step procedure:

1. Identify a probability model for a dependent variable
2. Derive an estimator for it
3. Fit the model and check the goodness of fit
4. Interpret the results, usually graphically

We’ll start on Step 1 today . . .
Outline for today

1. Course administration
2. Review basic probability
3. Review some fundamental probability distributions
Course administration

1. Syllabus
2. Paper requirements
3. Survey
4. Introductions
Lightning course in basic probability: Sets

Define a set as a collection of elements. These could be numbers

\[A = \{23, 5.3, 1000, 4\} \]
Lightning course in basic probability: Sets

Define a **set** as a collection of elements. These could be numbers

\[A = \{23, 5.3, 1000, 4\} \]

But they need not be quantitative at all,

\[A = \{\text{Democrat, Republican, Independent}\} \]
Lightning course in basic probability: Sets

Define a set as a collection of elements. These could be numbers

\[A = \{23, 5.3, 1000, 4\} \]

But they need not be quantitative at all,

\[A = \{\text{Democrat, Republican, Independent}\} \]

And we will for now leave them as mathematical objects

\[A = \{a_1, a_2, a_3\} \]
Define a set as a collection of elements. These could be numbers

$$\mathcal{A} = \{23, 5.3, 1000, 4\}$$

But they need not be quantitative at all,

$$\mathcal{A} = \{\text{Democrat, Republican, Independent}\}$$

And we will for now leave them as mathematical objects

$$\mathcal{A} = \{a_1, a_2, a_3\}$$

a_1 is an element of \mathcal{A}, which we write $a_1 \in \mathcal{A}$
Define a set as a collection of elements. These could be numbers

\[\mathcal{A} = \{23, 5.3, 1000, 4\} \]

But they need not be quantitative at all,

\[\mathcal{A} = \{\text{Democrat, Republican, Independent}\} \]

And we will for now leave them as mathematical objects

\[\mathcal{A} = \{a_1, a_2, a_3\} \]

\(a_1\) is an element of \(\mathcal{A}\), which we write \(a_1 \in \mathcal{A}\)

A set may also be empty, e.g., \(\mathcal{B} = \emptyset = \{\}\\)
We define 3 basic set operators:

subset \subset union \cup intersection \cap
Lightning course in basic probability: Sets

We define 3 basic set operators:

subset \subset union \cup intersection \cap

(Remember Venn Diagrams?)
Lightning course in basic probability: Sets

We define 3 basic set operators:

subset \subset union \cup intersection \cap

(Remember Venn Diagrams?)

An important definition:

If $A \cap C = \emptyset$, then A and C are disjoint.
Lightning course in basic probability: Probability

Sets will help us define probability

Suppose we toss a coin twice and record the results.
Sets will help us define probability

Suppose we toss a coin twice and record the results.

The universe of possible results is the sample space. It is a set of sets:

$$
\Omega = \{\{H, H\}, \{H, T\}, \{T, H\}, \{T, T\}\}
$$

Each subset of \(\Omega\) is an event.
Sets will help us define probability

Suppose we toss a coin twice and record the results.

The universe of possible results is the sample space. It is a set of sets:

\[\Omega = \{\{H, H\}, \{H, T\}, \{T, H\}, \{T, T\}\} \]

Each subset of \(\Omega \) is an event.

A probability function is defined over all the events in \(\Omega \) such that
Sets will help us define probability.

Suppose we toss a coin twice and record the results.

The universe of possible results is the *sample space*. It is a set of sets:

\[\Omega = \{\{H, H\}, \{H, T\}, \{T, H\}, \{T, T\}\} \]

Each subset of \(\Omega\) is an *event*.

A probability function is defined over all the events in \(\Omega\) such that

- \(\Pr(A) \geq 0 \quad \forall A\)
Lightning course in basic probability: Probability

Sets will help us define probability

Suppose we toss a coin twice and record the results.

The universe of possible results is the sample space. It is a set of sets:

\[\Omega = \{\{H, H\}, \{H, T\}, \{T, H\}, \{T, T\}\} \]

Each subset of \(\Omega \) is an event.

A probability function is defined over all the events in \(\Omega \) such that

- \(\Pr(A) \geq 0 \quad \forall A \)

- \(\Pr(\Omega) = 1 \)
Sets will help us define probability

Suppose we toss a coin twice and record the results.

The universe of possible results is the sample space. It is a set of sets:

$$\Omega = \{\{H, H\}, \{H, T\}, \{T, H\}, \{T, T\}\}$$

Each subset of Ω is an event.

A probability function is defined over all the events in Ω such that

- $\Pr(A) \geq 0 \ \forall A$
- $\Pr(\Omega) = 1$
- $A \cap B = \emptyset \iff \Pr(\bigcup(A, B)) = \Pr(A) + \Pr(B)$
Lightning course in basic probability: Probability

We’ll use these terms a lot:

Pr of a single event \(\Pr(A) \)
marginal probability
Lightning course in basic probability: Probability

We’ll use these terms a lot:

Pr of a single event: \(\Pr(A) \) — marginal probability

Pr of several events: \(\Pr(A \cap B) = \Pr(AB) \) — joint probability
Lightning course in basic probability: Probability

We’ll use these terms a lot:

- Pr of a single event \(\Pr(A) \) marginal probability
- Pr of several events \(\Pr(A \cap B) = \Pr(AB) \) joint probability
- Pr of an event given another event \(\Pr(A|B) \) conditional probability

These concepts are linked by a simple identity:

\[
\text{conditional probability} = \frac{\text{joint probability}}{\text{marginal probability}}
\]
Lightning course in basic probability: Probability

We’ll use these terms a lot:

- Pr of a single event: \(\Pr(A) \) — marginal probability
- Pr of several events: \(\Pr(A \cap B) = \Pr(AB) \) — joint probability
- Pr of an event given another event: \(\Pr(A|B) \) — conditional probability

These concepts are linked by a simple identity:

\[
\text{conditional probability} = \frac{\text{joint probability}}{\text{marginal probability}}
\]

\[
\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}
\]
An example. Suppose $\Pr(B) = 0.5$, $\Pr(A \cap B) = 0.4$.

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$
An example. Suppose $\Pr(B) = 0.5$, $\Pr(A \cap B) = 0.4$.

$$
\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}
= \frac{0.4}{0.5} = 0.8
$$
An example. Suppose $\Pr(B) = 0.5$, $\Pr(A \cap B) = 0.4$.

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$

$$= \frac{0.4}{0.5} = 0.8$$

If this doesn’t seem intuitive, verify with a Venn diagram.
An example. Suppose \(\Pr(B) = 0.5 \), \(\Pr(A \cap B) = 0.4 \).

\[
\Pr(A \mid B) = \frac{\Pr(A \cap B)}{\Pr(B)}
\]

\[
= \frac{0.4}{0.5} = 0.8
\]

If this doesn’t seem intuitive, verify with a Venn diagram.
An example. Suppose $\Pr(B) = 0.5$, $\Pr(A \cap B) = 0.4$.

$$
\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}
$$

$$
= \frac{0.4}{0.5} = 0.8
$$

If this doesn’t seem intuitive, verify with a Venn diagram.

We know event B will happen so the set of possible outcomes is limited to those in B’s circle.
Lightning course in basic probability: Probability

An example. Suppose $\Pr(B) = 0.5$, $\Pr(A \cap B) = 0.4$.

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$

$$= \frac{0.4}{0.5} = 0.8$$

If this doesn’t seem intuitive, verify with a Venn diagram.

If B definitely occurs, what fraction of the time does A also occur?

The ratio of the intersection of A and B to the circle B.
An example. Suppose $\Pr(B) = 0.5$, $\Pr(A \cap B) = 0.4$.

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)} = \frac{0.4}{0.5} = 0.8$$

Note that we can re-arrange to find other useful identities:
An example. Suppose \(\Pr(B) = 0.5 \), \(\Pr(A \cap B) = 0.4 \).

\[
\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}
\]

\[
= \frac{0.4}{0.5} = 0.8
\]

Note that we can re-arrange to find other useful identities:

\[
\Pr(A \cap B) = \Pr(A|B) \Pr(B)
\]
An example. Suppose $\Pr(B) = 0.5$, $\Pr(A \cap B) = 0.4$.

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$

$$= \frac{0.4}{0.5} = 0.8$$

Note that we can re-arrange to find other useful identities:

$$\Pr(A \cap B) = \Pr(A|B) \Pr(B)$$

$$\Pr(B) = \frac{\Pr(A \cap B)}{\Pr(A|B)}$$
More rules and definitions:

We assumed that if A and B are disjoint, then $\Pr(A \cup B) = \Pr(A) + \Pr(B)$.
More rules and definitions:

We assumed that if A and B are disjoint, then $\Pr(A \cup B) = \Pr(A) + \Pr(B)$.

The following holds regardless of whether A and B are disjoint:

$$ \Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B) $$
Lightning course in basic probability: Probability

More rules and definitions:

We assumed that if A and B are disjoint, then $\Pr(A \cup B) = \Pr(A) + \Pr(B)$.

The following holds regardless of whether A and B are disjoint:

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$$

Again, we verify with a Venn diagram

The probability that A or C occurs is just the sum of their marginal probabilities because they are disjoint.
Lightning course in basic probability: Probability

More rules and definitions:

We assumed that if A and B are disjoint, then $\Pr(A \cup B) = \Pr(A) + \Pr(B)$.

The following holds regardless of whether A and B are disjoint:

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$$

Again, we verify with a Venn diagram

If we try the same trick to find the probability of A or B, we’ll double count their intersection.
More rules and definitions:

We assumed that if A and B are disjoint, then $\Pr(A \cup B) = \Pr(A) + \Pr(B)$.

The following holds regardless of whether A and B are disjoint:

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$$

Again, we verify with a Venn diagram

In general, to find the probability of A or B we should add their marginal probabilities and subtract their intersection.
More rules and definitions:

We assumed that if A and B are disjoint, then $\Pr(A \cup B) = \Pr(A) + \Pr(B)$.

The following holds regardless of whether A and B are disjoint:

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$$

Finally, define \textit{independence} as holding if $\Pr(A \cap B) = \Pr(A)\Pr(B)$
Lightning course in basic probability: Probability

More rules and definitions:

We assumed that if A and B are disjoint, then $\Pr(A \cup B) = \Pr(A) + \Pr(B)$.

The following holds regardless of whether A and B are disjoint:

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$$

Finally, define independence as holding if $\Pr(A \cap B) = \Pr(A)\Pr(B)$

Note that when independence holds,

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$
More rules and definitions:

We assumed that if A and B are disjoint, then $\Pr(A \cup B) = \Pr(A) + \Pr(B)$.

The following holds regardless of whether A and B are disjoint:

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$$

Finally, define *independence* as holding if $\Pr(A \cap B) = \Pr(A) \Pr(B)$

Note that when independence holds,

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$

$$\Pr(A|B) = \frac{\Pr(A)\Pr(B)}{\Pr(B)}$$
Lightning course in basic probability: Probability

More rules and definitions:

We assumed that if \(A \) and \(B \) are disjoint, then \(\Pr(A \cup B) = \Pr(A) + \Pr(B) \).

The following holds regardless of whether \(A \) and \(B \) are disjoint:

\[
\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)
\]

Finally, define *independence* as holding if \(\Pr(A \cap B) = \Pr(A)\Pr(B) \)

Note that when independence holds,

\[
\begin{align*}
\Pr(A|B) & = \frac{\Pr(A \cap B)}{\Pr(B)} \\
\Pr(A|B) & = \frac{\Pr(A)\Pr(B)}{\Pr(B)} \\
\Pr(A|B) & = \Pr(A)
\end{align*}
\]
From probability to random variables

We could view social processes such as . . .

wars, education outcomes, policy choices, public opinion. . .

as sets of random events (ie, all possible outcomes) in a sample space
From probability to random variables

We could view social processes such as . . .

* wars, education outcomes, policy choices, public opinion . . .

as sets of random events (ie, all possible outcomes) in a sample space

The sample space will generally be HUGE
From probability to random variables

We could view social processes such as . . .

_ wars, education outcomes, policy choices, public opinion. . . _

as sets of random events (ie, all possible outcomes) in a sample space

The sample space will generally be HUGE

How can we reduce the space to something manageable?
From probability to random variables

We could view social processes such as...

wars, education outcomes, policy choices, public opinion...

as sets of random events (ie, all possible outcomes) in a sample space

The sample space will generally be HUGE

How can we reduce the space to something manageable?

→ map the space to one or more random variables.

Map:

Ω for coins → X = # of heads
From probability to random variables

We could view social processes such as . . .

* wars, education outcomes, policy choices, public opinion. . . *

as sets of random events (ie, all possible outcomes) in a sample space

The sample space will generally be HUGE

How can we reduce the space to something manageable?

→ map the space to one or more *random variables*.

Map:

\[\Omega \text{ for coins} \rightarrow X = \# \text{ of heads} \]
\[\Omega \text{ for military casualties} \rightarrow D = \# \text{ of deaths} \]
From probability to random variables

We could view social processes such as...

* wars, education outcomes, policy choices, public opinion... *

as sets of random events (ie, all possible outcomes) in a sample space.

The sample space will generally be HUGE.

How can we reduce the space to something manageable?

→ map the space to one or more *random variables*.

Map:

- Ω for coins $\rightarrow X = \# \text{ of heads}$
- Ω for military casualties $\rightarrow D = \# \text{ of deaths}$
- Ω for presidential popularity $\rightarrow S = \text{ support pres? yes or no}$
From probability to random variables

We could view social processes such as wars, education outcomes, policy choices, public opinion as sets of random events (ie, all possible outcomes) in a sample space.

The sample space will generally be HUGE.

How can we reduce the space to something manageable?

→ map the space to one or more random variables.

Map:

Ω for coins → $X = \# \text{ of heads}$
Ω for military casualties → $D = \# \text{ of deaths}$
Ω for presidential popularity → $S = \text{ support pres? yes or no}$
Ω for economic activity → $Y = $GDP

This mapping can produce discrete or continuous variables.
Two functions summarize the distribution of a random variable

pdf - probability density function, $f(x)$
cdf - cumulative density function, $F(x)$

For discrete distributions:

$$F(x) = \sum_{\forall z \leq x} f(z)$$
Two functions summarize the distribution of a random variable

pdf - probability density function, \(f(x) \)
cdf - cumulative density function, \(F(x) \)

For discrete distributions:

\[
F(x) = \sum_{\forall z \leq x} f(z)
\]
Two functions summarize the distribution of a random variable

pdf - probability density function, $f(x)$
cdf - cumulative density function, $F(x)$

For discrete distributions:

$$F(x) = \sum_{\forall z \leq x} f(z)$$
Two functions summarize the distribution of a random variable

pdf - probability density function, $f(x)$
cdf - cumulative density function, $F(x)$

For discrete distributions:
$$F(x) = \sum_{\forall z \leq x} f(z)$$
Two functions summarize the distribution of a random variable

pdf - probability density function, \(f(x) \)
cdf - cumulative density function, \(F(x) \)

For discrete distributions:
\[
F(x) = \sum_{\forall z \leq x} f(z)
\]
Two functions summarize the distribution of a random variable:

- **pdf** - probability density function, \(f(x) \)
- **cdf** - cumulative density function, \(F(x) \)

For discrete distributions:

\[
F(x) = \sum_{\forall z \leq x} f(z)
\]
Two functions summarize the distribution of a random variable:

- **pdf** - probability density function, \(f(x) \)
- **cdf** - cumulative density function, \(F(x) \)

For discrete distributions:

\[
F(x) = \sum_{\forall z \leq x} f(z)
\]
Two functions summarize the distribution of a random variable

\(\text{pdf} - \text{probability density function}, \ f(x) \quad \text{cdf} - \text{cumulative density function}, \ F(x) \)

For discrete distributions: \(F(x) = \sum_{\forall z \leq x} f(z) \)
Two functions summarize the distribution of a random variable

pdf - probability density function, \(f(x) \) cdf - cumulative density function, \(F(x) \)

For discrete distributions:

\[
F(x) = \sum_{\forall z \leq x} f(z)
\]
Two functions summarize the distribution of a random variable

df - probability density function, \(f(x) \)
cdf - cumulative density function, \(F(x) \)

For discrete distributions:

\[
F(x) = \sum_{\forall z \leq x} f(z)
\]
Two functions summarize the distribution of a random variable

pdf - probability density function, \(f(x) \) \hspace{1cm} cdf - cumulative density function, \(F(x) \)

For discrete distributions:

\[
F(x) = \sum_{\forall z \leq x} f(z)
\]
Two functions summarize the distribution of a random variable

pdf - probability density function, \(f(x) \)
cdf - cumulative density function, \(F(x) \)

For discrete distributions:

\[
F(x) = \sum_{\forall z \leq x} f(z)
\]
Two functions summarize the distribution of a random variable

pdf - probability density function, $f(x)$ cdf - cumulative density function, $F(x)$

For continuous distributions: \[F(x) = \int_{-\infty}^{x} f(z) \, dz \]
Two functions summarize the distribution of a random variable

pdf - probability density function, \(f(x) \)
cdf - cumulative density function, \(F(x) \)

For continuous distributions:

\[
F(x) = \int_{-\infty}^{x} f(z) \, dz
\]
Two functions summarize the distribution of a random variable

pdf - probability density function, \(f(x) \)

cdf - cumulative density function, \(F(x) \)

For continuous distributions: \(F(x) = \int_{-\infty}^{x} f(z) \, dz \)
Two functions summarize the distribution of a random variable

pdf - probability density function, \(f(x) \)
cdf - cumulative density function, \(F(x) \)

For continuous distributions:
\[
F(x) = \int_{-\infty}^{x} f(z) \, dz
\]
Two functions summarize the distribution of a random variable

pdf - probability density function, \(f(x) \) cdf - cumulative density function, \(F(x) \)

For continuous distributions:

\[
F(x) = \int_{-\infty}^{x} f(z) \, dz
\]
Two functions summarize the distribution of a random variable

pdf - probability density function, \(f(x) \)

cdf - cumulative density function, \(F(x) \)

For continuous distributions:

\[
F(x) = \int_{-\infty}^{x} f(z) \, dz
\]
Two functions summarize the distribution of a random variable

pdf - probability density function, $f(x)$
cdf - cumulative density function, $F(x)$

For continuous distributions:
$$F(x) = \int_{-\infty}^{x} f(z)\,dz$$
Example probability distributions

1000s of probability distributions are described in the statistical literature
Example probability distributions

1000s of probability distributions are described in the statistical literature

They are mathematical descriptions of RVs based on different assumptions
Example probability distributions

1000s of probability distributions are described in the statistical literature.

They are mathematical descriptions of RVs based on different assumptions.

Choose a probability distribution with assumptions that match the *substance* of the social process under study.
Example probability distributions

1000s of probability distributions are described in the statistical literature

They are mathematical descriptions of RVs based on different assumptions

Choose a probability distribution with assumptions that match the *substance* of the social process under study

Let’s look at a few distributions to see how this might work

Bear in mind the key distinction between continuous and discrete distributions

Let’s start with the simplest and most fundamental discrete distribution, the Bernoulli
The Bernoulli distribution

Consider a random variable x with 2 mutually exclusive & exhaustive outcomes
The Bernoulli distribution

Consider a random variable x with 2 mutually exclusive & exhaustive outcomes

Let there be one parameter, the probability of "success," labelled π
The Bernoulli distribution

Consider a random variable x with 2 mutually exclusive & exhaustive outcomes.

Let there be one parameter, the probability of “success,” labelled π.

Without loss of generality, let $x \in \{0, 1\}$ where $1 = \text{success}$.
The Bernoulli distribution

Consider a random variable x with 2 mutually exclusive & exhaustive outcomes

Let there be one parameter, the probability of “success,” labelled π

Without loss of generality, let $x \in \{0, 1\}$ where 1 = success

These assumptions create the Bernoulli distribution (pdf and cdf below):
The Bernoulli distribution

Consider a random variable x with 2 mutually exclusive & exhaustive outcomes

Let there be one parameter, the probability of "success," labelled π

Without loss of generality, let $x \in \{0, 1\}$ where $1 = \text{success}$

How do we capture the Bernoulli pdf as an equation?
The Bernoulli distribution

Consider a random variable x with 2 mutually exclusive & exhaustive outcomes

Let there be one parameter, the probability of “success,” labelled π

Without loss of generality, let $x \in \{0, 1\}$ where $1 = \text{success}$

How do we capture the Bernoulli pdf as an equation?

$$f_{\text{Bern}}(x | \pi) = \begin{cases} 1 - \pi & \text{if } x = 0 \\ \pi & \text{if } x = 1 \end{cases}$$
The Bernoulli distribution

Consider a random variable x with 2 mutually exclusive & exhaustive outcomes

Let there be one parameter, the probability of “success,” labelled π

Without loss of generality, let $x \in \{0, 1\}$ where 1 = success

How do we capture the Bernoulli pdf as an equation?

$$f_{\text{Bern}}(x|\pi) = \begin{cases}
1 - \pi & \text{if } x = 0 \\
\pi & \text{if } x = 1
\end{cases}$$

If we are clever, we can write it much more conveniently:

$$f_{\text{Bern}}(x|\pi) = \pi^x (1 - \pi)^{1-x}$$
The Bernoulli distribution

The first two “moments” of a distribution are the expected value and variance:

$$\mathbb{E}(x) = \sum_{\forall i} x_i f_{\text{Bern}}(x_i | \pi)$$
The Bernoulli distribution

The first two “moments” of a distribution are the expected value and variance:

\[
\mathbb{E}(x) = \sum_{\forall i} x_i f_{\text{Bern}}(x_i | \pi)
\]

\[
= 0 \times f_{\text{Bern}}(0 | \pi) + 1 \times f_{\text{Bern}}(1 | \pi)
\]
The Bernoulli distribution

The first two “moments” of a distribution are the expected value and variance:

\[
\mathbb{E}(x) = \sum_{\forall i} x_i f_{\text{Bern}}(x_i | \pi)
\]

\[
= 0 \times f_{\text{Bern}}(0 | \pi) + 1 \times f_{\text{Bern}}(1 | \pi)
\]

\[
= 0 + \pi = \pi
\]
The Bernoulli distribution

The first two “moments” of a distribution are the expected value and variance:

\[E(x) = \sum_{\forall i} x_i f_{\text{Bern}}(x_i | \pi) \]
\[= 0 \times f_{\text{Bern}}(0 | \pi) + 1 \times f_{\text{Bern}}(1 | \pi) \]
\[= 0 + \pi = \pi \]

\[\text{Var}(x) = E \left[(x - E(x))^2 \right] \]
The Bernoulli distribution

The first two “moments” of a distribution are the expected value and variance:

\[E(x) = \sum_{\forall i} x_i f_{\text{Bern}}(x_i | \pi) \]

\[= 0 \times f_{\text{Bern}}(0 | \pi) + 1 \times f_{\text{Bern}}(1 | \pi) \]

\[= 0 + \pi = \pi \]

\[\text{Var}(x) = E[(x - E(x))^2] \]

\[= E[(x - \pi)^2] \]
The Bernoulli distribution

The first two “moments” of a distribution are the expected value and variance:

\[
E(x) = \sum_{\forall i} x_i f_{\text{Bern}}(x_i | \pi) \\
= 0 \times f_{\text{Bern}}(0 | \pi) + 1 \times f_{\text{Bern}}(1 | \pi) \\
= 0 + \pi = \pi
\]

\[
\text{Var}(x) = E \left[(x - E(x))^2 \right] \\
= E \left[(x - \pi)^2 \right] \\
= \sum_{\forall i} (x_i - \pi)^2 f_{\text{Bern}}(x_i | \pi)
\]
The Bernoulli distribution

The first two “moments” of a distribution are the expected value and variance:

\[
\mathbb{E}(x) = \sum_{i} x_i f_{\text{Bern}}(x_i | \pi)
\]

\[
= \ 0 \times f_{\text{Bern}}(0|\pi) + 1 \times f_{\text{Bern}}(1|\pi)
\]

\[= \ 0 + \pi = \pi \]

\[
\text{Var}(x) = \mathbb{E} \left[(x - \mathbb{E}(x))^2 \right]
\]

\[= \mathbb{E} \left[(x - \pi)^2 \right] \]

\[= \sum_{i} (x_i - \pi)^2 f_{\text{Bern}}(x_i | \pi) \]

\[= (0 - \pi)^2 \times f_{\text{Bern}}(0|\pi) + (1 - \pi)^2 \times f_{\text{Bern}}(1|\pi) \]
The Bernoulli distribution

The first two “moments” of a distribution are the expected value and variance:

\[E(x) = \sum_{\forall i} x_i f_{\text{Bern}}(x_i | \pi) \]
\[= 0 \times f_{\text{Bern}}(0 | \pi) + 1 \times f_{\text{Bern}}(1 | \pi) \]
\[= 0 + \pi = \pi \]

\[\text{Var}(x) = \mathbb{E} \left[(x - \mathbb{E}(x))^2 \right] \]
\[= \mathbb{E} \left[(x - \pi)^2 \right] \]
\[= \sum_{\forall i} (x_i - \pi)^2 f_{\text{Bern}}(x_i | \pi) \]
\[= (0 - \pi)^2 \times f_{\text{Bern}}(0 | \pi) + (1 - \pi)^2 \times f_{\text{Bern}}(1 | \pi) \]
\[= \pi^2 (1 - \pi) + (1 - \pi)^2 \pi \]
The Bernoulli distribution

The first two “moments” of a distribution are the expected value and variance:

\[\mathbb{E}(x) = \sum_{\forall i} x_i f_{\text{Bern}}(x_i | \pi) \]
\[= 0 \times f_{\text{Bern}}(0 | \pi) + 1 \times f_{\text{Bern}}(1 | \pi) \]
\[= 0 + \pi = \pi \]

\[\text{Var}(x) = \mathbb{E}[(x - \mathbb{E}(x))^2] \]
\[= \mathbb{E}[(x - \pi)^2] \]
\[= \sum_{\forall i} (x_i - \pi)^2 f_{\text{Bern}}(x_i | \pi) \]
\[= (0 - \pi)^2 \times f_{\text{Bern}}(0 | \pi) + (1 - \pi)^2 \times f_{\text{Bern}}(1 | \pi) \]
\[= \pi^2(1 - \pi) + (1 - \pi)^2 \pi \]
\[= \pi(1 - \pi) \]
The binomial distribution

Suppose we observe several Bernoulli random variables and count the successes (we might imagine that the underlying 1s and 0s are lost)
The binomial distribution

Suppose we observe several Bernoulli random variables and count the successes (we might imagine that the underlying 1s and 0s are lost)

Examples:

- number of days in a month that a person was ill
- votes from a fixed population of voters (each Washington county’s total votes for Referendum 74)
The binomial distribution

Suppose we observe several Bernoulli random variables and count the successes (we might imagine that the underlying 1s and 0s are lost)

Examples:

• number of days in a month that a person was ill

• votes from a fixed population of voters
 (each Washington county’s total votes for Referendum 74)

Key assumption: each trial is iid Bernoulli

For the moment, take this to mean (1) that each trial has the same π of success and (2) that the outcome of different trials have no effect on each other’s π’s

(Later we will relax this)
The binomial distribution

Suppose we observe several Bernoulli random variables and count the successes (we might imagine that the underlying 1s and 0s are lost)

Examples:

- number of days in a month that a person was ill
- votes from a fixed population of voters
 (each Washington county’s total votes for Referendum 74)

Key assumption: each trial is iid Bernoulli

For the moment, take this to mean (1) that each trial has the same π of success and (2) that the outcome of different trials have no effect on each other’s π’s

(Later we will relax this)

How do we come up with a pdf for these assumptions?
Let’s model the sum of our unobserved trials as a new random variable, X_i,

$$X_i = \sum_{j=1}^{M} x_{ij}$$

where i’s are observations and j’s are iid Bernoulli trials \textit{within} an observation.
Let’s model the sum of our unobserved trials as a new random variable, X_i,

$$X_i = \sum_{j=1}^{M} x_{ij}$$

where i’s are observations and j’s are iid Bernoulli trials within an observation.

$$f_{\text{Bin}}(X_i|M, \pi) = \text{# of ways to get } X_i \times \text{Pr(getting } X_i)$$
Let’s model the sum of our unobserved trials as a new random variable, X_i,

$$X_i = \sum_{j=1}^{M} x_{ij}$$

where i’s are observations and j’s are iid Bernoulli trials within an observation

$$f_{\text{Bin}}(X_i|M, \pi) = \# \text{ of ways to get } X_i \times \Pr(\text{getting } X_i)$$

$$= \binom{M}{X_i} \times \prod_{j=1}^{M} f_{\text{Bern}}(x_{ij}|\pi)$$
Let’s model the sum of our unobserved trials as a new random variable, X_i, where i’s are observations and j’s are iid Bernoulli trials within an observation.

$$X_i = \sum_{j=1}^{M} x_{ij}$$

$$f_{\text{Bin}}(X_i|M, \pi) = \# \text{ of ways to get } X_i \times \Pr(\text{getting } X_i)$$

$$= \binom{M}{X_i} \times \prod_{j=1}^{M} f_{\text{Bern}}(x_{ij}|\pi)$$

$$= \binom{M}{X_i} \times \pi^{x_{i1}}(1 - \pi)^{1-x_{i1}} \times \pi^{x_{i2}}(1 - \pi)^{1-x_{i2}} \times \ldots$$

$$\times \pi^{x_{iM}}(1 - \pi)^{1-x_{iM}}$$
Let's model the sum of our unobserved trials as a new random variable, X_i,

$$X_i = \sum_{j=1}^{M} x_{ij}$$

where i's are observations and j's are iid Bernoulli trials \textit{within} an observation

$$f_{\text{Bin}}(X_i|M, \pi) = \text{# of ways to get } X_i \times \Pr(\text{getting } X_i)$$

$$= \binom{M}{X_i} \times \prod_{j=1}^{M} f_{\text{Bern}}(x_{ij}|\pi)$$

$$= \binom{M}{X_i} \times \pi^{x_{i1}} (1 - \pi)^{1-x_{i1}} \times \pi^{x_{i2}} (1 - \pi)^{1-x_{i2}} \times \cdots$$

$$\times \pi^{x_{iM}} (1 - \pi)^{1-x_{iM}}$$

$$= \binom{M}{X_i} \times \pi^{x_{i1}} \times \pi^{x_{i2}} \times \cdots \times \pi^{x_{iM}} \times (1 - \pi)^{1-x_{i1}}$$

$$\times (1 - \pi)^{1-x_{i2}} \times \cdots \times (1 - \pi)^{1-x_{iM}}$$
Let’s model the sum of our unobserved trials as a new random variable, X_i,

$$X_i = \sum_{j=1}^{M} x_{ij}$$

where i’s are observations and j’s are iid Bernoulli trials within an observation.

$$f_{\text{Bin}}(X_i|M, \pi) = \text{# of ways to get } X_i \times \Pr(\text{getting } X_i)$$

$$= \binom{M}{X_i} \times \prod_{j=1}^{M} f_{\text{Bern}}(x_{ij}|\pi)$$

$$= \binom{M}{X_i} \times \pi^{x_{i1}} (1 - \pi)^{1-x_{i1}} \times \pi^{x_{i2}} (1 - \pi)^{1-x_{i2}} \times \cdots$$

$$\times \pi^{x_{iM}} (1 - \pi)^{1-x_{iM}}$$

$$= \binom{M}{X_i} \times \pi^{x_{i1}} \times \pi^{x_{i2}} \times \cdots \times \pi^{x_{iM}} \times (1 - \pi)^{1-x_{i1}}$$

$$\times (1 - \pi)^{1-x_{i2}} \times \cdots \times (1 - \pi)^{1-x_{iM}}$$

$$= \binom{M}{X_i} \times \pi^{\sum_j x_{ij}} (1 - \pi)^{M-\sum_j x_{ij}}$$
Let’s model the sum of our unobserved trials as a new random variable, X_i,

$$X_i = \sum_{j=1}^{M} x_{ij}$$

where i’s are observations and j’s are iid Bernoulli trials within an observation

$$f_{\text{Bin}}(X_i|M, \pi) = \text{# of ways to get } X_i \times \Pr(\text{getting } X_i)$$

$$= \binom{M}{X_i} \times \prod_{j=1}^{M} f_{\text{Bern}}(x_{ij}|\pi)$$

$$= \binom{M}{X_i} \times \pi^{x_{i1}}(1-\pi)^{1-x_{i1}} \times \pi^{x_{i2}}(1-\pi)^{1-x_{i2}} \times \ldots$$

$$\times \pi^{x_{iM}}(1-\pi)^{1-x_{iM}}$$

$$= \binom{M}{X_i} \times \pi^{\sum_j x_{ij}} \times (1-\pi)^{M-\sum_j x_{ij}}$$

$$= \frac{M!}{X_i!(M-X_i)!} \pi^{X_i}(1-\pi)^{M-X_i}$$
The binomial distribution

\[f_{\text{Bin}}(X_i|M, \pi) = \frac{M!}{X_i!(M - X_i)!} \pi^{X_i} (1 - \pi)^{M - X_i} \]

Similarity to the Bernoulli evident, especially in the moments:
The binomial distribution

\[f_{\text{Bin}}(X_i \mid M, \pi) = \frac{M!}{X_i!(M - X_i)!} \pi^{X_i} (1 - \pi)^{M - X_i} \]

Similarity to the Bernoulli evident, especially in the moments:

\[\mathbb{E}(X) = M \pi \]
The binomial distribution

\[f_{\text{Bin}}(X_i|M, \pi) = \frac{M!}{X_i!(M - X_i)!} \pi^{X_i} (1 - \pi)^{M - X_i} \]

Similarity to the Bernoulli evident, especially in the moments:

\[\mathbb{E}(X) = M\pi \quad \text{Var}(X) = M\pi(1 - \pi) \]

Indeed, the Bernoulli is a special case of the binomial where \(M = 1 \)
The binomial distribution

We’ve already seen the binomial, as our example discrete distribution

This binomial sums over 10 trials, with each trial having an 0.5 probability of success
The Poisson distribution

Suppose we count # of events occurring in a period of continuous time
The Poisson distribution

Suppose we count the number of events occurring in a period of continuous time. This gives us a single observation in the form of a count.
The Poisson distribution

Suppose we count \# of events occurring in a period of continuous time
This gives us a single observation in the form of a count
Then we repeat this for another (equal?) period, and so on
The Poisson distribution

Suppose we count # of events occurring in a period of continuous time
This gives us a single observation in the form of a count
Then we repeat this for another (equal?) period, and so on

To create a distribution for these data, make 3 assumptions:

1. Starting count is zero (trivial)
The Poisson distribution

Suppose we count # of events occurring in a period of continuous time
This gives us a single observation in the form of a count
Then we repeat this for another (equal?) period, and so on

To create a distribution for these data, make 3 assumptions:

1. Starting count is zero (trivial)

2. Only 1 event can occur at a time (almost trivial)
The Poisson distribution

Suppose we count # of events occurring in a period of continuous time
This gives us a single observation in the form of a count
Then we repeat this for another (equal?) period, and so on

To create a distribution for these data, make 3 *assumptions*:

1. Starting count is zero (trivial)

2. Only 1 event can occur at a time (almost trivial)

3. \(\Pr(\text{an event happens at time } t = T) \) is constant
 and independent of \(\Pr(\text{an event happens at time } t < T) \)
The Poisson distribution

Suppose we count # of events occurring in a period of continuous time
This gives us a single observation in the form of a count
Then we repeat this for another (equal?) period, and so on

To create a distribution for these data, make 3 *assumptions*:

1. Starting count is zero (trivial)
2. Only 1 event can occur at a time (almost trivial)
3. $Pr(\text{an event happens at time } t = T)$ is constant
 and independent of $Pr(\text{an event happens at time } t < T)$

Assumption 3 is *not trivial*

Sometimes assumption 3 is fulfilled exactly (e.g., cosmic radiation)
The Poisson distribution

Suppose we count the number of events occurring in a period of continuous time. This gives us a single observation in the form of a count. Then we repeat this for another (equal?) period, and so on.

To create a distribution for these data, make 3 *assumptions*:

1. Starting count is zero (trivial)
2. Only 1 event can occur at a time (almost trivial)
3. \(\Pr(\text{an event happens at time } t = T) \) is constant and independent of \(\Pr(\text{an event happens at time } t < T) \)

Assumption 3 is *not trivial*

Sometimes assumption 3 is fulfilled exactly (e.g., cosmic radiation)

But often it’s not even close to correct (e.g., phone calls per hour)
The Poisson distribution

Accepting these assumptions leads to the following distribution (we’ll derive later)

\[f_{\text{Pois}}(x|\lambda) = \frac{\exp(-\lambda)\lambda^x}{x!} \quad \forall x \in \{0, 1, \ldots\}, \quad 0 \text{ otherwise} \]
The Poisson distribution

Accepting these assumptions leads to the following distribution (we’ll derive later)

\[f_{\text{Pois}}(x | \lambda) = \frac{\exp(-\lambda) \lambda^x}{x!} \quad \forall x \in \{0, 1, \ldots\}, \quad 0 \text{ otherwise} \]

(Note: \(\exp(a) = e^a = 2.71828 \ldots \) and is known as the exponential function; \(e \) is Euler’s number, the only number such that \(\frac{de^x}{dx} = e^x \))

Interesting properties:

1. \(\mathbb{E}(x) = \text{var}(x) = \lambda \)
The Poisson distribution

Accepting these assumptions leads to the following distribution (we’ll derive later)

\[
f_{\text{Pois}}(x|\lambda) = \frac{e^{-\lambda} \lambda^x}{x!} \quad \forall x \in \{0, 1, \ldots\}, \quad 0 \text{ otherwise}
\]

(Note: \(e^a = e^{2.71828\ldots} \) and is known as the exponential function; \(e\) is Euler’s number, the only number such that \(de^x/dx = e^x\))

Interesting properties:

1. \(E(x) = \text{var}(x) = \lambda\)

2. If \(x_1, x_2, x_3, \ldots x_K\) are independent Poisson variables such that \(x_k \sim f_{\text{Pois}}(x_k|\lambda_k)\), then \(\sum_{k=1}^{K} x_k \sim f_{\text{Pois}}(\sum_{k=1}^{K} x_k|\sum_{k=1}^{K} \lambda_k)\)
The Poisson distribution

Accepting these assumptions leads to the following distribution (we’ll derive later)

\[
f_{\text{Pois}}(x|\lambda) = \frac{\exp(-\lambda)\lambda^x}{x!} \quad \forall x \in \{0, 1, \ldots\}, \quad 0 \text{ otherwise}
\]

(Note: \(\exp(a) = e^a = 2.71828\ldots\) and is known as the exponential function; \(e\) is Euler’s number, the only number such that \(de^x/dx = e^x\))

Interesting properties:

1. \(\mathbb{E}(x) = \text{var}(x) = \lambda\)

2. If \(x_1, x_2, x_3, \ldots x_K\) are independent Poisson variables such that \(x_k \sim f_{\text{Pois}}(x_k|\lambda_k)\), then \(\sum_{k=1}^K x_k \sim f_{\text{Pois}}(\sum_{k=1}^K x_k|\sum_{k=1}^K \lambda_k)\)

3. We can relax the “equal periods” assumption: just replace \(\lambda_i\) with \(t_i\lambda_i\), where \(i\) indexes observations and \(t\) measures their relative length
Examples of the Poisson distribution

\[
\lambda = 1 \\
E(x) = 1 \\
\text{var}(x) = 1
\]
Examples of the Poisson distribution

\[
\lambda = 1 \\
E(x) = 1 \\
\text{var}(x) = 1
\]
Examples of the Poisson distribution

λ = 1
E(x) = 1
var(x) = 1
Examples of the Poisson distribution

\[f(x) \text{ Poisson PDF} \]

\[F(x) \text{ Poisson CDF} \]

\[\lambda = 2 \]

\[E(x) = 2 \]

\[\text{var}(x) = 2 \]
Examples of the Poisson distribution

\[f(x) \text{ Poisson PDF} \]

\[F(x) \text{ Poisson CDF} \]

\[\lambda = 5 \]
\[E(x) = 5 \]
\[\text{var}(x) = 5 \]
Examples of the Poisson distribution

\[f(x) \text{ Poisson PDF} \]

\[F(x) \text{ Poisson CDF} \]

\[\lambda = 10 \]
\[E(x) = 10 \]
\[\text{var}(x) = 10 \]
The Uniform distribution

The Uniform distribution is the simplest continuous distribution

Assumes all members of a real interval \([a, b]\) are equally likely
The Uniform distribution

The Uniform distribution is the simplest continuous distribution

Assumes all members of a real interval $[a, b]$ are equally likely
The Uniform distribution

The Uniform distribution is the simplest continuous distribution

Assumes all members of a real interval \([a, b]\) are equally likely
The Uniform distribution

The Uniform distribution is the simplest continuous distribution

Assumes all members of a real interval \([a, b]\) are equally likely
The Uniform distribution

The Uniform distribution is the simplest continuous distribution that assumes all members of a real interval \([a, b]\) are equally likely.
The Uniform distribution

The Uniform distribution is the simplest continuous distribution

Assumes all members of a real interval \([a, b]\) are equally likely
The uniform distribution

Moments of the Uniform distribution

\[E(x) = \frac{1}{2}(a + b) \]
The uniform distribution

Moments of the Uniform distribution

\[E(x) = \frac{1}{2}(a + b) \]

\[\text{Var}(x) = \frac{1}{12}(b - a)^2 \]
The uniform distribution

Moments of the Uniform distribution

\[\mathbb{E}(x) = \frac{1}{2}(a + b) \]

\[\text{Var}(x) = \frac{1}{12}(b - a)^2 \]

- Not useful as a model of data
The uniform distribution

Moments of the Uniform distribution

\[\mathbb{E}(x) = \frac{1}{2}(a + b) \]
\[\text{Var}(x) = \frac{1}{12}(b - a)^2 \]

- Not useful as a model of data
- Useful in computing to take random draws from other distributions (e.g., all others seen today)
The uniform distribution

Moments of the Uniform distribution

\[\mathbb{E}(x) = \frac{1}{2}(a + b) \]

\[\text{Var}(x) = \frac{1}{12}(b - a)^2 \]

- Not useful as a model of data
- Useful in computing to take random draws from other distributions (e.g., all others seen today)
- Often used in Bayesian statistics as a “prior” distribution
The uniform distribution

Moments of the Uniform distribution

\[E(x) = \frac{1}{2}(a + b) \]

\[\text{Var}(x) = \frac{1}{12}(b - a)^2 \]

- Not useful as a model of data
- Useful in computing to take random draws from other distributions (e.g., all others seen today)
- Often used in Bayesian statistics as a “prior” distribution
- Hidden assumption (scale): Uniform is not scale invariant
The uniform distribution

Moments of the Uniform distribution

\[\mathbb{E}(x) = \frac{1}{2} (a + b) \]

\[\text{Var}(x) = \frac{1}{12} (b - a)^2 \]

- Not useful as a model of data
- Useful in computing to take random draws from other distributions (e.g., all others seen today)
- Often used in Bayesian statistics as a “prior” distribution
- Hidden assumption (scale): Uniform is not scale invariant
- Why? Because the choice of \(a, b \) is arbitrary and important
The Normal (or Gaussian) distribution

The Central Limit Theorem holds that the sum of a “large” \(N \to \infty \) number of independently distributed random variables is distributed as

\[
f_N(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right]
\]
The Normal (or Gaussian) distribution

The Central Limit Theorem holds that the sum of a “large” \((N \to \infty)\) number of independently distributed random variables is distributed as

\[
f_N(x|\mu, \sigma^2) = (2\pi\sigma^2)^{-1/2} \exp\left[\frac{-(x - \mu)^2}{2\sigma^2}\right]
\]

The Normal distribution is continuous and symmetric, with positive probability everywhere from \(-\infty\) to \(\infty\)
The Normal (or Gaussian) distribution

The Central Limit Theorem holds that the sum of a “large” \((N \to \infty)\) number of independently distributed random variables is distributed as

\[
f_N(x|\mu, \sigma^2) = (2\pi\sigma^2)^{-1/2} \exp\left[-\frac{(x - \mu)^2}{2\sigma^2}\right]
\]

The Normal distribution is continuous and symmetric, with positive probability everywhere from \(-\infty\) to \(\infty\).

Many analysts implicitly or explicitly appeal to the central limit theorem to justify assuming their data is Normally distributed.
The Normal (or Gaussian) distribution

The Central Limit Theorem holds that the sum of a “large” \((N \to \infty)\) number of independently distributed random variables is distributed as

\[
 f_N(x|\mu, \sigma^2) = (2\pi\sigma^2)^{-1/2} \exp \left[-\frac{(x - \mu)^2}{2\sigma^2} \right]
\]

The Normal distribution is continuous and symmetric, with positive probability everywhere from \(-\infty\) to \(\infty\)

Many analysts implicitly or explicitly appeal to the central limit theorem to justify assuming their data is Normally distributed

Moments: \(\mathbb{E}(x) = \mu\) \quad \text{Var}(x) = \sigma^2\)
The Normal (or Gaussian) distribution

The Central Limit Theorem holds that the sum of a “large” \((N \to \infty)\) number of independently distributed random variables is distributed as

\[
 f_N(x|\mu, \sigma^2) = (2\pi\sigma^2)^{-1/2} \exp \left[-\frac{(x - \mu)^2}{2\sigma^2} \right]
\]

The Normal distribution is continuous and symmetric, with positive probability everywhere from \(-\infty\) to \(\infty\)

Many analysts implicitly or explicitly appeal to the central limit theorem to justify assuming their data is Normally distributed

Moments: \(\mathbb{E}(x) = \mu\) \(\text{Var}(x) = \sigma^2\)

The cdf of the Normal has no closed form representation (hard integral):

\[
 F_N = \int f_N = \Phi(x|\mu, \sigma^2)
\]

When we need the cdf, we will rely on numerical approximations (quadrature)
The Normal (Gaussian) distribution

We've already seen the Normal, as our example of a continuous distribution.

This special case is known as the *Standard Normal distribution*.

The Standard Normal has mean 0 and variance 1.
The Normal (Gaussian) distribution

We've already seen the Normal, as our example of a continuous distribution.

Changing the mean shifts curve's location, but preserves its shape.

This Normal has mean 1 and variance 1.
The Normal (Gaussian) distribution

We've already seen the Normal, as our example of a continuous distribution.

Changing the mean shifts curve’s location, but preserves its shape.

This Normal has mean -1 and variance 1.
The Normal (Gaussian) distribution

We've already seen the Normal, as our example of a continuous distribution.

Changing the variance shifts curve’s shape, but preserves its location.

This Normal has mean 1 and variance 2.
The Normal (Gaussian) distribution

We've already seen the Normal, as our example of a continuous distribution.
Changing the variance shifts curve's shape, but preserves its location.
This Normal has mean 1 and variance 0.2.
Why R?

Real question: Why programming?

Non-programmers are stuck with package defaults

For your substantive problem, these default settings may be

- inappropriate (not quite the right model, but “close”)
- unintelligible (reams of non-linear coefficients and stars)

Programming allows you to match the methods to the data & question

Get better, more easily explained results.
Why R?

Many side benefits:

1. Never forget what you did: The code can be re-run.
2. Repeating an analysis n times? Write a loop!
3. Programming makes data processing/reshaping easy.
4. Programming makes replication easy.
Why R?

R is

- free
- open source
- growing fast
- widely used
- the future for most fields

But once you learn one language, the others are much easier
Introduction to R

R is a calculator that can store lots of information in memory.

R stores information as "objects"

```r
> x <- 2
> print(x)
[1] 2

> y <- "hello"
> print(y)
[1] "hello"

> z <- c(15, -3, 8.2)
> print(z)
[1] 15.0 -3.0 8.2
```
> w <- c("gdp", "pop", "income")
> print(w)
[1] "gdp" "pop" "income"
>
Note the assignment operator, <-, not =

An object in memory can be called to make new objects

> a <- x^2
> print(x)
[1] 2
> print(a)
[1] 4

> b <- z + 10
> print(z)
[1] 15.0 -3.0 8.2
> print(b)
[1] 25.0 7.0 18.2
Introduction to R

```r
> c <- c(w, y)
> print(w)
[1] "gdp"  "pop"  "income"
> print(y)
[1] "hello"
> print(c)
[1] "gdp"  "pop"  "income"  "hello"
```

Commands (or “functions”) in R are always written `command()`

The usual way to use a command is:

```
output <- command(input)
```

We've already seen that `c()` pastes together variables.

A simple example:

```r
> z <- c(15, -3, 8.2)
> mz <- mean(z)
> print(mz)
[1] 6.733333
```
Introduction to R

Some commands have multiple inputs. Separate them by commas:

```
plot(var1,var2) plots var1 against var2
```

Some commands have optional inputs. If omitted, they have default values.

```
plot(var1) plots var1 against the sequence \{1,2,3,...\}
```

Inputs can be identified by their position or by name.

```
plot(x=var1,y=var2) plots var2 against var1
```
Entering code

You can enter code by typing at the prompt, by cutting or pasting, or from a file.

If you haven’t closed the parenthesis, and hit enter, R lets you continue with this prompt +

You can copy and paste multiple commands at once.

You can run a text file containing a program using `source()`, with the name of the file as input (ie, in """).

I prefer the `source()` approach. Leads to good habits of retaining code.
Data types

R has three important data types to learn now

Numeric y <- 4.3
Character y <- "hello"
Logical y <- TRUE

We can always check a variable’s type, and sometimes change it:

```r
population <- c("1276", "562", "8903")
print(population)
is.numeric(population)
is.character(population)
```

Oops! The data have been read in as characters, or “strings”. R does not know they are numbers.

```r
population <- as.numeric(population)
```
Some special values

Missing data NA
A “blank” NULL
Infinity Inf
Not a number NaN
Data structures

All R objects have a data type *and* a data structure

Data structures can contain numeric, character, or logical entries

Important structures:

- Vector
- Matrix
- Dataframe
- List (to be covered later)
Vectors in R

Vector is R are simply 1-dimensional lists of numbers or strings.

Let’s make a vector of random numbers:

```r
x <- rnorm(1000)
```

x contains 1000 random normal variates drawn from a Normal distribution with mean 0 and standard deviation 1.

What if we wanted the mean of this vector?

```r
mean(x)
```

What if we wanted the standard deviation?

```r
sd(x)
```
Vectors in R

What if we wanted just the first element?

\[x[1] \]

or the 10th through 20th elements?

\[x[10:20] \]

what if we wanted the 10th percentile?

\[\text{sort}(x)[100] \]

Indexing a vector can be very powerful. Can apply to any vector object.

What if we want a histogram?

\[\text{hist}(x) \]
Vectors in R

Useful commands for vectors:

- `seq(from, to, by)`: generates a sequence
- `rep(x, times)`: repeats x
- `sort()`: sorts a vector from least to greatest
- `rev()`: reverses the order of a vector
- `rev(sort())`: sorts a vector from greatest to least
Matrices in R

Vector are the standard way to store and manipulate variables in R

But usually our datasets have several variables measured on the same observations

Several variables collected together form a matrix with one row for each observation and one column for each variable
Matrices in R

Many ways to make a matrix in R

\[a \leftarrow \text{matrix(data=NA, nrow, ncol, byrow=FALSE)} \]

This makes a matrix of \(nrow \times ncol \), and fills it with missing values.

To fill it with data, substitute a vector of data for NA in the command. It will fill up the matrix column by column.

We could also paste together vectors, binding them by column or by row:

\[b \leftarrow \text{cbind(var1, var2, var3)} \]
\[c \leftarrow \text{rbind(obs1, obs2)} \]
Matrices in R

Optionally, R can remember names of the rows and columns of a matrix

To assign names, use the commands:

```r
colnames(a) <- c("Var1", "Var2")
rownames(a) <- c("Case1", "Case2")
```

Substituting the actual names of your variables and observations (and making sure there is one name for each variable & observation)
Matrices in R

Matrices are indexed by row and column.

We can subset matrices into vectors or smaller matrices

\[a[1,1] \] Gets the first element of a
\[a[1:10,1] \] Gets the first ten rows of the first column
\[a[,5] \] Gets every row of the fifth column
\[a[4:6,] \] Gets every column of the 4th through 6th rows

To make a vector into a matrix, use \text{as.matrix()}\)

R defaults to treating one-dimensional arrays as vectors, not matrices

Useful matrix commands:

\text{nrow()} Gets the number of rows of the matrix
\text{ncol()} Gets the number of columns
\text{t()} Transposes the matrix

Much more on matrices next week.
Dataframes in R

Dataframes are a special kind of matrix used to store datasets.

To turn a matrix into a dataframe (note the extra .):

```r
a <- as.data.frame(a)
```

Dataframes always have columns names, and these are set or retrieved using the `names()` command:

```r
names(a) <- c("Var1","Var2")
```

You can access a variable from a dataframe directly using $:

```r
a$Var1
```

Dataframes can also be “attached”, which makes each column into a vector with the appropriate name:

```r
attach(a)
```
There are many ways to load data to R.

I prefer using comma-separated variable files, which can be loaded with `read.csv()`

You can also check the `foreign` library for other data file types

Suppose you load a dataset using

```r
data <- read.csv("mydata.csv")
```

You can check out the names of the variables using `names(data)`

And access any variables, such as `gdp`, using `data$gdp`
Benefits and dangers of `attach()`

If your data have variable names, you can also “attach” the dataset like so:

```r
data <- read.csv("mydata.csv")
attach(data)
```

to access all the variables directly through newly created vectors.

Be careful! `attach()` is tricky.

1. If you attach a variable `data$x` in `data` and then modify `x`, the original `data$x` is unchanged.

2. If you have more than one dataset with the same variable names, `attach()` is a bad idea: only one dataset can be attached!

Sometimes `attach()` is handy, but be careful!
When loading a dataset, you can often tell R what symbol that file uses for missing data using the option `na.strings=`

So if your dataset codes missings as ., set `na.strings="."`

If your dataset codes missings as a blank, set `na.strings=""`

If your dataset codes missings in multiple ways, you could set, e.g., `na.strings=c(".","","NA")`
Many R commands will not work properly on vectors, matrices, or dataframes containing missing data (NAs)

To check if a variable contains missings, use `is.na(x)`

To create a new variable with missings listwise deleted, use `na.omit`

If we have a dataset `data` with NAs at `data[15,5]` and `data[17,3]`

```r
dataomitted <- na.omit(data)
```

will create a new dataset with the 15th and 17th rows left out

Be careful! If you have a variable with lots of NAs you are not using in your analysis, remove it from the dataset *before* using `na.omit()`
Mathematical Operations

R can do all the basic math you need

Binary operators:

+ - * / ^

Binary comparisons:

< <= > >= == !=

Logical operators (and, or, not, control-flow and, control-flow not; use parentheses!):

& | ! && ||

Math/stat fns:

log exp mean median min max sd var cov cor

Set functions (see help(sets)), Trigonometry (see help(Trig)),

R follows the usual order of operations; if it doubt, use parentheses
Example 1: US Economic growth

Let’s investigate an old question in political economy:

Are there partisan cycles, or tendencies, in economic performance?

Does one party tend to produce higher growth on average?

(Theory: Left cares more about growth vis-a-vis inflation than the Right

If there is partisan control of the economy, then Left should have higher growth ceteris paribus)

Data from the Penn World Tables (Annual growth rate of GDP in percent)

Two variables:

- grgdpc \(\text{The per capita GDP growth rate} \)
- party \(\text{The party of the president (Dem} = -1, \text{Rep} = 1) \)
Load data
data <- read.csv("gdp.csv", na.strings="")
attach(data)

Construct party specific variables
gdp.dem <- grgdpc[party==-1]
gdp.rep <- grgdpc[party==1]

Make the histogram
hist(grgdpc,
 breaks=seq(-5,8,1),
 main="Histogram of US GDP Growth, 1951--2000",
xlab="GDP Growth")
Histogram of US GDP Growth, 1951--2000
GDP Growth under Democratic Presidents

![GDP Growth under Democratic Presidents](image)

- GDP Growth
- Frequency
- Frequency axis ranges from 0 to 6
- GDP Growth axis ranges from -4 to 8

The graph shows the distribution of GDP growth under Democratic presidents.
Make a box plot

```r
boxplot(grgdpch~as.factor(party),
        boxwex=0.3,
        range=0.5,
        names=c("Democratic\n Presidents",
                "Republican\n Presidents"),
        ylab="GDP growth",
        main="Economic performance of partisan governments")
```

Note the unusual first input: this is an R formula

```r
y~x1+x2+x3
```

In this case, `grgdpch` is being “modelled” as a function of `party`

`boxplot()` needs `party` to be a “factor” or an explicitly categorical variable

Hence we pass `boxplot as.factor(party)`, which turns the numeric variable into a factor
Box plots: Annual US GDP growth, 1951–2000

Economic performance of partisan governments

Annual GDP growth (percent)
Box plots: Annual US GDP growth, 1951–2000

Economic performance of partisan governments

Annual GDP growth (percent)

Democratic President

- Mean: 3.1
- Median: 2.4
- 25th percentile: 2.1
- 75th percentile: 4.5
- Standard deviation: 1.7

Republican President

- Mean: 1.7
- Median: 2.4
- 25th percentile: -0.5
- 75th percentile: 3.2
- Standard deviation: 3.0
Box plots: Annual US GDP growth, 1951–2000

Economic performance of partisan governments

Annual GDP growth (percent)

Democratic President

Republican President

std dev 1.7

std dev 3.0

mean 3.1

mean 1.7

median 3.4

median 2.4

75th 4.5

75th 3.2

25th 2.1

25th --0.5

Reagan 1984

Reagan 1982

Carter 1980

JFK 1961
Box plots: Annual US GDP growth, 1951–2000

Economic performance of partisan governments

Annual GDP growth (percent)

Democratic President

Republican President

-4 -2 0 2 4 6

-4 -2 0 2 4 6

Reagan 1984

Reagan 1982

Carter 1980

JFK 1961
Help!

To get help on a known command \texttt{x}, type \texttt{help(x)} or \texttt{?x}

To search the help files using a keyword string \texttt{s}, type \texttt{help.search(s)}

Note that this implies to search on the word \texttt{regression}, you should type \texttt{help.search("regression")}

but to get help for the command \texttt{lm}, you should type \texttt{help(lm)}

Hard to use Google directly for R help ("r" is kind of a common letter)

Easiest way to get help from the web: \texttt{rseek.org}

\texttt{Rseek} tries to limit results to R topics (not wholly successful)
Installing R on a PC

- Go to the Comprehensive R Archive Network (CRAN) http://cran.r-project.org/
- Under the heading “Download and Install R”, click on “Download R for Windows”
- Click on “base”
- Download and run the R setup program. The name changes as R gets updated; the current version is “R-3.4.1-win.exe”
- Once you have R running on your computer, you can add new libraries from inside R by selecting “Install packages” from the Packages menu
Installing R on a Mac

- Go to the Comprehensive R Archive Network (CRAN) http://cran.r-project.org/

- Under the heading “Download and Install R”, click on “Download R for MacOS X”

- Download and run the R setup program. The name changes as R gets updated; the current version is “R-3.4.1.pkg”

- Once you have R running on your computer, you can add new libraries from inside R by selecting “Install packages” from the Packages menu
Editing scripts

Don’t use Microsoft Word to edit R code!

Word adds lots of “stuff” to text; R needs the script in a plain text file.

Some text editors:

- **Notepad**: Free, and comes with Windows (under Start → Programs → Accessories). Gets the job done; not powerful.

- **TextEdit**: Free, and comes with Mac OS X. Gets the job done; not powerful.

- **TINN-R**: Free and powerful. Windows only.
 http://www.sciviews.org/Tinn-R/

For Mac (easy installation): http://aquamacs.org/

For Windows (see the README): http://ftp.gnu.org/gnu/emacs/windows/
Editing data

R can load many other packages’ data files

See the foreign library for commands

For simplicity & universality, I prefer Comma-Separated Variable (CSV) files

Microsoft Excel can edit and export CSV files (under Save As)

R can read them using read.csv()

OpenOffice free alternative to Excel (for Windows and Unix): http://www.openoffice.org/

My detailed guide to installing social science software on the Mac: http://thewastebook.com/?post=social-science-computing-for-mac

Focus on steps 1.1 and 1.3 for now; come back later for Latex in step 1.2
Example 2: A simple linear regression

Let’s investigate a bivariate relationship

Cross-national data on fertility (children born per adult female) and the percentage of women practicing contraception.

Data are from 50 developing countries.

Example 2: A simple linear regression

```r
# Load data
data <- read.csv("robeymore.csv", na.strings="")
completedata <- na.omit(data)
attach(completedata)

# Transform variables
contraceptors <- contraceptors/100

# Run linear regression
res.lm <- lm(tfr~contraceptors)
print(summary(res.lm))

# Get predicted values
pred.lm <- predict(res.lm)
```
Example 2: A simple linear regression

Make a plot of the data
plot(x=contraceptors,
 y=tfr,
 ylab="Fertility Rate",
 xlab="% of women using contraception",
 main="Average fertility rates & contraception;
 50 developing countries",
 xaxp=c(0,1,5)
)

Add predicted values to the plot
points(x=contraceptors,y=pred.lm,pch=16,col="red")
Example 2: A simple linear regression

> summary(res.lm)

Call:
 lm(formula = tfr ~ contraceptors)

Residuals:
 Min 1Q Median 3Q Max
-1.54934 -0.30133 0.02540 0.39570 1.20214

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.8751 0.1569 43.83 <2e-16 ***
contraceptors -5.8416 0.3584 -16.30 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5745 on 48 degrees of freedom
Multiple R-Squared: 0.847, Adjusted R-squared: 0.8438
F-statistic: 265.7 on 1 and 48 DF, p-value: < 2.2e-16
Average fertility rates & contraception; 50 developing countries
Matrix Algebra in R

\texttt{det(a)} Computes the determinant of matrix a

\texttt{solve(a)} Computes the inverse of matrix a

\texttt{t(a)} Takes the transpose of a

\texttt{a \%*\% b} Matrix multiplication of a by b

\texttt{a * b} Element by element multiplication
An R list is a basket containing many other variables

> x <- list(a=1, b=c(2,15), giraffe="hello")

> x$a
[1] 1

> x$b
[1] 2 15

> x$b[2]
[1] 15

> x$giraffe
[1] "hello"

> x[3]
$giraffe
[1] "hello"

> x[["giraffe"]]
[1] "hello"
R lists

Things to remember about lists

- Lists can contain any number of variables of any type
- Lists can contain other lists
- Contents of a list can be accessed by name or by position
- Allow us to move lots of variables in and out of functions
- Functions often return lists (only way to have multiple outputs)
To run a regression
res <- lm(y~x1+x2+x3, # A model formula
data # A dataframe (optional)
)

To print a summary
summary(res)

To get the coefficients
res$coefficients

or
coef(res)

#To get residuals
res$residuals

#or
resid(res)
lm() basics

To get the variance-covariance matrix of the regressors
vcov(res)

To get the standard errors
sqrt(diag(vcov(res)))

To get the fitted values
predict(res)

To get expected values for a new observation or dataset
predict(res,
 newdata, # a dataframe with same x vars
 interval = "confidence", # alternative: "prediction"
 level = 0.95
)
A list object in R can be given a special “class” using the `class()` function. This is just a metatag telling other R functions that this list object conforms to a certain format.

So when we run a linear regression like this:

```r
res <- lm(y~x1+x2+x3, data)
```

The result `res` is a list object of class ‘‘lm’’

Other functions like `plot()` and `predict()` will react to `res` in a special way because of this class designation.

Specifically, they will run functions called `plot.lm()` and `predict.lm()`

Object-oriented programming: a function does different things depending on class of input object.
Example 3: Party systems & Redistribution
Example 3: Party systems & Redistribution

Cross sectional data on industrial democracies:

<table>
<thead>
<tr>
<th>variable</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>povertyReduction</td>
<td>Percent of citizens lifted out of poverty by taxes and transfers</td>
</tr>
<tr>
<td>effectiveParties</td>
<td>Effective number of parties</td>
</tr>
<tr>
<td>partySystem</td>
<td>Whether the party system is Majoritarian, Proportional, or Unanimity (Switzerland)</td>
</tr>
</tbody>
</table>

Source of data & plot: Torben Iversen and David Soskice, 2002, “Why do some democracies redistribute more than others?” Harvard University.

Considerations:

1. The marginal effect of each extra party is probably diminishing, so we want to log the effective number of parties

2. The party system variable needs to be “dummied out;” there are several ways to do this
Example 3: Party systems & Redistribution

Clear memory of all objects
rm(list=ls())

Load libraries
library(RColorBrewer) # For nice colors

Load data
file <- "iverRevised.csv"
iversen <- read.csv(file,header=TRUE)

Create dummy variables for each party system
iversen$majoritarian <- as.numeric(iversen$partySystem=="Majoritarian")
iversen$proportional <- as.numeric(iversen$partySystem=="Proportional")
iversen$unanimity <- as.numeric(iversen$partySystem=="Unanimity")

A bivariate model, using a formula to log transform a variable
model1 <- povertyReduction ~ log(effectiveParties)
lm.res1 <- lm(model1, data=iversen)
summary(lm.res1)
Example 3: Party systems & Redistribution

Call:
`lm(formula = model1, data = iversen)`

Residuals:

<table>
<thead>
<tr>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
</table>

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|---------------------|----------|------------|---------|----------|
| (Intercept) | 21.80 | 16.15 | 1.349 | 0.2021 |
| log(effectiveParties) | 24.17 | 12.75 | 1.896 | 0.0823 |

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 19.34 on 12 degrees of freedom
Multiple R-squared: 0.2305, Adjusted R-squared: 0.1664
F-statistic: 3.595 on 1 and 12 DF, p-value: 0.08229
Example 3: Party systems & Redistribution

A new model with multiple regressors
model2 <- povertyReduction ~ log(effectiveParties) + majoritarian
 + proportional
lm.res2 <- lm(model2, data=iversen)
summary(lm.res2)
Example 3: Party systems & Redistribution

Call:
```
lm(formula = model2, data = iversen)
```

Residuals:

```
            Min       1Q   Median       3Q      Max
-23.3843 -1.4903  0.6783  6.2687  13.9376
```

Coefficients:

```
              Estimate  Std. Error   t value Pr(>|t|)
(Intercept)  -31.290     26.550   -1.178  0.26588
log(effectiveParties)  26.694     14.151    1.886  0.08867 .
majoritarian      48.949     17.855    2.740  0.02082 *
proportional       58.166     13.520    4.302  0.00156 **
```

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.37 on 10 degrees of freedom
Multiple R-squared: 0.7378, Adjusted R-squared: 0.6592
F-statistic: 9.381 on 3 and 10 DF, p-value: 0.002964
Example 3: Party systems & Redistribution

A new model with multiple regressors and no constant
model3 <- povertyReduction ~ log(effectiveParties) + majoritarian
 + proportional + unanimity - 1
lm.res3 <- lm(model3, data=iversen)
summary(lm.res3)
Example 3: Party systems & Redistribution

Call:
\texttt{lm(formula = model3, data = iversen)}

Residuals:

\begin{tabular}{cccccc}
 Min & 1Q & Median & 3Q & Max \\
-23.3843 & -1.4903 & 0.6783 & 6.2687 & 13.9376 \\
\end{tabular}

Coefficients:

\begin{tabular}{lccccc}
 & Estimate & Std. Error & t value & Pr(>|t|) \\
\log(\text{effectiveParties}) & 26.69 & 14.15 & 1.886 & 0.0887 . \\
\text{majoritarian} & 17.66 & 12.69 & 1.392 & 0.1941 \\
\text{proportional} & 26.88 & 21.18 & 1.269 & 0.2331 \\
\text{unanimity} & -31.29 & 26.55 & -1.178 & 0.2659 \\
\end{tabular}

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.37 on 10 degrees of freedom
Multiple R-squared: 0.9636, Adjusted R-squared: 0.949
F-statistic: 66.13 on 4 and 10 DF, p-value: 3.731e-07
Example 3: Party systems & Redistribution

A new model with multiple regressors and an interaction
model4 <- povertyReduction ~ log(effectiveParties) + majoritarian
 + proportional + log(effectiveParties):majoritarian
lm.res4 <- lm(model4, data=iversen)
summary(lm.res4)
Example 3: Party systems & Redistribution

Call:
`lm(formula = model4, data = iversen)`

Residuals:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-22.2513</td>
<td>0.0668</td>
<td>2.8532</td>
<td>4.7318</td>
<td>12.9948</td>
</tr>
</tbody>
</table>

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------------|----------|------------|---------|----------|
| (Intercept) | -14.83 | 31.42 | -0.472 | 0.64813 |
| log(effectiveParties)| 16.78 | 17.39 | 0.965 | 0.35994 |
| majoritarian | 16.34 | 37.65 | 0.434 | 0.67445 |
| proportional | 56.18 | 13.70 | 4.102 | 0.00267 **|
| log(effectiveParties):majoritarian | 29.55 | 30.02 | 0.984 | 0.35065 |

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.39 on 9 degrees of freedom
Multiple R-squared: 0.7633, Adjusted R-squared: 0.6581
F-statistic: 7.256 on 4 and 9 DF, p-value: 0.006772
Example 3: Party systems & Redistribution

A more efficient way to specify an interaction
model5 <- povertyReduction ~ log(effectiveParties)*majoritarian + proportional
lm.res5 <- lm(model5, data=iversen)
summary(lm.res5)
Example 3: Party systems & Redistribution

Call:
lm(formula = model5, data = iversen)

Residuals:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-22.2513</td>
<td>0.0668</td>
<td>2.8532</td>
<td>4.7318</td>
<td>12.9948</td>
</tr>
</tbody>
</table>

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|---------------------------|----------|------------|---------|---------|
| (Intercept) | -14.83 | 31.42 | -0.472 | 0.64813 |
| log(effectiveParties) | 16.78 | 17.39 | 0.965 | 0.35994 |
| majoritarian | 16.34 | 37.65 | 0.434 | 0.67445 |
| proportional | 56.18 | 13.70 | 4.102 | 0.00267 **|
| log(effectiveParties):majoritarian | 29.55 | 30.02 | 0.984 | 0.35065 |

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.39 on 9 degrees of freedom
Multiple R-squared: 0.7633, Adjusted R-squared: 0.6581
F-statistic: 7.256 on 4 and 9 DF, p-value: 0.006772
Let’s turn to the code to see how we can make this plot using R base graphics.
R Graphics

R has several graphics systems.

The base system

The grid system

(grid is more powerful, but has a steeper learning curve. See Paul Murrel’s book on R Graphics for an introduction.)

Focus here on base
R Graphics: Devices

Everything you draw in R must be drawn on a canvas

Must create the canvas before you draw anything

Computer canvasses are *devices* you draw to

Devices save graphical input in different ways

Sometimes to the disk, sometimes to the screen

Most important distinction: raster vs. vector devices
Pointalism = raster graphics. Plot each pixel on an n by m grid.
Vector vs. raster

Pixel = Point = Raster

Good for pictures. Bad for drawings/graphics/cartoons.

(Puzzle: isn’t everything raster? In display, yes. Not in storage)

Advantages of vector:

- Easily manipulable/modifiable groupings of objects
- Easy to scale objects larger or smaller/ Arbitrary precision
- Much smaller file sizes
- Can always convert to raster (but not the other way round, at least not well)

Disadvantages:

- A photograph would be really hard to show (and huge file size)
- Not web accessible. Convert to PNG or PDF.
Some common graphics file formats

<table>
<thead>
<tr>
<th>Lossy</th>
<th>Lossless</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster .gif, .jpeg</td>
<td>.wmf, .png, .bmp</td>
</tr>
<tr>
<td>Vector –</td>
<td>.ps, .eps, .pdf, .ai, .wmf</td>
</tr>
</tbody>
</table>

Lossy means during file compression, some data is (intentionally) lost

Avoid lossy formats whenever possible
Some common graphics file formats

In R, have access to several formats:

- `win.metafile()` `wmf`, Windows media file
- `pdf()` `pdf`, Adobe portable data file
- `postscript()` `postscript file (printer language)
- `quartz()` opens a screen; Mac only
- `windows()` opens a screen; PC only
- `x11()` opens a screen; works on all machines

Latex, Mac or Unix users can’t use wmf

`windows(record=TRUE)` let’s you cycle thru old graphs with arrow keys
High-level graphics commands

In R, High level graphics commands:

- produce a standard graphic type
- fill in lots of details (axes, titles, annotation)
- have many configurable parameters
- have varied flexibility

You don’t need to use HLCs to make R graphics.

Could use primitive commands to do each task above

Using low levels commands gives more control but takes more time
Some major high-level graphics commands

<table>
<thead>
<tr>
<th>Graphic</th>
<th>Base command</th>
<th>Lattice command</th>
</tr>
</thead>
<tbody>
<tr>
<td>scatterplot</td>
<td><code>plot()</code></td>
<td><code>xyplot()</code></td>
</tr>
<tr>
<td>line plot</td>
<td><code>plot(..., type="l")</code></td>
<td><code>xyplot(..., type="l")</code></td>
</tr>
<tr>
<td>Bar chart</td>
<td><code>barplot()</code></td>
<td><code>barchart()</code></td>
</tr>
<tr>
<td>Histogram</td>
<td><code>hist()</code></td>
<td><code>histogram()</code></td>
</tr>
<tr>
<td>Smoothed histograms</td>
<td><code>plot() after density()</code></td>
<td><code>densityplot()</code></td>
</tr>
<tr>
<td>boxplot</td>
<td><code>boxplot()</code></td>
<td><code>bwplot()</code></td>
</tr>
<tr>
<td>Dot plot</td>
<td><code>dotchart()</code></td>
<td><code>dotplot()</code></td>
</tr>
<tr>
<td>Contour plots</td>
<td><code>contour()</code></td>
<td><code>contourplot()</code></td>
</tr>
<tr>
<td>image plot</td>
<td><code>image()</code></td>
<td><code>levelplot()</code></td>
</tr>
<tr>
<td>3D surface</td>
<td><code>persp()</code></td>
<td><code>wireframe()</code></td>
</tr>
<tr>
<td>3D scatter</td>
<td><code>scatterplot3d()</code>*</td>
<td><code>cloud()</code></td>
</tr>
<tr>
<td>conditional plots</td>
<td><code>coplot()</code></td>
<td><code>xyplot()</code></td>
</tr>
<tr>
<td>Scatterplot matrix</td>
<td></td>
<td><code>splom()</code></td>
</tr>
<tr>
<td>Parallel coordinates</td>
<td></td>
<td><code>parallel()</code></td>
</tr>
<tr>
<td>Star plot</td>
<td><code>stars()</code></td>
<td></td>
</tr>
<tr>
<td>Stem-and-leaf plots</td>
<td><code>stem()</code></td>
<td></td>
</tr>
<tr>
<td>ternary plot</td>
<td><code>ternaryplot()</code> in vcd</td>
<td></td>
</tr>
<tr>
<td>Fourfold plot</td>
<td><code>fourfoldplot()</code> in vcd</td>
<td></td>
</tr>
<tr>
<td>Mosaic plots</td>
<td><code>mosaicplot()</code> in vcd</td>
<td></td>
</tr>
</tbody>
</table>
Scatterplot: `plot()`

```r
x <- sort(rnorm(47))
plot(x, type = "p")
```
Line plot: `plot(..., type="l")`

```
x <- sort(rnorm(47))
plot(x, type = "l")
```
(Smoothed) Histograms: `densityplot()` & others
Dot plot: `dotplot()`

Barley Yield (bushels/acre)

- Waseca
- Crookston
- Morris
- University Farm
- Duluth
- Grand Rapids

Varieties:
- Svansota
- No. 462
- Manchuria
- No. 475
- Velvet
- Peatland
- Glabron
- No. 457
- Wisconsin No. 38
- Trebi
Contour plot: `contour()`

Maunga Whau Volcano
Maunga Whau Volcano
Image plot with contours: `contour(...)`, add=TRUE

Maunga Whau Volcano
3D surface: `persp()`
3D surface: wireframe()
Conditional plots: coplot()

Given: Illiteracy

Income

Life.Exp

Northeast
South
North Central
West

Given: state.region
3D scatter: `scatterplot3d()` in own library

`scatterplot3d`
Three Varieties of Iris

Scatterplot matrix: splom()
Ternary plot: `ternaryplot()` in vcd
Star plot: \texttt{stars()}

Motor Trend Cars: full stars()

Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabout Valiant

Duster 360 Merc 240D Merc 230 Merc 280 Merc 280C Merc 450SE

Merc 450SL Merc 450SLC Cadillac Fleetwood Lincoln Continental Chrysler Imperial Fiat 128

Honda Civic Toyota Corolla Toyota Corona Dodge Challenger AMC Javelin Camaro Z28

Pontiac Firebird Fiat X1−9 Porsche 914–2 Lotus Europa Ford Pantera L Ferrari Dino

Maserati Bora Volvo 142E
Stem-and-leaf plot

stem> stem(log10(islands))

The decimal point is at the |

1 | 1111112222233444
1 | 5555556666667899999
2 | 3344
2 | 59
3 |
3 | 5678
4 | 012
Basic customization

For any given high-level plotting command, there are many options listed in help.

```r
barplot(height, width = 1, space = NULL,
        names.arg = NULL, legend.text = NULL, beside = FALSE,
        horiz = FALSE, density = NULL, angle = 45,
        col = NULL, border = par("fg"),
        main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
        xlim = NULL, ylim = NULL, xpd = TRUE,
        axes = TRUE, axisnames = TRUE,
        cex.axis = par("cex.axis"), cex.names = par("cex.axis"),
        inside = TRUE, plot = TRUE, axis.lty = 0, offset = 0, ...)
```

Just the tip of the iceberg: notice the ...

This means you can pass other, unspecified commands through `barplot`
Basic customization

The most important (semi-) documented parameters to send through ... are settings to `par()`

Most base (traditional) graphics options are set through `par()`

`par()` has no effect on lattice or grid graphics

Consult `help(par)` for the full list of options

Some key examples, grouped functionally
par() settings

Customizing text size:

- `cex` Text size (a multiplier)
- `cex.axis` Text size of tick numbers
- `cex.lab` Text size of axes labels
- `cex.main` Text size of plot title
- `cex.sub` Text size of plot subtitle

Note the latter will multiply off the basic `cex`
More text specific formatting

- **font**: Font face (bold, italic)
- **font.axis**: etc

- **srt**: Rotation of text in plot (degrees)
- **las**: Rotation of text in margin (degrees)

Note the distinction between text in the plot and outside.

Text in the plot is plotted with `text()`

Text outside the plot is plotted with `mtext()`, which was designed to put on titles, etc.
par() settings

Formatting for most any object

bg background color
col Color of lines, symbols in plot
col.axis Color of tick numbers, etc

The above expect colors (see colors() for a list of names)
par() settings

Formatting for lines and symbols

- lty Line type (solid, dashed, etc)
- lwd Line width (default too large; try really small, e.g., 0)
- pch Data symbol type; see example(points)

You will very often need to set the above
More `par()` settings

Formatting for axes

- **lab**: Number of ticks
- **xaxp**: Number of ticks for xaxis
- **tck,tcl**: Length of ticks relative to plot/text
- **mgp**: Axis spacing: axis title, tick labels, axis line

These may seem trivial, but affect the aesthetics of the plot & effective use of space

R defaults to excessive mgp, which looks ugly & wastes space
More formatting for axes

The following commands are special: they are primitives in `par()` that can't be set inside the ... of high-level commands.

You must set them with `par()` first:

- `usr`: Ranges of axes, \((\text{xmin, xmax, ymin, ymax})\)
- `xlog`: Log scale for x axis?
- `ylog`: Log scale for y axis?

You can also make a logged axis by hand, as we will do now.
Scatterplot: Occupational Prestige & Income

Classic data from sociology. Three variables

- Prestige of occupations, as rated by surveys
- Income of occupations (averaged across males)
- Type of occupation (blue collar, white collar, professional)

Data is in R. Look for Duncan.
1950 US Occupations (Duncan, 1961)

- Professional
- White collar
- Blue collar

Prestige (% rated good or excellent by survey takers)

Income (% of males making > $3500 in $1950)
> lm.res <- lm(prestige~income+education)
> summary(lm.res)

Call:
 lm(formula = prestige ~ income + education)

Residuals:
 Min 1Q Median 3Q Max
-29.5380 -6.4174 0.6546 6.6051 34.6412

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.06466 4.27194 -1.420 0.163
income 0.59873 0.11967 5.003 1.05e-05 ***
education 0.54583 0.09825 5.555 1.73e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 13.37 on 42 degrees of freedom
Multiple R-Squared: 0.8282, Adjusted R-squared: 0.82
F-statistic: 101.2 on 2 and 42 DF, p-value: < 2.2e-16
To find the t-statistics & p-values, use the `summary()` command.

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|-------------|----------|------------|---------|---------|
| (Intercept) | -6.06466 | 4.27194 | -1.420 | 0.163 |
| income | 0.59873 | 0.11967 | 5.003 | 1.05e-05 *** |
| education | 0.54583 | 0.09825 | 5.555 | 1.73e-06 *** |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note $1.05e-05 = 0.0000105$

Or, you could calculate yourself:

```r
lm.out <- lm(prestige~income+education) # run linear regression
betas <- lm.out$coefficients # retrieve the of betas
vcmat <- vcov(lm.out) # retrieve the var-cov matrix
ses <- sqrt(diag(vcmat)) # calc a vector of ses
tstats <- betas/ses # calc vector of tstats
pvalues <- 2*(1-pt(tstats,42)) # calc p-values
```
Confidence intervals for regression coefficients

Standard errors, t-tests, and p-values take expertise to read.
They are also subject to misinterpretation.

(E.g., smaller p-values do not imply a bigger substantive effect)

CIs turn the standard errors into something everyone can easily understand.

To get the $100(1 - \alpha)\%$ confidence interval for $\hat{\beta}_1$,

$$\hat{\beta}_{1\text{lower}} = \hat{\beta}_1 - t_{\alpha/2, n-k-1} \hat{\sigma}_{\hat{\beta}_1}$$

$$\hat{\beta}_{1\text{upper}} = \hat{\beta}_1 + t_{\alpha/2, n-k-1} \hat{\sigma}_{\hat{\beta}_1}$$
Confidence intervals for regression coefficients

How to calculate CIs for coefficients in R

By hand:

\[
\text{lower.}95 \gets \text{betas} - \text{qt}(0.025,42) \times \text{ses}
\]
\[
\text{upper.}95 \gets \text{betas} + \text{qt}(0.025,42) \times \text{ses}
\]

Why are we using qt? Why 0.025?

The easy way:

library(stats)

confint(lm.out, level=0.95)

<table>
<thead>
<tr>
<th></th>
<th>2.5 %</th>
<th>97.5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-14.685792</td>
<td>2.5564634</td>
</tr>
<tr>
<td>education</td>
<td>0.3475521</td>
<td>0.7441158</td>
</tr>
<tr>
<td>income</td>
<td>0.3572343</td>
<td>0.8402313</td>
</tr>
</tbody>
</table>
Confidence intervals for regression coefficients

Using confidence intervals, we can improve the initial summary table:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td>0.60</td>
<td>[0.36, 0.84]</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>0.55</td>
<td>[0.38, 0.74]</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>-6.06</td>
<td>[-14.69, 2.46]</td>
<td></td>
</tr>
</tbody>
</table>

N	45
s.e.r.	13.4
R^2	0.83

(This is $\hat{\sigma}_\varepsilon$)

This line is optional.

Table 1: Determinants of occupational prestige. Entries are linear regression parameters and their 95 percent confidence intervals.

Think about everything you put in these tables:

- what readers need to see to fully understand your results
- what superfluous R output you can delete
- how to make the results clear for as large an audience as possible
Substantive & statistical significance

Don’t over interpret p-values

They only show statistical significance

Statistical and substantive significance can interact

A look at some hypothetical distributions of $\hat{\beta}_1$ helps frame the possibilities
Perils of stargazing

Statistically Significant? yes
Substantively Significant? no

Statistically Significant? yes
Substantively Significant? yes
These estimated β’s will both be starred in regression output.

Often, only the estimate to the right will be significant in a substantive sense.

The estimate on the left is a precise zero.
Perils of stargazing

Statistically Significant? yes yes, but imprecise yes, and precise
Substantively Significant? yes
These estimated β's will both be heavily starred in regression output.

They are both substantively significant as well, with identical point estimates.

But the orange curve is much more precisely estimated.

The blue estimate may be much smaller or larger. Best shown with a CI.
Perils of stargazing

How do you verify a null effect? Precise zeros

Sometimes, researchers mistake the precise zero for a positive effect.
Confidence interval for expected values

We can calculate the CIs around \hat{Y} as well.

For example, what is the 95% CI around $\hat{\text{Prestige}}$ in:

$$\text{Prestige}_c = \hat{\beta}_0 + \hat{\beta}_1 \text{Income}_c + \hat{\beta}_2 \text{Education}_c$$

The uncertainty in each estimate will “combine” to form the uncertainty in Prestige_c.

In this example,

$$\text{Prestige}_c = -6.1 \times 0.60 \times \text{Income}_c + 0.55 \times \text{Education}_c$$
Confidence interval for expected values

We can calculate the CIs around \hat{Y} as well.

For example, what is the 95% CI around $\hat{\text{Prestige}}_c$ in:

$$\hat{\text{Prestige}}_c = \hat{\beta}_0 + \hat{\beta}_1 \text{Income}_c + \hat{\beta}_2 \text{Education}_c$$

The uncertainty in each estimate will “combine” to form the uncertainty in $\hat{\text{Prestige}}_c$.

In this example,

$$\hat{\text{Prestige}}_c = -6.1 \times \text{Income}_c + 0.55 \times \text{Education}_c$$

\[[-14.7, 2.6] \ [0.36, 0.84] \ [0.35, 0.74]\]
Confidence interval for expected values

We can calculate the CIs around \hat{Y} as well.

For example, what is the 95% CI around $\hat{\text{Prestige}}_c$ in:

$$\hat{\text{Prestige}}_c = \hat{\beta}_0 + \hat{\beta}_1 \text{Income}_c + \hat{\beta}_2 \text{Education}_c$$

The uncertainty in each estimate will “combine” to form the uncertainty in $\hat{\text{Prestige}}_c$.

In this example,

$$\hat{\text{Prestige}}_c = [-14.7, 2.6] \quad [0.36, 0.84] \quad [0.35, 0.74]$$

$$47.7 = -6.1 \quad 0.60 \times 41.9 \quad + \quad 0.55 \times 52.6$$
Confidence interval for expected values

We can calculate the CIs around \hat{Y} as well.

For example, what is the 95% CI around $\hat{\text{Prestige}}_c$ in:

$$\hat{\text{Prestige}}_c = \hat{\beta}_0 + \hat{\beta}_1 \text{Income}_c + \hat{\beta}_2 \text{Education}_c$$

The uncertainty in each estimate will “combine” to form the uncertainty in $\hat{\text{Prestige}}_c$.

In this example,

$$\hat{\text{Prestige}}_c = -6.1 \times [0.36, 0.84] + 0.55 \times [0.35, 0.74]$$

$$\begin{align*}
\hat{\text{Prestige}}_c & = -6.1 \times [0.36, 0.84] + 0.55 \times [0.35, 0.74] \\
[47.7, 51.7] & = [-14.7, 2.6] \times [0.36, 0.84] + [0.35, 0.74]
\end{align*}$$

In words, when income and education are held at their means, we expect that prestige will equal 47.7 with a 95% CI of 43.7 to 51.7.
Confidence interval for expected values

How do we calculate confidence intervals around \hat{y} in R?

1. Estimate the model

2. Choose hypothetical values of the covariate at which you want to calculate \hat{y} and it's CI.

3. Use the `predict()` function to obtain the expected y and it's CI.

Some examples:

```r
# To get CIs around all the fitted values
res <- lm(y~x+z)
pred <- predict(res, interval="confidence", level=0.95)
yhat <- pred[,1]
yhat.lower <- pred[,2]
yhat.upper <- pred[,3]
```
Confidence interval for expected values

To get CIs for yhat given a set of hypothetical x & z values
res <- lm(y~x+z)
xhyp <- seq(min(x),max(x),0.01)
zhyp <- rep(mean(z),length(xhyp))
hypo <- data.frame(x=xhyp,z=zhyp)
pred <- predict(res,newdata=hypo,interval="confidence",level=0.95)
yhat <- pred[,1]
yhat.lower <- pred[,2]
yhat.upper <- pred[,3]

The code above is very useful for adding confidence intervals to a plot.

We can run through a sequence of possible x values, holding z constant, and predict y and it's confidence interval, then plot the confidence interval as an enveloppe around y

The just add the upper and lower bounds:

lines(x=xhyp,y=yhat.lower,lty="dashed")
lines(x=xhyp,y=yhat.upper,lty="dashed")
Confidence interval for expected values

![Graph showing the relationship between income and prestige with a confidence interval shaded area.](image-url)
Confidence interval for expected values

Interpretation:
All we can say with 95 percent confidence is that the line – the relation between prestige and income – lies in this envelope.

Very useful to show, especially if the relationship is curved in some way.

I prefer shaded regions to dotted lines. (lots of lines gets confusing)

You can make shaded regions using the `polygon()` command.

Just be sure to plot the polygon before you add any points or lines, so it shows up behind them.
Load the occupation data
library(car)
data(Duncan)
attach(Duncan)

Regress prestige on education & income
lm.out <- lm(prestige~education+income)

To get CIs for yhat given a set of hypothetical income & education
xhyp <- seq(min(income),max(income),1)
zhyp <- rep(mean(education),length(xhyp))
hypo <- data.frame(income=xhyp,education=zhyp)
pred <- predict(lm.out,
 newdata=hypo,
 interval="confidence",
 level=0.95)
yhat <- pred[,1]
yhat.lower <- pred[,2]
yhat.upper <- pred[,3]

pdf("yhatexample.pdf",horizontal=FALSE,width=5,height=4.5)
plot(y=prestige,x=income,type="n")

Make the x-coord of a confidence envelope polygon
xpoly <- c(xhyp,
 rev(xhyp),
 xhyp[1])

Make the y-coord of a confidence envelope polygon
ypoly <- c(yhat.lower,
 rev(yhat.upper),
 yhat.lower[1])

Choose the color of the polygon
col <- "gray"

Plot the polygon first, before the points & lines
polygon(x=xpoly,
 y=ypoly,
 col=col,
 border=FALSE)
Plot the fitted line
lines(x=xhyp, y=yhat)

dev.off()