research label grad course label undergrad course label other labelbook linkarticles linkworking paper linkAdvanced Quantitative Political Methodology
	        linkmax likelihood linkvisualizing data linkpanel data linkPolitical Science as Social Science
	       LinkIntro to Soc Stat linkCase-Based Stat linkPolitical Economy Seminar linkSoftware linkData

Full CV  

Short CV  

Brief Bio  

google scholar

cadolph at uw dot edu

← Journal articles

High-Resolution Mapping of Essential Maternal and Child Health Service Coverage in Nigeria: A Machine Learning Approach  

BMJ Open, 2024, Vol. 14, e080135.

Yoshito Kawakatsu, Jonathan F. Mosser, Christopher Adolph, Peter Baffoe, Fatima Cheshi, Hirotsugu Aiga, D.A. Watkins, and Kenneth H. Sherr

Background. National-level coverage estimates of maternal and child health (MCH) services mask district-level and community-level geographical inequities. The purpose of this study is to estimate grid-level coverage of essential MCH services in Nigeria using machine learning techniques.

Methods. Essential MCH services in this study included antenatal care, facility-based delivery, childhood vaccinations and treatments of childhood illnesses. We estimated generalised additive models (GAMs) and gradient boosting regressions (GB) for each essential MCH service using data from five national representative cross-sectional surveys in Nigeria from 2003 to 2018 and geospatial socioeconomic, environmental and physical characteristics. Using the best-performed model for each service, we map predicted coverage at 1 km2 and 5 km2 spatial resolutions in urban and rural areas, respectively.

Results. GAMs consistently outperformed GB models across a range of essential MCH services, demonstrating low systematic prediction errors. High-resolution maps revealed stark geographic disparities in MCH service coverage, especially between rural and urban areas and among different states and service types. Temporal trends indicated an overall increase in MCH service coverage from 2003 to 2018, although with variations by service type and location. Priority areas with lower coverage of both maternal and vaccination services were identified, mostly located in the northern parts of Nigeria.

Conclusion. High-resolution spatial estimates can guide geographic prioritisation and help develop better strategies for implementation plans, allowing limited resources to be targeted to areas with lower coverage of essential MCH services.

University of Washington link

CSSS Center for Statistics and the Social Sciences link

Designed by
Chris Adolph & Erika Steiskal

Copyright 2011–2024
Privacy · Terms of Use

Jefferson (2007-2011)