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1 Introduction

These notes are written to give students in CSSS/SOC/STAT 536 a quick review of some of the
probabilistic concepts they will need to make use of in the class. These notes are not meant to be
comprehensive but rather to be a succinct treatment of some of the key ideas.

These notes are organized as follows. The next section reviews basic probability theory. Sec-
tions 3-6 cover the Bernoulli, binomial, multinomial, and Poisson distributions respectively. These
distributions will play central roles in the models examined in CSSS 536.

2 Preliminaries

While these notes are by definition a bare-bones treatment, this section in particular is an extremely
brief review of some critical concepts. For a more detailed treatment the reader should refer to a
standard text such as DeGroot (1986), Feller (1968), or Gallant (1997).

2.1 Basic Set Theoretic Notation

Let A denote a set. If a is a member of A we write a € A. Braces are used to enumerate the members
of sets. For instance, if a1, a2, and a3 are the only members of A we could write A = {a1, a2, as}.

The empty set is defined to be the set that has no members and is written (.

We say that a set A is a subset of another set B if every member of A is also a member of B. If
A is a subset of B we write A C B. For example, if A = {2,4,6} and B = {1,2,3,4,5,6} we could
say that A C B since every member of A is also in B.

The union of two sets A and B is defined to be the set containing all the members of just A,
just B, and both A and B. We write the union of two sets A and B as A U B. For example,
if A ={1,2,3,4} and B = {3,4,5} then AUB = {1,2,3,4,5}. A shorthand way to write
ATUA U ... UA, is U7 A

The intersection two sets A and B is defined as the set containing all elements that belong
to both A and B. We write the intersection of two sets A and B as AN B. For example, if



A ={1,2,3,4} and B = {3,4,5} then AN B = {3,4}. If AN B = () we say that A and B are
disjoint or mutually exclusive.

2.2 Probability

2.2.1 Sample Spaces, Events, and Probability Functions

Consider the situation in which a coin is tossed two times and the result (heads or tails) of each toss is
recorded. There are four possible outcomes of this thought experiment. They are {heads, heads},
{heads,tails}, {tails, heads}, and {tails,tails}, where the first element in brackets denotes the
outcome of the first toss and the second element in brackets denotes the outcome of the second
toss. Forming the set of all possible outcomes we have:

{{heads, heads},{heads, tails}, {tails, heads}, {tails, tails}}.

This set of all possible outcomes is called the sample space and is often denoted 2.
An event is defined as a subset of a sample space. An event can be the sample space itself, the
empty set, or any proper subset of the sample space. For example, if the sample space is:

Q = {{heads, heads}, {heads, tails}, {tails, heads}, {tails, tails}},
then
o {{heads, heads}, {heads, tails}, {tails, heads}, {tails, tails} }
L)
o {{heads, heads},{heads, tails}, {tails, tails}}
o {heads,tails}

are all events.
A probability function P(-) is a function defined over all subsets of a sample space © and that
satisfies three properties:

1. P(A) > 0 for all A in the set of all events.
2. PQ) =1
3. if events Ay, Ay, ... are disjoint then P({J;2, 4;) = Y 1o P(4).

The first condition ensures that the probability of an event occurring is always greater than or
equal to 0. The second condition states that the the probability of some element in the sample
space occurring is 1. The final condition together with the fact that P() = 0 implies that if

Q = {{heads, heads}, {heads, tails}, {tails, heads}, {tails, tails} }

then the probability of { heads, heads} or {tails, heads} occurring is P({heads, heads}) + P({tails, heads}).
Note well that for this calculation to be valid the events must be disjoint. The case of intersecting
events is treated at the end of section 2.2.2.



2.2.2 Marginal, Joint, and Conditional Probabilities

So far we have only considered situations where we are interested in the probability of a single
event A occurring. We’ve denoted this P(A). P(A) is called a marginal probability. Suppose we
are now in a situation where we would like to express the probability that an event A and an event
B occur. This quantity is written as P(A N B) or sometimes P(AB) and is the joint probability of
A and B. Suppose now that we know the event B occurs and we wish to express the probability of
the event A given this fact. We write this quantity as P(A|B) and call it the conditional probability
of A given B. When P(B) > 0 marginal, joint, and conditional probabilities are related through
the following identity:

P(aip) = T 0. )
Of course, the identity in 1 also implies
P(ANB)=P(A|B)P(B), (2)
and
P(B) = %T;;))' 3)

The examples in section 2.4 will make these concepts more clear.
Another useful fact is that

P(AUB) = P(A) + P(B) — P(AN B)

regardless of whether A and B are disjoint.

2.2.3 Independence

We say that two events (A and B) are independent if P(AN B) = P(A)P(B). In words, the joint
probability of A and B is equal to the product of the marginal probabilities of A and B. Note that
this also implies that when A and B are independent

P(A)P(B)

P(AIB) = =55

= P(A).
Intuitively, if events A and B are independent the probability of A occurring does not depend on
whether B occurs.

2.3 Random Variables

The discussion of probability has, so far, placed little structure on the the types of sample spaces,
and consequently, events considered. This lack of structure makes it difficult to bring mathematical
tools to bear on realistic problems. In this subsection, we introduce the concept of a random
variable. This concept provides the structure which greatly simplifies many analyses.

We begin by noting that many events bear some relation to a quantifiable attribute. For
example, the number of times a coin comes up heads in 10 tosses, the number of male births in a



year, or the number of winning lottery tickets in a given month. The idea behind the introduction
of random variables is that by mapping the original sample space onto the real numbers we can
take advantage of the structure of the real number line to gain leverage on many problems.

A random variable is defined as a function that maps the sample space onto the real numbers.
In other words, the random variable X takes each element of the sample space and assigns to it a
real number. For example, if we go back to the coin tossing experiment of section 2.2.1 where the
sample space is

Q = {{heads, heads}, {heads, tails},{tails, heads}, {tails, tails} },

we could introduce the random variable X (w) that gives the number of heads in each element
of Q. Accordingly, X ({heads, heads}) = 2, X({heads,tails}) = 1, X({tails, heads}) = 1, and
X ({tails,tails}) = 0. The advantages in this particular example are minimal. However, now
consider the case in which a coint is tossed 10 times. Here the sample space has 2'0 = 1024
unordered elements. By looking at the random variable X equal to the number of heads in the
sequence we can instead focus our attention on a new sample space consisting of 11 ordered elements.

2.4 Distribution Functions and Probability (Density) Functions of Random
Variables

Two related types of functions— distribution functions and probability (density) functions— are
commonly used to exploit the structure that the concept of a random variable brings to problems.

A distribution function F(z) of a random variable X is a non-decreasing function that gives the
probability that X < z.

Before discussing the nature of a probability (density) functions it is necessary to discuss the
differences between discrete and continuous random variables. A random variable is called discrete
if it can take on only a finite number of values (z1,z2,... ,z,) or an infinite sequence of distinct
values (z1,z9,...). A random variable X is said to be continuous if there exists a non-negative
function f(z) such that F(z) = [*_ f(z)dz for all z € R. In this class, we will be primarily
interested in discrete random variables.

The probability function f(z) of a discrete random variable X gives the probability that X = z.
When X is discrete, f(z) and F(z) are related by the following identity

Fla) =Y f(2)

z<zx

The probability density function f(z) of a continuous random variable X is the non-negative
function that satisfies

Fz) = /_ oo F(2)de.

Note that the probability density function of a continuous random variable does not have the
same interpretation as the probability function of a discrete random variable. In particular, f(z)
does not give the probability that X = = when X is continuous. To find the probability that X is
in some interval (a,b) we would calculate fab f(z)dz = F(b) — F(a).

The concepts of distribution function and probability (density) function will become more when
we discuss specific probability distributions below.



Y
1 2 3
11022 0.04 0.09 | 0.35
X 21015 0.10 0.20 | 0.45
31001 0.07 0.12|0.20
0.38 0.21 0.41 | 1.00

Table 1: Table of probabilities of two random variables X and Y.

2.5 Marginal, Joint, and Conditional Distributions

Just as marginal, joint, and conditional probabilities can be defined for two arbitrary events A
and B; marginal, joint, and conditional probability distributions can be defined for two random
variables X and Y. For simplicity we deal only with discrete random variables.

The marginal probability function fx(z) of a discrete random variable X gives the probability
that X = z for all z. The joint probability function fxy(z,y) of two discrete random variables
X and Y is the function that gives the probability that X = z and Y = y for all  and y. The
conditional probability function fxy(z|y) of two discrete random variables gives the probability
that X = z given the fact that Y = y for all all values of z and y.

Given two discrete random variables X and Y, the marginal probability function fx(z) of X
can be calculated from the joint probability function fx y(z,y) of X and Y according to

fx(@) = fxy(@,y).
Y

The conditional probability function f X|y(m|y) of two discrete random variables X and Y is
given by:

Ixy(z,y)

fX|Y($|y) = ()

where it is assumed that fy(y) > 0. It follows that

Ixy(z,y) = fxyy(zly) fy (v)

and

_ fxy(z,y)
fxiv(zly)

Similar results hold for continuous random variables.

A concrete example will make these relationships more clear. Table 1 presents such an example
in the form of probability table of two discrete random variables X and Y. Here the marginal
probability function of X is in the far right hand column and the marginal probability function of
Y is in the bottom column. We can see that fx(1) = 0.35, fx(2) = 0.45, and fx(3) = 0.20. Note
that these marginal probabilities sum to 1 as they must in order for fx(-) to be a proper probability
function. Similarly, we can see that fy (1) = 0.38, fy(2) = 0.21, and fy(3) = 0.41. Once again we
see that these marginal probabilities sum to 1 as they must.

The interior cells of the table give the joint probabilities. For instance, fxy(1,1) = 0.22,
fX,y(l, 3) = 0.09, and fX’y(Q, 3) = 0.20.

fr(y)



The conditional probability function of X given Y can also be calculated from this table. This
conditional probability function is obtained by finding the joint probability fx y(z,y) for some z
and y and dividing by the appropriate marginal fy (y). For instance,

_ fxy(1,2) 004
fxy(1]2) = @ el ~0.19,
_ fxy(2,2) 010
and
iy (312) = fxy(3,2) _ 0.07 ~ 033,

fy(2)  0.21

Note that the marginal probability fy(2) acts as a normalizing constant that rescales the joint
probabilities so that they sum to 1 and in fact form a proper probability function.

We say that two random variables X and Y are independent if and only if fxy(z,y) =
fx(z)fy(y) for all £ and y. An equivalent definition of independence states that two random
variables X and Y are independent if and only if fx|y(z|y) = fx(z) for all z and y. In other
words, if X and Y are independent, we cannot learn anything about the likely value of X given
knowledge of the realized value of Y.

3 The Bernoulli Distribution

The Bernoulli distribution arises in situations where a random variable can take on only two distinct
values, such as the toss of an idealized coin that must come up either heads or tails. Other examples
of random variables that might plausibly follow the Bernoulli distribution are voting decisions in
a two party race without abstention, a person’s decision to enter the workforce in a given month,
and a person’s decision to accept or reject a marriage proposal.

Without loss of generality we specify the values of the two possible outcomes to be 0 and 1.
We will call 1s “successes” and 0s “failures”. This is purely a convention and does not affect any
results.

The Bernoulli distribution is governed by a single parameter 7. We can interpret « as the
probability of a success.

The Bernoulli probability function is given by

_J@ =7 ifz=0
JBern(lm) = {71’ ifzx=1 @

Equivalently, the Bernoulli probability function can be written

FBern(@|m) = 7(1 = m) (172, (5)

The Bernoulli distribution function is given by

(1-m) ifz=0

Fsern(xlm) = {1 r=1



The mean of a Bernoulli distributed random variable is = and its variance is w(1 — 7).
Figures 1 and 2 display the Bernoulli probability function and distribution function respectively
when 7 = 0.8.
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Figure 1: Bernoulli probability function for = = 0.8.

If X follows the Bernoulli distribution with probability of success m we write X ~ Bern(m).

4 The Binomial Distribution

The binomial distribution arises naturally as the distribution of a random variable X that is the
sum of n independent Bernoulli random variables X1, Xo,... , X,, for which the Bernoulli proba-
bility of success 7 is constant. For example, if the number of heads in one toss of a coin follows
the Bernoulli distribution, then the number of heads resulting from tossing this same coin under
identical conditions n times will follow the binomial distribution with parameters n and =.

The binomial probability function is

fnlain, ) = (")~ e )

where the (:) notation is read “n choose z” and is equal to ﬁlw), (2) is the number of combi-
nations of size x that can be taken from a set of n elements.

The binomial distribution function is
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Figure 2: Bernoulli distribution function for = = 0.8.

Foi(elnm) = (1) - ®)

z=0

To see how the binomial distribution arises from the Bernoulli distribution we consider the case
of n independent draws from a Bernoulli distribution with probability of success 7. From these

draws X1, Xs,... , X, a new random variable X = """ | X; is formed. From equation 5 we know
that the probability that X; = 1 is m and the probability that X; = 0 is 1 — «r. Since the X;
are assumed independent we can calculate the probability that X, Xo,... , X, yield a particular

pattern of successes and failures as the product of the marginal probabilities:

Pr(X) =z, Xo = Ta,... , X; = zj|7) = 7" (1 — )72 (9)
x w2 (1 — 7)(1=2)
X ...
x (1 — 7r)(17$”)
— W(E?:l m1)(1 _ 71-)(”_2?:1 ;)
Now, note that by definition, there are (Z) ways that x successes could appear in n Bernoulli

draws. Since the Bernoulli draws are independently and identically distributed the probability of
each of these (Z) ways has equal probability. It follows that to get the probability of x successes



in n trials we need to calculate the probability that any single patttern of x successes would occur
in n Bernoulli trials and then multiply this by the total number of ways this many successes could
occur. The first part is given in equation 9 and the second is defined to be (:) This implies
that the binomial probability function for z successes in n trials with probability of success 7 is
fBin(xlna 7r) = (;L)Ww(l - ,n.)(n—ac)‘

The mean of a binomially distributed random variable is n7 and its variance is nw(1 — 7)

If X follows the binomial distribution with probability of success 7 and sample size n we write
X ~ Bin(n, ).
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Figure 3: Binomial probability function for n = 20 and 7 = 0.8.

5 The Multinomial Distribution

The multinomial distribution is a generalization of the binomial distribution to more than two
potential outcomes. Like the binomial distribution the multinomial distribution has two parameters
n and 7r, where n is the multinomial sample size and 7r is now a vector of the &k probabilities of the
k possible outcomes of a multinomial sample of size 1.

The multinomial probability function is

fMultm(x|n 7" waz (10)

z 1z

where it is assumed that x; gives the number of successes of type i and Zle Ti="n.
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Figure 4: Binomial distribution function for n = 20 and 7= = 0.8.

The multinomial distribution is constructed using the same logic that is used to construct the
binomial distribution. Since it is assumed that the n samples are independent, Hle ;' gives
the probability of z1 successes of type 1, zo successes of type 2, etc, in a particular prespecified
order. Since there are many ways that multinomial samples of size 1 can combine to produce a
multinomial outcome of size n,' we have to multiply Hle 77" by the number of different ways that
the n individual trials can be specified. This number is given by — =

When k£ = 2 the multinomial distribution reduces to the binolrﬁlial distribution. To see this,
suppose that X = (X7, X3) follows a multinomial distribution with parameters n and w = (w1, m2).
Since any realization x of X must satisfy Zle z; = n and Zle m; = 1, it must be the case that
X = (Xy;,n — X;) and ® = (m,1 — m). Substituting n — 21 for 9 and 1 — 7 for w2 in the
multinomial probability function we get

n! z1 (n—z1)
— ' (l—m !
zl(n —z)! ! ( )
which is a binomial distribution with parameters n and ;.

The mean of a multinomial random variable X is n, the variance of the ith element of X is
nm;(1 — m;), and the covariance between the ith and jth elements of X is —NTGT.

If X follows the multinomial distribution with parameters n and w we write X ~ Multin(n, ).

'For example, (0,0,1) + (0,1,0) and (0,1,0) + (0,0,1) both produce = = (0, 1,1)).
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6 The Poisson Distribution

The Poisson distribution has a single parameter A that gives both the mean and variance. The fact
that mean of the Poisson distribution must equal the variance is an important point to keep in mind
when modeling some types of data. The the Poisson distribution has support on the non-negative
integers.

The Poisson probability function is given by

e AN
fPois(z|A) = — (11)
!
and the Poisson distribution function is
T -\ 2
e '\
FPois(l"A) = ZO 2 (12)
z=

One way to conceptualize the Poisson distribution is as an approximation to the binomial
distribution when n is extremely large and 7 is close to 0. More precisely, as n — oo, m — 0, and
nm — X the binomial distribution with parameters n and 7 approaches the Poisson distribution
with parameter A. To see this, note that we can write the binomial probability function as

(") P -t = — (1 p)na) (13)

z!(n — x)!
_nn-—1)-(n-z+1) , 0
x!

)
~_n(n—1)-- n—:z:—i—l nINT () (n—x)
(-
x!

,n.(nw

=n(n—1)-- (”_$+ ( )(1__) (1_7;1>
st b () (Y o

_n(n_l)...(n—:v-l-l)(l_ﬂ)—zw (1_@)n_
! n

Since

lim (1—T) — e
n—,oQ n
nT—A
and obviously
T T
fim 7 _ Y
nT—A I' .’I,"



we have the fact that in the limit as as n — oo, # — 0, and nw — A, the binomial probability
function in 13 is equal to

eANE

!

which is the Poisson probability function.
If a random variable X follows the Poisson distribution with parameter A we write X ~ Pois()).
Two useful facts are worth noting about sums of independent Poisson random variables. If
X1,X9,..., Xy are independent random variables that are distributed X; ~ Pois();), i =
1,2,... ,k it can be shown that

k k
Z X; ~ Pois (Z >\,~> .
=1 =1

Second, conditional on the sum of the realized counts n = Zle z;, it can be shown that the vector
(X1, Xo,...,Xy) follows the multinomial distribution:

(X1, Xo,...,Xg)|n ~ Multin(n, (m1,72,...,7))

where m; = Ai/(2§:1 Aj), i=1,2,... k.
Figure 5 shows the Poisson probability function when A = 5 and figure 6 shows the Poisson

distribution function when A = 5.
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Figure 5: Poisson probability function for A = 5.
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Figure 6: Poisson distribution function for A = 5.
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