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Outline

Now that we are comfortable with contingency tables, we want to model tabular data

• Consider interaction effects of rows and columns (non-independence)

• Compare the fit of various models

• Calculate expected cell counts and residuals

We’ll start today with I × J tables.

We’ll use this case to get a handle on notation and concepts

Next time: I × J ×K × . . . tables, which are potentially much more interesting



Notation for Log-linear models

Recall that under independence,

E(µij) = nπ̂i·π̂·j

Let’s take logs
ln E(µij) = lnn + ln π̂i· + ln π̂·j

Independence makes for an additive model of the logged expected count.

Now, let’s introduce new notation for the last equation

ln E(µij) = λ + λX
i + λY

j



Notation for Log-linear models

ln E(µij) = λ + λX
i + λY

j

Recall that the marginals of the contingency table summed to 1, by the basic rules of
probability.

This meant that a set of I row marginals only had k − 1 degrees of freedom

In the same way, the I λX
i ’s only have k − 1 degrees of freedom

To identify them, we impose the following constraints

I∑
i

λX
i = 0

J∑
j

λX
j = 0



Notation for Log-linear models

I∑
i

λX
i = 0

J∑
j

λX
j = 0

Note that this achieves identification in the same way dropping one of a set of
dummy regressors does.

Both techniques are equivalent to fixing one λX
i at some value:

I−1∑
i

λX
i + λX

I = 0

I−1∑
i

λX
i = −λX

I



Notation for Log-linear models

Let’s get an intuitive grasp of the log-linear specification of independence

ln E(µij) = λ + λX
i + λY

j

There are 1 + I + J parameters on the RHS, but implicitly two are fixed.

For any given cell, only three parameters matter.

1. The baseline count

2. The row probability

3. The column probability

We just add them up



Notation for Log-linear models

Independence is a boring model. What if the effect of X depends on the level of Y ?

Then the conditional probability of an event is no longer the product of the marginal
probabilities

We need an extra (set of) terms: interaction(s) between X and Y

ln E(µij) = λ + λX
i + λY

j + λXY
ij

We will talk much more about this specification next time, when we talk about 3+
dimensional tables

For a 2D table, interactions saturate the model. That is:

• They use up all the degrees of freedom (consider the 2× 2)
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Notation for Log-linear models

Independence is a boring model. What if the effect of X depends on the level of Y ?

Then the conditional probability of an event is no longer the product of the marginal
probabilities

We need an extra (set of) terms: interaction(s) between X and Y

ln E(µij) = λ + λX
i + λY

j + λXY
ij

We will talk much more about this specification next time, when we talk about 3+
dimensional tables

For a 2D table, interactions saturate the model. That is:

• They use up all the degrees of freedom (consider the 2× 2)

• They perfectly predict the counts (equivalent to a dummy for each cell)

• They perfectly fit the data (G2 = 0)



Notation for Log-linear models

One final model to consider. Suppose that events are equally likely to fall in any cell

E(µij) = nπ̂

Taking logs
ln E(µij) = lnn + ln π̂

We will rewrite this to hava a single parameter

ln E(µij) = λ

This is call the null model.

It is the least interesting possible specification, with the worst possible fit.

Note that all models of contingency tables have G2
saturated ≥ G2 ≥ G2

null



Notation for Log-linear models

Note that we have two uninteresting models (the null and independence)
and one infeasible model (saturation)

So for the I × J case, fits, parameters, and the like aren’t too interesting

They will be for I × J ×K . . . tables, where we can have interaction without
saturation

But for now, we’re mainly stuck with rejecting or accepting independence

Unless we get creative. . .



Estimating Log-linear models

Loglinear models are estimated just like other Poisson models.

The log of the likelihood is

lnL(β|Y,X) =
N∑

i=1

yiXiβ − exp(Xiβ)

which we maximize by numerical means. You could use you old optim() function.

If you want to analyze data in tabular form, try loglm in the MASS library of R



Interpreting Log-linear models

Poisson parameters represent factor changes in Y given level changes in X.

With LLM, the level change in X is always 1.

So at first blush, we might think that given X = i, Y increases by expλX
i ) times. . .

But that would be wrong.

When we turn “on” X = i, we turn off some other X =∼ i.

The constraints on λX
i and λZ

j make them hard to interpret directly.

FWIW, the difference λ1 − λ2 is the log of the odds of being in Row 1 versus Row 2

I recommend showing fitted values,
or first differences, or factor changes under particular counterfactuals



Fitting Log-linear models

Much of the effort in LLM seems to go into choosing the best model

Unlike most modeling exercises, it is possible to consider every LLM against every
other

Selection then rests heavily on the choice of criteria

LR tests will tend to favor large models

BIC and other penalized tests will favor parsimony. If n is large, BIC is probably a
much safer bet

Refresher on the BIC (for a single model):

BICk = G2 − df ln(n)

where n is the sum of the table’s cells.

The BIC of the saturated model is 0. BIC< 0 is preferred.



Fitting Log-linear models

We can calculate residuals of a LLM easily.

The Pearson residuals are

eij =
nij − µ̂ij

µ̂
1/2
ij

Investigating the table of residuals can help identify sources of mis-fit.

(Sidenote: the Pearson residuals sum to the Pearson X2)

In small tables, residual analysis is complicated by masking:
outliers are skewing the fit, and appear to be less outlying

Can deal with this using “deleted residuals”



Example: Occupational Status Mobility

We will examine a table of social mobility from postwar Britain (Glass 1954; see
King 1989)

The table is square; rows give the father’s occupational “status”, columns give the
son’s

The 8 classes, in (presumed) order within the status hierarchy, are:

Professional
Manager/executive
High supervisor
Low supervisor
Routine non-manual
Skilled manual
Semi-skilled
Unskilled manual

The dependent variable is the “count” in each cell, corresponding to the number of
families with a particular career status trajectory



Example: Occupational Status Mobility

The data (note that it fits easily on one page):

prof mana hsup lsup rout skil sskl uskl
prof 50 19 26 8 7 11 6 2
mana 16 40 34 18 11 20 8 3
hsup 12 35 65 66 35 88 23 21
lsup 11 20 58 110 40 183 64 32
rout 2 8 12 23 25 46 28 12
skil 12 28 102 162 90 554 230 177
sskl 0 6 19 40 21 158 143 71
uskl 0 3 14 32 15 126 91 106

What’s the dependent variable? What are the independent variables?

How many observations are there?

What distribution should we assume?



Example: Occupational Status Mobility

Occupational mobility tables are a typical example for LLMs

(Another typical example is assortative mating)

The blurring of independent and dependent variables may be an asset in such data

Our hypotheses are really about joint distributions; e.g.,

• Are occupational statuses of father and sons correlated?

• Are sons upwardly or downwardly mobile?

• Are these patterns uniform across the hierarchy?

We begin with a specification assuming independence of father and son status



Example: Occupational Status Mobility

We obtain estimated parameters from loglm, which takes in the table above, and
spits out. . .

Father Son
Professional −0.929 −1.196
Manager/executive −0.778 −0.761
High supervisor 0.055 −0.031
Low supervisor 0.461 0.299
Routine non-manual −0.739 −0.333
Skilled manual 1.423 1.248
Semi-skilled 0.338 0.555
Unskilled manual 0.170 0.219

baseline 3.459

Enlightening, eh?



Example: Occupational Status Mobility

We observe the following fit, relative to the null & saturated models

df G2 BIC
Null model 63 4679 4165
Independence 49 954 555
Saturation 0 0 0

Recall, the BIC here is, e.g.,

BIC = 954− 49× ln(3498)

where the sum over the table n = 3498

How do we interpret these results?



Example: Occupational Status Mobility

We could estimate the model using our old Poisson function

But first we’ll have to reorganize the data into 64 observations

(Show Excel sheet)

We impose the identifying restriction on λX and λY by omitting λX
I and λY

J

Recall this equivalent to assuming the λs sum to 1, though the parameterization
differs



Example: Occupational Status Mobility
Because of the different identifying assumptions, the estimates from loglm and
optim() look different. But they are exactly equivalent

Parameter Optim Loglm
Father prof -1.0986 -0.9290
Father man -0.9478 -0.7782
Difference -0.1508 -0.1508

(Recall that differences of λs are log odds ratios, which are invariant to the
identifying restrictions)

It doesn’t matter which set of estimates we use; if we do our math right, we’ll get
the same

• likelihoods

• fitted values

• first difference

• anything of substantive interest



Example: Occupational Status Mobility

Here is a table of the fitted values from the Poisson model

prof mana hsup lsup rout skil sskl uskl
prof 3.8 5.9 12.2 16.9 9.0 43.7 21.9 15.6
mana 4.4 6.8 14.2 19.7 10.5 50.9 25.4 18.2
hsup 10.2 15.7 32.5 45.3 24.1 117.0 58.5 41.8
lsup 15.3 23.5 48.9 68.0 36.1 175.6 87.8 62.8
rout 4.6 7.1 14.7 20.5 10.9 52.9 26.4 18.9
skil 39.9 61.6 127.8 177.8 94.5 459.4 229.7 164.2
sskl 13.5 20.8 43.2 60.1 31.9 155.3 77.6 55.5
uskl 11.4 17.6 36.5 50.8 27.0 131.2 65.6 46.9

Ugh. Bet you’d like a graphical alternative?

Mosaic plots can be very useful here.

But we’ll look at another alternative, the “propeller” plot

We will plot expected probability a son falls in a category given the father’s category



Occupational Status: Poisson Fits, with 95% CI & Actual Data

Professional

Professional

Manager/executive

High supervisor

Low supervisor

Routine non-manual

Skilled manual

Semi-skilled

Unskilled manual

Father is. . . 0.00 0.25 0.50 0.75



Occupational Status: Poisson Fits, with 95% CI & Actual Data

Professional Manager/executive High supervisor Low supervisor

Routine non-manual Skilled manual Semi-skilled Unskilled manual

Professional

Manager/executive

High supervisor

Low supervisor

Routine non-manual

Skilled manual

Semi-skilled

Unskilled manual

Father is. . . 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.750.00 0.25 0.50 0.750.00 0.25 0.50 0.75

Professional

Manager/executive

High supervisor

Low supervisor

Routine non-manual

Skilled manual

Semi-skilled

Unskilled manual

0.00 0.25 0.50 0.750.00 0.25 0.50 0.750.00 0.25 0.50 0.750.00 0.25 0.50 0.75



A little too good. . .

The Poisson estimates seem suspiciously precise. What could be causing this?

Perhaps there is overdispersion in these data, leading to biased standard errors?

(What would overdispersion mean in this case?)

(How do we cope with overdispersion?)

Let’s re-estimate with the negative binomial



Negative Binomial Fits, with 95% CI & Actual Data

Professional

Professional
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High supervisor
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Negative Binomial Fits, with 95% CI & Actual Data

Professional Manager/executive High supervisor Low supervisor

Routine non-manual Skilled manual Semi-skilled Unskilled manual

Professional

Manager/executive

High supervisor

Low supervisor

Routine non-manual

Skilled manual

Semi-skilled

Unskilled manual

Father is. . . 0.00 0.25 0.50 0.750.00 0.25 0.50 0.750.00 0.25 0.50 0.750.00 0.25 0.50 0.75

Professional

Manager/executive

High supervisor

Low supervisor

Routine non-manual

Skilled manual

Semi-skilled

Unskilled manual

0.00 0.25 0.50 0.750.00 0.25 0.50 0.750.00 0.25 0.50 0.750.00 0.25 0.50 0.75



Give up?

Yikes!

It looks like we can’t be sure of anything. . .

But maybe we’re just asking too much of the data.

Trying to estimate 15 parameters from 64 datapoints is rather greedy

Can we put build a simpler, theoretically sharpened specification?

What might it be?



Transforming the variables

Sometimes, we’ll want a compromise specification that doesn’t just dummy out each
row or column

We might construct a theoretically interesting new variable from the rows and
columns

For example, how about inherit, upward, and downward:

Inherit = 1 if Son = Father, 0 otherwise

Upward = 1 if Son > Father, 0 otherwise

Downward = 1 if Son < Father, 0 otherwise

We just recode our data so that for each of the 64 cells,
instead of regression on Son and Father, we have regression in Inherit and Upward

This is a simpler model than independence (3 parameters, rather than 15), but more
complicated than the null model (1 parameter)

Don’t let the tabular frame trap you into a certain style of specification



Example: Inheriting occupational class

Poisson

Inherit 1.232
(0.043)

Upward 0.144
(0.041)

Constant 3.685
(0.030)

N 64

We’ll run the regression using the Poisson model

Note that although the data are all categorical, we’re doing the exact same thing we
did with continous RHS variables.

This is still, in all respects, a Poisson model

Still, the interpretation may be a little confusing, because the distinction between the
dependent and independent variables is blurred. . . .



Example: Inheriting occupational class

Poisson

Inherit 1.232
(0.043)

Upward 0.144
(0.041)

Constant 3.685
(0.030)

N 64

The dependent variable is the “count” in each cell.

Positive coefficients suggest an higher count in a cell, when the explanatory
condition is met.

These are still Poisson coefficients, so E(Y ) = exp(Xβ̂)Y , but Y is just a “count”

Counts are exp(1.232) ≈ 3.42 times bigger when sons inherit occupational status,
holding upward constant

(what’s the problem with the above statement?)



Example: Inheriting occupational class

The statement on the previous page is inaccurate, in these sense that it depends,
through a logical constraint, on the other variables

Let’s calculate first diffs, taking care to specify the value of the other covariate

Poisson
1st diff Lower 95% Upper 95%

Down → Inh 96.8 88.6 105.2
Inh → Up −90.6 −99.31 −82.3
Down → Up 6.2 2.7 9.6

The average cell count is about 54.7.

Inheritance cells are expected to have 96.8 more members than Downward cells
and 90.6 more members than Upward mobility cells

Upward cells are expected to have 6.2 more members than Downward cells
and 90.6 fewer members than Inheritance cells

All relationships appear significant, and the Inheritance cells seem precisely estimated



Example: Inheriting occupational class

The simpler model with just two variables seems more informative than the others
we’ve tried

Does it fit as well?

No.

df G2 BIC
Null model 63 4679 4164.9
Inherit, Upward 61 3824 3326.2
Independence 49 955 554.7
R & C Marginals, Inh, Upw 47 657 273.7
Saturation 0 0 0

The best fitting model (on whatever criteria) is not always the most useful

An ideal model simplifies the substance of the data and fits the data well

We can’t always have both—sometimes there is a tradeoff



Example: Inheriting occupational class

Under the Poisson, effects appear very significant/precisely estimated.

Maybe suspiciously so. We only have 64 observations.



Example: Inheriting occupational class
Let’s reestimate using the negative binomial.

Negative
Poisson Binomial

Inherit 1.232 1.232
(0.043) (0.491)

Upward 0.144 0.144
(0.041) (0.329)

Constant 3.685 3.685
(0.030) (0.233)

”theta” 0.868
(0.142)

N 64 64

(What do we make of this table?)

There is evidence of overdispersion

The coefficients are essentially unchanged, but the standard errors are much bigger

Substantive conclusions has changed: we no longer can conclude that there is
upward mobility



Example: Inheriting occupational class

The first differences show the change in precision rather dramatically:

Poisson Negative Binomial

1st diff Lower 95% Upper 95% 1st diff Lower 95% Upper 95%

Down → Inh 96.8 88.6 105.2 109.2 14.8 280.3

Inh → Up −90.6 −99.3 −82.3 −102.4 −271.5 −7.0

Down → Up 6.2 2.7 9.6 6.4 −22.0 35.9

Remember that the average cell count is about 54.7.

Also note that the NB model fits much better than the Poisson.

If we include all marginals, Inherit, and Upward, we get the best model yet by fit:
G2 = 74.1, BIC = −301.2, with 46 degrees of freedom

Conclusion: Estimating Log-linear models using Poisson is dangerous

Always check for overdispersion


