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Panel Data Structure

Suppose we observe our response over both time and place:

yit = xitβ + εit

We have units i = 1, . . . , N , each observed over periods t = 1, . . . , T ,
for a total of N × T observations

Balanced data: all units i have the same number of observations T .

Unbalanced data: some units are shorter in T , perhaps due to missing data, perhaps
to sample selection

All of our discussion in class will assume balanced panels.

Small adjustments may be needed for unbalanced panels,
unless the imbalance is due to sample selection, which could lead to significant bias.
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Usages of the term panel data vary by field and sub-field

1. Data with large N ≈ 1000 and small T ≈ 5 (esp. in economics)

2. Data with any N , T , and repeated observations on units i = 1, . . . , N
(esp. in opinion research)

3. Any data with both N > 1 and T > 1 (sometimes in political science)
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You say Panel, I say TSCS. . .

Usages of the term TSCS data vary by field and sub-field

1. Data with small N ≈ 20 and medium to large T > 15 (esp. in political science)

2. Data with any N , T , but each cross section has new units;
so i in period t is a different person from i in period t+ 1 (esp. opinion research)

3. Any data with both N > 1 and T > 1



You say Panel, I say TSCS. . .

Data with large N and small T offer different problems and opportunities compared
to data with small N and medium T

Beware blanket statements about panel estimators or panel data.

The author—even in a textbook—may be assuming an N and T ubiquitous in his
field, but uncommon in yours!

Especially a problem for comparativists learning from econometrics texts
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A pooled TSCS model

GDPit = φ1GDPi,t−1 + β0 + β1Democracyit + εit

This model assumes the same effect of Democracy on GDP for all countries i (β1)

And influence of past GDP on current GDP is the same for all countries i (φ1)

The shared parameters make this a Pooled Time Series Cross Section model



Data storage issues

To get panel data ready for analysis, we need it stacked by unit and time period,
with a time variable and a grouping variable included:

Cty Year GDP lagGDP Democracy

1 1962 5012 NA 0
1 1963 6083 5012 0
1 1964 6502 6083 0

. . .
1 1989 12530 12266 0
1 1990 12176 12530 0
2 1975 1613 NA NA
2 1976 1438 1613 0

. . .
135 1989 6575 6595 0
135 1990 6450 6575 0



Data storage issues

To get panel data ready for analysis, we need it stacked by unit and time period,
with a time variable and a grouping variable included:

Cty Year GDP lagGDP Democracy

1 1962 5012 NA 0
1 1963 6083 5012 0
1 1964 6502 6083 0

. . .
1 1989 12530 12266 0
1 1990 12176 12530 0
2 1975 1613 NA NA
2 1976 1438 1613 0

. . .
135 1989 6575 6595 0
135 1990 6450 6575 0

Don’t use lag() to create lags in panel data!

You need a panel lag command that accounts for the breaks where the unit changes,
such as lagpanel() in the simcf package.
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Why use Panel Data?

• More data, which might make inference more precise
(at least if we believe β is the same or similar across units)

• Can help with omitted variables, especially if they are time invariant

• Some analysis only possible with panel data;
e.g., if variables don’t change much over time, like institutions

• Heterogeneity is interesting! As long as we can specify a general DGP for whole
panel, can parameterize and estimate more substantively interesting relationships
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Why use Panel Data?

If modeled correctly, costs of panel data are born by researcher, not by model or data:

• Differences across the panel would appear the biggest problem,
but we can relax any homogeneity assumption to get a more flexible panel model

• The price of panel data is a more complex structure to conceptualize and model

• Often need more powerful or flexible estimation tools
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∆dyt = α+ xtβ +
P∑
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Q∑
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εt−qρq + εt

where ε ∼ N(0, σ2) is white noise.

A “mother” specification for all our time series processes.

Includes as special cases:
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Building Time Series into Panel

Consider the ARIMA(p,d,q) model:

∆dyt = α+ xtβ +
P∑
p=1

∆dyt−pφp +
Q∑
q=1

εt−qρq + εt

where ε ∼ N(0, σ2) is white noise.

A “mother” specification for all our time series processes.

Includes as special cases:

ARMA(p,q) models: Set d = 0

AR(p) models: Set d = Q = 0

MA(q) models: Set d = P = 0

Linear regression: Set d = P = Q = 0

Could even be re-written as an error correction model



Multiple Time Series

Now notice that if we had several parallel time series y1t, y2t, . . . yNt, as for N
countries, we could estimate a series of regression models:

∆d1y1t = α1 + x1tβ1 +
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ε1,t−qρ1q + ε1t
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Multiple Time Series

Now notice that if we had several parallel time series y1t, y2t, . . . yNt, as for N
countries, we could estimate a series of regression models:

∆d1y1t = α1 + x1tβ1 +
P1∑
p=1

∆d1y1,t−pφ1p +
Q1∑
q=1

ε1,t−qρ1q + ε1t

∆d2y2t = α2 + x2tβ2 +
P2∑
p=2

∆d2y2,t−pφ2p +
Q2∑
q=2

ε2,t−qρ2q + ε2t

. . .

∆dNyNt = αN + xNtβN +
PN∑
p=N

∆dNyN,t−pφNp +
QN∑
q=N

εN,t−qρNq + εNt

Each of these models could be estimated separately



Multiple Time Series

The results would be a panel analysis of a particular kind:

• one with maximum flexibility for heterogeneous data generating processes across
units i,

• and no borrowing of strength across units i

Generally, we can write this series of regression models as:

∆diyit = αi + xitβi +
Pi∑
p=1

∆diyi,t−pφip +
Qi∑
q=1

εi,t−qρiq + εit

We’ve just written all our time series equations in a single matrix

But estimation is still separate for each equation
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Be clear what the subscripts and variables are

∆diyit = αi + xitβi +
Pi∑
p=1

∆diyi,t−pφip +
Qi∑
q=1

εi,t−qρiq + εit

• xit is the vector of covariates for unit i, time t. Not just a scalar.

• βi is the vector of parameters applied to xit just for a particular unit i,
for all periods

• Pi is the number of lags of the response used for unit i. Could vary by unit.

• φip is the AR parameter applied to the pth lag, ∆diyi,t−p, for unit i.



Pooling and Partial Pooling

Alternative: we could “borrow strength” across units in estimating parameters

This involves imposing restrictions on (at least some of) the parameters
to assume they are either related or identical across units

Trade-off between flexibility to measure heterogenity,
and pooling data to estimate shared parameters more precisely

Same kind of trade-off is at work in all modeling decisions,
and all modeling involves weighing these trade-offs



All models are oversimplifications

Same trade-off is at work in all modeling decisions

For example, why can’t we estimate, for a standard cross-sectional dataset
with a Normally distributed yi, this inarguably correct linear model:

yi = αi + xiβi + εi



All models are oversimplifications

Same trade-off is at work in all modeling decisions

For example, why can’t we estimate, for a standard cross-sectional dataset
with a Normally distributed yi, this inarguably correct linear model:

yi = αi + xiβi + εi

To do any inference,

to learn anything non-obvious from data,

to reduce any data to a simpler model,

we must impose restrictions on parameters which are arguably false

Panel data simply offers a wider range of choices on which parameters to “pool” and
which to separate out
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∆diyit = αi + xitβi +
Pi∑
p=1

∆diyi,t−pφip +
Qi∑
q=1

εi,t−qρiq + εit

εit ∼ N(0, σ2
i )

For each i, we need to choose pi, di, qi and estimate αi,βi,φi,ρi, σ
2
i



The range of models available for panel data

Full flexibility:

∆diyit = αi + xitβi +
Pi∑
p=1

∆diyi,t−pφip +
Qi∑
q=1

εi,t−qρiq + εit

εit ∼ N(0, σ2
i )

For each i, we need to choose pi, di, qi and estimate αi,βi,φi,ρi, σ
2
i

Full pooling:

∆dyit = α+ xitβ +
P∑
p=1

∆dyi,t−pφp +
Q∑
q=1

εi,t−qρq + εit

εit ∼ N(0, σ2)

We choose common p, d, q across all i, and estimate common α,β,ρ,φ, σ2
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Variable intercepts
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∆dyi,t−pφp +
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∆dyit = αi + xitβ +
P∑
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εit ∼ N(0, σ2)
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Popular panel specifications

Variable lag structures

∆diyit = α+ xitβ +
Pi∑
p=1

∆diyi,t−pφip +
Qi∑
q=1

εi,t−qρiq + εit

εit ∼ N(0, σ2)

Panel heteroskedasticity

∆dyit = α+ xitβ +
P∑
p=1

∆dyi,t−pφp +
Q∑
q=1

εi,t−qρq + εit

εit ∼ N(0, σi2)



Models of variable intercepts

∆dyit = αi + xitβ +
P∑
p=1

∆dyi,t−pφp +
Q∑
q=1

εi,t−qρq + εit

εit ∼ N(0, σ2)

How do we model αi?

Let the mean of αi be α∗i .
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Let αi be a random variable with no systemic component
(this type of αi known as a random effect)
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(
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Models of variable intercepts

∆dyit = αi + xitβ +
P∑
p=1

∆dyi,t−pφp +
Q∑
q=1

εi,t−qρq + εit

Then there are a range of possibilities:

Let αi be a random variable with no systemic component
(this type of αi known as a random effect)

αi ∼ N
(
0, σ2

α

)
Let αi be a systematic component with no stochastic component
(this type of αi is known as a fixed effect)

αi = α∗i

Let αi be a random variable with a unit-specific systematic component
(this type of αi known as a mixed effect)

αi ∼ N
(
α∗i , σ

2
α

)



Random effects

αi ∼ N
(
0, σ2

α

)
Intuitive from a maximum likelihood modeling perspective

A unit specific error term

Assumes the units come from a common population,
with an unknown (estimated) variance, σ2

α

In likelihood inference, estimation focuses on this variance, not on particular αi’s

Uncorrelated with xit by design

Need MLE to estimate



Random effects example

A (contrived) example may help clarify what random effects are.

Suppose that we have data following this true model:

yit = β0 + β1xit + αi + εit

αi ∼ N (0, σ2
α)

εit ∼ N (0, σ2)

with i ∈ {1, . . . N} and t ∈ {1, . . . T}

Note that we are ignoring time series dynamics for now

It may help to pretend that these data have a real world meaning
though remember throughout we have created them out of thin air and rnorm()

So let’s pretend these data reflect undergraduate student assignment scores over a
term for N = 100 students and T = 5 assignments



Random effects example: Student aptitude & effort

Let’s pretend these data reflect undergraduate student assignment scores

over a term for N = 100 students and T = 5 assignments:

scoreit = β0 + β1hoursit + αi + εit

αi ∼ N (0, σ2
α)

εit ∼ N (0, σ2)

with i ∈ {1, . . . N} and t ∈ {1, . . . T}

The reponse is the assignment score, scoreit

and the covariate is the hours studied, hoursit

and each student has an unobservable aptitude αi which is Normally distributed

Aptitude has the same (random) effect on each assignment by a given student



Random effects example: Student aptitude & effort

Let’s pretend these data reflect undergraduate student assignment scores

over a term for N = 100 students and T = 5 assignments:

scoreit = 0 + 0.75× hoursit + αi + εit

αi ∼ N (0, 0.72)

εit ∼ N (0, 0.22)

with i ∈ {1, . . . 100} and t ∈ {1, . . . 5}

the above are the true values of the parameters I used to generate the data

let’s see what role the random effect αi plays here
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Here are the 500 obervations.

A relationship between effort and grades seems evident.
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We can summarize that relationship using the least squares estimate of β̂1,
which is approximately equal to the true β1 = 0.75

We haven’t discussed, used, or estimated the random effects yet. Do we “need”
them?
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I’ve identified each of the 100 student using colored dots

Colors repeat, but each student’s scores are tightly clustered.
Note the student-level pattern
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It is clear that each student is following the same regression line as the whole class,
but with a unique intercept

That intercept is the random effect. It is the average difference between that
student’s scores and the class-level regression line
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The student random effect is the student-specific component of the error term

After we remove it, the student scores exhibit white noise variation
around a student-specific version of the overall regression line
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Conceptually, we can think of the random effects as displaying that portion of the
error term which reflects unmeasured student characteristics

I’ve labelled this “aptitude”, which is just a word for everything fixed about a
student’s ability
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The distribution of the random effects is shown at the left

A plot of a marginal distribution on the side of a scatterplot is called a “rug”
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A density version of the distribution of random effects confirms they are
approximately Normal
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Random effects are a decomposition of the error term into a unit-specific part and an
idiosyncratic part

The random effects are determined after we have the overall regression slope, and
cannot change that slope
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This model is now hierarchical or multi-level

Level 1: student level sits above Level 2: Student × assignment level

There is random variation at both levels, but mainly at the student level
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Students randomly vary a lot: σα = 0.7,
but assignments for a given student vary little: σ = 0.2

Student level random effects comprise
100%×

√
0.72/(0.72 + 0.22) = 96% of the total error variance
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We haven’t controlled for any omitted confounders

If unmeasured ability is correlated with study effort, then our β̂1 estimate will be
biased even if we include random effects



Fixed effects

αi = α∗i

Easiest to conceptualize in a linear regression framework

Easiest to estimate: just add dummies for each unit, and drop the intercept

Can be correlated with xit: FEs control for all omitted time-invariant variables

Indeed, that’s usually the point.
FEs usually included to capture unobserved variance potentially correlated with xit.

Comes at a large cost:
we’re actually pruging the cross-sectional variation from the analysis

Then assuming a change in x would yielf the same response in each time series

Fixed effects models use over-time variation in covariates to estimate parameters



More on fixed effects

αi = α∗i

Cannot be added to models with perfectly time invariant covariates

Fixed effects specifications incur an incidental parameters problem:
MLE is consistent as T →∞, but not as N →∞.
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MLE is consistent as T →∞, but not as N →∞.

Of concern in microeconomics, where panels are sampled on N with T fixed.
Not of concern in CPE/IPE, where N is fixed, and T could expand

Monte Carlo experiments indicate small sample properties of fixed effects pretty
good if t > 15 or so.

Fixed effects are common in studies where N is not a random sample, but a (small)
universe (e.g., the industrialized countries).



More on fixed effects

αi = α∗i

Cannot be added to models with perfectly time invariant covariates

Fixed effects specifications incur an incidental parameters problem:
MLE is consistent as T →∞, but not as N →∞.

Of concern in microeconomics, where panels are sampled on N with T fixed.
Not of concern in CPE/IPE, where N is fixed, and T could expand

Monte Carlo experiments indicate small sample properties of fixed effects pretty
good if t > 15 or so.

Fixed effects are common in studies where N is not a random sample, but a (small)
universe (e.g., the industrialized countries).

Sui generis: Fixed effects basically say “France is different because it’s France”,
“America is different because it’s America”, etc.



Fixed effects example

Another example may help clarify what fixed effects are.

Suppose that we have data following this true model:

yij = β0 + β1xij + β2zi + εij

εij ∼ N (0, σ2)

with i ∈ {1, . . . N} and j ∈ {1, . . .Mi}

j indexes a set of Mi counties drawn from state i

There are N = 15 states total, and we drew Mj = M = 15 counties from each state

Note that we are ignoring time series dynamics completely now

(We could add them back in if j were ordered in time)



Fixed effects example

Suppose the data represent county level voting patterns for the US

(I.e., let’s illustrate Gelman et al, Red State, Blue State, Rich State, Poor State w/
contrived data)

RVSij = β0 + β1Incomeij + β2ConservativeCulturei + εij

εij ∼ N (0, σ2)

with i ∈ {1, . . . N} and j ∈ {1, . . .Mi}

j indexes a set of Mi counties drawn from state i

Remember: the data I’m using are fake, and contrived to illustrate a concept simply

Gelman et al investigate this in detail with real data and get similar but more
nuanced findings



Fixed effects example: What’s the matter with Kansas?

Suppose the data represent county level voting patterns for the US

(I.e., let’s illustrate Gelman et al, Red State, Blue State, Rich State, Poor State
using similar but contrived data)

RVSij = β0 + β1Incomeij + β2Conservatismi + εij

εij ∼ N (0, σ2)

with i ∈ {1, . . . N} and j ∈ {1, . . .Mi}

A problem:
suppose we don’t have (or don’t trust) a measure of state-level Conservatism

If we exclude it, or mismeasure it, we could get omitted variable bias in β̂1

This leads to potentially large misconceptions. . .
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Suppose we observed the above data, drawn from 15 counties from each of 15 states
(for a total of 225 observations)

Our first cut is to estimate this simple linear regression: yij = β0 + β1Incomeij + εij
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We find that β̂1 is negative:
poor counties seem to vote more Republican than rich counties!

But Republican elected officials attempt to represent the affluent.
What’s the matter with (poor counties in) Kansas, as Thomas Frank asked?
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Let’s look at which observations come from which states

Clearly, counties from the same state are clustered
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Within each state, there appears to be a positive relationship between income and
Republican voting

This suggests that we need to control for variation at the state level,
either by collecting the state level variables causing the variation. . .
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or we could use brute force: include a dummy for each state in the matrix of
covariates to purge the omitted variable bias

If we controlled for state fixed effects, our estimate of β̂1 would flip signs!
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Including fixed effects for each state removes state-level omitted variable bias,
and now estimates the correct β̂1

What’s the matter with Kansas? On average, Kansans are more conservative than
other Americans, but within Kansas, the same divide between rich and poor holds
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How are fixed effects different from random effects?

Fixed effects control for omitted variables (random effects don’t)
Fixed effects don’t follow any particular distribution (random effects do)
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Aside 1: the above reversal is an example of the ecological fallacy,
which says that aggregate data can mislead us about individual level relationships

Here, the pattern across states mislead us as to the pattern within states



County Avg Income

R
ep

ub
lic

an
 V

ot
e 

S
ha

re

Aside 2: Gelman et al take one more step,
and allow the slopes β̂1i of the state level regression lines to vary

They find that the rich-poor divide is actually steeper in poor states!
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Aside 2: The above are results on actual data from Gelman et al

These results assume the intercepts (but not slopes) vary by state
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Aside 2: Gelman et al take one more step,
and allow the slopes β̂1i of the state level regression lines to vary

They find that the rich-poor divide is actually steeper in poor states!



Mixed effects

αi ∼ N
(
α∗i , σ

2
α

)
Mixed effects give us the best of both worlds

Random effects and fixed effects are just special cases of mixed effects

• Mixed Effects turns into pure Fixed Effects as σ2
α → 0

• Mixed Effects turns into pure Random Effects as α∗i → 0 for all i

If anything, pure FE or RE seem like unreasonable knife-edge cases compared to ME

ME are a natural fit with Bayesian models

More on estimating these models next time



Variable slopes and intercepts

∆dyit = αi + xitβi +
P∑
p=1

∆dyi,t−pφp +
Q∑
q=1

εi,t−qρq + εit

How do we let βi vary over the units?

For the kth covariate xkit, let βki be random, with a multivariate Normal distribution

βki ∼MVN(β∗ki,Σβki)

β∗ki = wiζ

That is, the βki’s are now a function of unit-level covariates wi

and their associated hyperparameters ζ



Variable slopes and intercepts

GDPit = φ1GDPi,t−1 + αi + β1Democracyit + εit



Variable slopes and intercepts

GDPit = φ1GDPi,t−1 + αi + β1Democracyit + εit

αi ∼ N(0, σ2
α)



Variable slopes and intercepts

GDPit = φ1GDPi,t−1 + αi + β1Democracyit + εit

αi ∼ N(0, σ2
α)

β1 ∼ N(β∗1i, σ
2
β1i

)



Variable slopes and intercepts

GDPit = φ1GDPi,t−1 + αi + β1Democracyit + εit

αi ∼ N(0, σ2
α)

β1 ∼ N(β∗1i, σ
2
β1i

)

β∗1i = ζ0 + ζ1Educationi

Now the effect of Democracy on GDP varies across countries, as a function of their
level of Education and a country random effect with variance σ2

β1i

This is now a multilevel or hierarchical model

See Gelman & Hill for a nice textbook on these models

Easiest to accomplish using Bayesian inference
(place priors on each parameter and estimate by MCMC)



Variable slopes and intercepts: Poor man’s version

GDPit = φ1GDPi,t−1 + αi + β1Democracyit + β2Education

+β3Democracy × Education + εit

αi is a matrix of country dummies

This version omits the random effects for αi and βi; instead, we have fixed country
effects

and a fixed, interactive effect that makes the relation between Democracy and GDP
conditional on Education

Should have approximately similar results



Estimating Panel Models

Last time, we discussed how including random and/or fixed effects changes the
properties of our estimators of β

Today, we’ll talk about how to estimate and interpet panel models using fixed and/or
random effects

And how to decide if we need (or even can use) fixed effects

We can always add random effects, but in some cases FEs either be too costly to
estimate (in terms of dfs), or simply impossible to estimate



Estimating Fixed Effects Models

Option 1: Fixed effects or “within” estimator:

yit − ȳi = (xit − x̄i)β + (uit − ūit)

• estimating the fixed effects by differencing them out

• including time-invariant variables directly in xit impossible here

• (there are workarounds, e.g., if we have an instrument for the time-invariant
variable that is uncorrelated with the fixed effects; see Hausman-Taylor)

• suggests a complementary “between” estimator of ȳi on x̄i which could include
time-invariant xi; together these models explain the variance in yit

• does not actually provide estimates of the fixed effects themselves; just purges
them from the model to remove omitted time-invariant variables



Estimating Fixed Effects Models

Option 2: Dummy variable estimator (sometimes called LSDV)

yit = xitβ + αi + uit

• yields estimates of αi fixed effects (may be useful in quest for omitted variables;
see if the αi look like a variable you know)

• for large T , should be very similar to FE estimator

• not a good idea for very small T : estimates of αi will be poor



Time-Invariant Covariates & Fixed Effects

We can’t include time-invariant variables in fixed effects models

If we do, we will have perfect collinearity, and can’t get estimates

That is, we will get some parameter estimates equal to NA

Never report a regression with NA parameters

The regression you tried to run was impossible. Start over with a possible one.



Time-Invariant Covariates & Fixed Effects

If we can’t include time-invariant variables in a fixed effects model,
does that mean time-invariant variables can never explain changes over time?



Time-Invariant Covariates & Fixed Effects

If we can’t include time-invariant variables in a fixed effects model,
does that mean time-invariant variables can never explain changes over time?

You might think so: how can a constant explain a variable?

But time-invariant variables could still effect time-varying outcomes in a special
way. . .



Time-Invariant Covariates & Fixed Effects

If we can’t include time-invariant variables in a fixed effects model,
does that mean time-invariant variables can never explain changes over time?

You might think so: how can a constant explain a variable?

But time-invariant variables could still effect time-varying outcomes in a special
way. . .

Time-invariant variables can influence how a unit weathers time-varying shocks in
some other variable

Example: labor market regulations (e.g. employment protection) don’t change much
over time

Blanchard & Wolfers found that when a negative economic shock hits,
unemployment may rebound more slowly where such protections are stronger



Time-Invariant Covariates & Fixed Effects

We can model how a slow moving or time-invariant covariate conditions the effect of
a quickly changing covariate on yit

To estimate how a time-invariant covariate xit mediates the effect of a shock, sit,
include on the RHS xit × sit and sit, while omitting xit itself

(It’s okay and necessary to omit the xit base term in this special case,
because αi already captures the effect of xit)

Many theories about institutions can be tested this way



Time-Invariant Covariates & Fixed Effects

What if we want to “include” time-invariant covariates’ effect on the long term
average level of y?

We might partition the fixed effect into:

1. the portion “explained” by known time-invariant variables and

2. the portion still unexplained

Plümper & Troeger have methods to do this.

In this case, our estimates of the time-invariant effects are vulnerable to omitted
variable bias from unmeasured time-invariant variables, even though time varying
variables in the model are not

Thus you now need to control for lots of time-invariant variables directly,
even hard to measure ones like culture



Estimating Random & Mixed Effects Models

Estimation of random effects is by maximum likelihood (ML)
or generalized least squares (GLS)

Technically we’re just adding one parameter to estimate:
the variance of the random effects, σ2

α

This is partitioned out of the overall variance, σ2

Can understand this most easily by abstracting away from time series for a moment



Estimating Random & Mixed Effects Models

Recall that for linear regression, we assume homoskedastic, serially uncorrelated
errors, and thus a variance-covariance matrix like this:

Ω =


σ2 0 0 0
0 σ2 0 0
0 0 σ2 0
0 0 0 σ2





Estimating Random & Mixed Effects Models

And recall that heteroskedastic (but serially uncorrelated) errors have this
variance-covariance matrix

Ω =


σ2

1 0 0 0
0 σ2

2 0 0
0 0 σ2

3 0
0 0 0 σ2

4





Estimating Random & Mixed Effects Models

And finally, remember heteroskedastic, serially correlated errors follow this general
form of variance-covariance

Ω =


σ2

1 σ12 σ13 σ14

σ21 σ
2
2 σ23 σ24

σ31 σ32 σ
2
3 σ34

σ41 σ42 σ43 σ
2
4



What does this matrix look like for random effects with no serial correlation?



Estimating Random & Mixed Effects Models

Define the variance of the random effect as

E(α2
i ) = σ2

α = var(αi)
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Define the variance of the random effect as

E(α2
i ) = σ2

α = var(αi)

Define the expected value of the squared white noise term as σ2
ε

E(ε2
it) = σ2

ε = var(εit)



Estimating Random & Mixed Effects Models

Define the variance of the random effect as

E(α2
i ) = σ2

α = var(αi)

Define the expected value of the squared white noise term as σ2
ε

E(ε2
it) = σ2

ε = var(εit)

White noise is serially uncorrelated, so has covariance 0 for t 6= s:

E(εitεis) = 0 = cov(εit, εis)



Estimating Random & Mixed Effects Models

Define the variance of the random effect as

E(α2
i ) = σ2

α = var(αi)

Define the expected value of the squared white noise term as σ2
ε

E(ε2
it) = σ2

ε = var(εit)

White noise is serially uncorrelated, so has covariance 0 for t 6= s:

E(εitεis) = 0 = cov(εit, εis)

Finally, note that we assumed the white noise error and random effect are
uncorrelated,

E(αiεit) = 0 = cov(αi, εit)



Estimating Random & Mixed Effects Models

Thus the variance of the whole random component of the model is

E((αi + εit)(αi + εit)) = E(α2
i ) + 2E(αiεit) + E(ε2

it)



Estimating Random & Mixed Effects Models

Thus the variance of the whole random component of the model is

E((αi + εit)(αi + εit)) = E(α2
i ) + 2E(αiεit) + E(ε2

it)

= σ2
α + 0 + σ2

ε



Estimating Random & Mixed Effects Models

Thus the variance of the whole random component of the model is

E((αi + εit)(αi + εit)) = E(α2
i ) + 2E(αiεit) + E(ε2

it)

= σ2
α + 0 + σ2

ε

= σ2
α + σ2

ε



Estimating Random & Mixed Effects Models

Thus the variance of the whole random component of the model is

E((αi + εit)(αi + εit)) = E(α2
i ) + 2E(αiεit) + E(ε2

it)

= σ2
α + 0 + σ2

ε

= σ2
α + σ2

ε

And the covariance of the whole random component is:

E((αi + εit)(αi + εis)) = E(α2
i ) + E(αiεis) + E(αiεit) + E(εitεis)



Estimating Random & Mixed Effects Models

Thus the variance of the whole random component of the model is

E((αi + εit)(αi + εit)) = E(α2
i ) + 2E(αiεit) + E(ε2

it)

= σ2
α + 0 + σ2

ε

= σ2
α + σ2

ε

And the covariance of the whole random component is:

E((αi + εit)(αi + εis)) = E(α2
i ) + E(αiεis) + E(αiεit) + E(εitεis)

= σ2
α + 0 + 0 + 0



Estimating Random & Mixed Effects Models

Thus the variance of the whole random component of the model is

E((αi + εit)(αi + εit)) = E(α2
i ) + 2E(αiεit) + E(ε2

it)

= σ2
α + 0 + σ2

ε

= σ2
α + σ2

ε

And the covariance of the whole random component is:

E((αi + εit)(αi + εis)) = E(α2
i ) + E(αiεis) + E(αiεit) + E(εitεis)

= σ2
α + 0 + 0 + 0

= σ2
α



Estimating Random & Mixed Effects Models

If our data have a single random effect in the mean for each unit
→ serially correlated errors, but expressable using only two variances:

• the random effects variance σ2
α

• the white noise term’s variance σ2
ε

Ω =


σ2
α + σ2

ε σ2
α σ2

α σ2
α

σ2
α σ2

α + σ2
ε σ2

α σ2
α

σ2
α σ2

α σ2
α + σ2

ε σ2
α

σ2
α σ2

α σ2
α σ2

α + σ2
ε





Estimating Random & Mixed Effects Models

We have drastically simplified this matrix, and can now use FGLS (Feasible
Generalized Least Squares) or ML to estimate it

β̂GLS =

(
N∑
i=1

X′iΩ
−1Xi

)−1( N∑
i=1

X′iΩ̂
−1yi

)

where Xi is the T ×K matrix of covariates for unit i, all times t = 1, . . . T ,
and all K covariates

All we need are the estimates σ̂2
α and σ̂2

ε, and we can calculate β̂GLS



Estimating Random & Mixed Effects Models

We get σ̂2
ε from the residuals from a LS regression:

σ̂2
ε =

1
NT −K

N∑
i=1

T∑
t=1

ε̂2
itLS

(This is the usual estimator, but for NT observations)



Estimating Random & Mixed Effects Models

To get an estimator of σ̂2
α, we need to adjust for the fact that we have only so many

unique pairs of errors to compare:

σ̂2
α = E

(
T−1∑
t=1

T∑
s=t+1

(αi + εit)(αi + εis)

)
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Estimating Random & Mixed Effects Models

To get an estimator of σ̂2
α, we need to adjust for the fact that we have only so many

unique pairs of errors to compare:

σ̂2
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Estimating Random & Mixed Effects Models

To get an estimator of σ̂2
α, we need to adjust for the fact that we have only so many

unique pairs of errors to compare:

σ̂2
α = E

(
T−1∑
t=1

T∑
s=t+1

(αi + εit)(αi + εis)

)

= E
T−1∑
t=1

T∑
s=t+1

((αi + εit)(αi + εis))

=
T−1∑
t=1

T∑
s=t+1

σ2
α

= σ2
α

T−1∑
t=1

(T − t)



Estimating Random & Mixed Effects Models

To get an estimator of σ̂2
α, we need to adjust for the fact that we have only so many

unique pairs of errors to compare:

σ̂2
α = E

(
T−1∑
t=1

T∑
s=t+1

(αi + εit)(αi + εis)

)

= E
T−1∑
t=1

T∑
s=t+1

((αi + εit)(αi + εis))

=
T−1∑
t=1

T∑
s=t+1

σ2
α

= σ2
α

T−1∑
t=1

(T − t)

= σ2
α((T − 1) + (T − 2) + . . .+ 2 + 1)



Estimating Random & Mixed Effects Models

= σ2
α((T − 1) + (T − 2) + . . .+ 2 + 1)



Estimating Random & Mixed Effects Models

= σ2
α((T − 1) + (T − 2) + . . .+ 2 + 1)

= σ2
αT (T − 1)/2



Estimating Random & Mixed Effects Models

= σ2
α((T − 1) + (T − 2) + . . .+ 2 + 1)

= σ2
αT (T − 1)/2

σ̂2
α =

1
NT (T − 1)/2−K

N∑
i=1

T−1∑
t=1

T∑
s=t+1

ε̂itε̂is

where in the last step we replace σ2
α with its estimator from pooled LS

(the average of the products of the unique pairs of residuals)



Estimating Random & Mixed Effects Models

= σ2
α((T − 1) + (T − 2) + . . .+ 2 + 1)

= σ2
αT (T − 1)/2

σ̂2
α =

1
NT (T − 1)/2−K

N∑
i=1

T−1∑
t=1

T∑
s=t+1

ε̂itε̂is

where in the last step we replace σ2
α with its estimator from pooled LS

(the average of the products of the unique pairs of residuals)

With some algebra, this approach extends to serial correlaton of other kinds (ARMA)

For complex models, with many levels and/or hyperparameters, best to go Bayesian,
set diffuse priors on the parameters, and use MCMC



Selecting Fixed Effects vs Random Effects Models

Choosing random effects when αi is actually correlated with xit
will lead to omitted variable bias

Choosing fixed effects when αi is really uncorrelated with xit
will lead to inefficient estimates of β (compared to random effects estimation)
and kick out our time-invariant variables

Often in comparative we are certain there are important omitted time invariant
variables (culture, unmeasured institutions, long effects of history)

So choice to include fixed effects requires nothing more than theory

Still could include random effects in addition to the fixed effects



Selecting Fixed Effects vs Random Effects Models

But if we are uncertain, or want to check against estimating unnecessary fixed
effects, we can use the Hausman test for (any) fixed effexts versus just having
random effecxts

Hausman sets up the null hypothesis of random effects

Attempts to reject it in favor of fixed effects



Selecting Fixed Effects vs Random Effects Models

But if we are uncertain, or want to check against estimating unnecessary fixed
effects, we can use the Hausman test for (any) fixed effexts versus just having
random effecxts

Hausman sets up the null hypothesis of random effects

Attempts to reject it in favor of fixed effects

Checks whether the random αi’s are correlated with xi under the null

Does this by calculating the variance-covariance matrices of regressors under FE and
then just RE

Null is no correlation between these covariances



Selecting Fixed Effects vs Random Effects Models

But if we are uncertain, or want to check against estimating unnecessary fixed
effects, we can use the Hausman test for (any) fixed effexts versus just having
random effecxts

Hausman sets up the null hypothesis of random effects

Attempts to reject it in favor of fixed effects

Checks whether the random αi’s are correlated with xi under the null

Does this by calculating the variance-covariance matrices of regressors under FE and
then just RE

Null is no correlation between these covariances

If there is no correlation, that means the regressors do not predict the random effects
(ie, are uncorrelated)

Rejecting the null suggests you may need fixed effects to deal with omitted variable
bias

phtest in plm library



Interpreting Random Effects Models

Usually, interest focuses on the percentage of variance explained by the random
effects

And how this variance compares to that remaining in the model

Reported by your estimation routine



What if T is very small?

If T is very small (< 15 perhaps), estimating panel dynamics efficiently and without
bias gets harder

In these cases, we should investigate alternatives:

1. First differencing the series to produce a stationary, hopefully white noise processs

2. Including fixed effects for the time period (time dummies)

3. Checking for serial correlation after estimation (LM test)

4. Using lags of the dependent variable, while removing the bias from including lags
with fixed effects by instrumenting with lagged differences (Arellano-Bond)



Example: GDP in a panel

Let’s use the Przeworski et al democracy data to try out our variable intercept
models

This exercise is for pedagogical purposes only; the models we fit are badly specified

We will investigate the following model:

∆dGDPit = αi + β1OILit + β2REGit + β3EDTit + νit

• where νit ∼ ARIMA(p, d, q),

• d may be 0 or 1, and

• αi may be fixed, random, or a mixed



Example: GDP in a panel

We first investigate the time series properties of GDP

But we have N = 113 countries! So we would have to look at 113 time series plots,
113 ACF plots, and 113 PACF plots

Fortunately, they do look fairly similar. . .
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What would we see if there were no unit roots?
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Choosing AR(p,q) for panel

What do we think?

Clearly some heterogeneity

If had to pick one time series specification, choose ARIMA(0,1,0) or ARIMA(1,1,0)

Seems to fit many cases; guards against spurious regression

But if we’re dubious about imposing a single ARIMA(p,d,q) across units,
we could let them be heterogeneous
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What is this pattern consistent with?
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Example continued in R demonstration

We will continue this example using the code provided

Remember: our goal is to simulate what happens to this time series after a change in
our covariates

And to see if these estimates change when we include random or fixed effects

In particular, we want to see if fixed effects can help us with omitted time invariant
variables, which are legion in this example



Panel Wrap-Up

• Bias in Panel with small T

• Heteroskedasticity in Time

• Heteroskedasticity in Panel



Bias in Panels with small T

Consider this panel model:

yit = φyi,t−1 + xitβ + αi + εit

Remove the fixed effects αi by differencing (the within estimator)

yit − ȳi = φ(yi,t−1 − ȳi) + (xit − x̄i)β + (εit − ε̄i)

What happens if we estimate this with LS?

Notice that ȳi must be correlated with the new error term εit − ε̄i
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When a regressor and the error are correlated, estimates are biased and inconsistent

In this case estimates are inconsistent in N : φ̂− φ 9 0 as N →∞
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Bias in Panels with small T

yit − ȳi = φ(yi,t−1 − ȳi) + (xit − x̄i)β + (εit − ε̄i)

When a regressor and the error are correlated, estimates are biased and inconsistent

In this case estimates are inconsistent in N : φ̂− φ 9 0 as N →∞

However, estimates are still consistent in T : φ̂− φ→ 0 as T →∞

The degree of bias is of order 1/T , so for small T , this is a big problem

Generally, φ̂− φ→ (φ− 1)/(T − 1) as N →∞

Bias % Bias

φ T N φ̂− φ |(φ̂− φ)/φ|

0.5 5 ∞ -0.167 0.33
0.5 10 ∞ -0.055 0.11
0.5 25 ∞ -0.020 0.04
0.5 50 ∞ -0.010 0.02
0.5 100 ∞ -0.005 0.01
0.5 ∞ ∞ 0 0

So you can judge how worried you should be just from N and T



Bias in Panels with small T

Things that don’t help:

• More units N

• Purging serial correlation in ε

• Getting the specification of x right

What would help:

One way to deal with correlated covariates & errors is with instrumental variables

If xit and εit are correlated, find some zit which is correlated with xit but not εit

zit is then an instrument for xit



What is an instrument

In words, an instrument zit

• explains part of xit,

• but does not otherwise explain yit,

• so it does not belong in our model,

• but can be used to distinguish the part of xit that influences yit
from the part that influences εit



Background: IV estimation

Consider a bivariate regression

yi = βxi + εi

We condition on xi and take expectations,
assuming no correlation of the error with xi,

E(yi|xi) = E(βxi|xi) + E(εi|xi)
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E(yi|xi) = βxi
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What if xi and εi are correlated?
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∑
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LS is biased
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Background: IV estimation

Now try an instrument zi for xi

Condition on zi and take expectations:

E(yi|zi) = E(βxi|zi) + E(εi|zi)

We assumed that E(εi|zi) = 0, so we can write

E(yi|zi) = E(βxi|zi)
E(yi|zi) = βE(xi|zi)

β =
E(xi|zi)
E(yi|zi)

Solving for β will give us the IV estimator, β̂IV



Background: IV estimation

This way of finding the IV estimator is known as the method of moments

So called because we are working just in the expectations of our variables,
not with their complete probability distributions

An alternative to maximum likelihood estimation
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The IV estimator is consistent if zi is an instrument:

β =
E(xi|zi)
E(yi|zi)
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∑
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= β +
∑
i ziεi∑
i zixi

= β



IV estimation for Panel

Return to our panel model,

yit − ȳi = φ(yi,t−1 − ȳi) + (xit − x̄i)β + (εit − ε̄i)

Now take first differences to obtain

∆yit = φ∆yi,t−1 + ∆xitβ + ∆εit

Note that ∆εit is now MA(1)

If we had instruments for ∆yi,t−1,
we could correct the bias in estimation of φ and thus potentially β

We do have some weak instruments for ∆yi,t−1, notably its lags

That is, ∆yi,t−2 helps predict ∆yi,t−1, but not ∆εi,t−1

Only a weak instrument, though

Using these lags in IV estimation: Anderson-Hsiao estimator



Why are lagged changes in y instruments?

Fixed Effects Differenced Fixed Effects

Most lag of lag of
Dependent recent Error Dependent Dep Error Dep

Variable error Term Variable Var Term Var

yi,t−3 − ȳi εi,t−3 εi,t−3 − ε̄i
yi,t−2 − ȳi εi,t−2 εi,t−2 − ε̄i yi,t−3 − ȳi ∆yi,t−2 εi,t−2 − εi,t−3

yi,t−1 − ȳi εi,t−1 εi,t−1 − ε̄i yi,t−2 − ȳi ∆yi,t−1 εi,t−1 − εi,t−2 ∆yi,t−2

yit − ȳi εit εit − ε̄i yi,t−1 − ȳi ∆yit εit − εi,t−1 ∆yi,t−1

To see which lags of the differences and levels of yit − ȳi

are instruments for the first lag of the difference, ∆yi,t−1,

we need to see which lags are correlated ∆yi,t−1 but not ∆yit
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Why are lagged changes in y instruments?

Fixed Effects Differenced Fixed Effects

Most lag of lag of
Dependent recent Error Dependent Dep Error Dep

Variable error Term Variable Var Term Var

yi,t−3 − ȳi εi,t−3 εi,t−3 − ε̄i
yi,t−2 − ȳi εi,t−2 εi,t−2 − ε̄i yi,t−3 − ȳi ∆yi,t−2 εi,t−2 − εi,t−3

yi,t−1 − ȳi εi,t−1 εi,t−1 − ε̄i yi,t−2 − ȳi ∆yi,t−1 εi,t−1 − εi,t−2 ∆yi,t−2

yit − ȳi εit εit − ε̄i yi,t−1 − ȳi ∆yit εit − εi,t−1 ∆yi,t−1

Which error terms are incorporated in ∆yit?

The terms in yellow are differenced to make ∆yit,

and so ∆yit includes only the difference of errors also in yellow



Why are lagged changes in y instruments?

Fixed Effects Differenced Fixed Effects

Most lag of lag of
Dependent recent Error Dependent Dep Error Dep

Variable error Term Variable Var Term Var
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yi,t−3 − ȳi εi,t−3 εi,t−3 − ε̄i
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Why are lagged changes in y instruments?

Fixed Effects Differenced Fixed Effects

Most lag of lag of
Dependent recent Error Dependent Dep Error Dep

Variable error Term Variable Var Term Var

yi,t−3 − ȳi εi,t−3 εi,t−3 − ε̄i
yi,t−2 − ȳi εi,t−2 εi,t−2 − ε̄i yi,t−3 − ȳi ∆yi,t−2 εi,t−2 − εi,t−3

yi,t−1 − ȳi εi,t−1 εi,t−1 − ε̄i yi,t−2 − ȳi ∆yi,t−1 εi,t−1 − εi,t−2 ∆yi,t−2

yit − ȳi εit εit − ε̄i yi,t−1 − ȳi ∆yit εit − εi,t−1 ∆yi,t−1

Is the term in red, ∆yi,t−2, an instrument?

The terms in red are differenced to make ∆yi,t−2,

and so ∆yi,t−2 includes only the difference of errors in red

And there is no correlation between εi,t−2 − εi,t−3 and εit − εi,t−1

So ∆yi,t−2 is an instrument for ∆yi,t−1 in a model of ∆yit



IV estimation for Panel

Arellano & Bond noticed that within a dataset with N units and T periods,
later observations have more lags available as instruments

For t = 4 differenced periods, can create: ∆yi,t−2

For t = 5 differenced periods, can create: ∆yi,t−2, ∆yi,t−3

For t = 6 differenced periods, can create: ∆yi,t−2, ∆yi,t−3, ∆yi,t−4

etc.

Arellano-Bond’s difference GMM estimator uses all available instruments in each
period

Arellano-Bond’s system GMM estimator adds in the lagged levels yi,t−2, etc., as
additional instruments

Estimation is by Generalized Method of Moments—IV by itself can’t handle the
varying number of instruments



IV estimation for Panel

Note that for either system or difference GMM, we need to be careful with any
AR(p) processes left after differencing

That is, if we have an ARIMA(p,1,0), p > 0, very recent lags of y or ∆y will not be
instruments:

If ∆yi,t is AR(1), will need to start one period earlier on instruments

I.e., if ∆yi,t is AR(1), then first available instrument is ∆yi,t−3

if ∆yi,t is AR(2), then first available instrument is ∆yi,t−4

etc.

In R, these estimators are available using pgmm in the plm library

Note that this library requires a special kind of data frame, created with plm.data,
so that it knows what the units and periods are



Review of heteroskedasticity

Recall that in cross-sectional LS, heteroskedasticity

• is assumed away

• if present, biases our standard errors

We noted two approaches

• Model the heteroskedasticity directly with an appropriate ML model, or

• Less optimally, continue to use the wrong method (LS), but try to correct the se’s



Heteroskedasticity Robust SEs

We used the following formula to correct LS se’s for heteroskedasticty

V̂(β̂) = (X′X)−1X′Ω̂X(X′X)−1

If we use the observed residuals as estimates of the observation-specific variance,
we have Ω̂ = diag(ε̂2

1, ε̂
2
2, . . . ε̂

2
n), yielding the (multiply named)

• White standard errors

• robust standard errors

• sandwich standard errors

• heteroskedastcity consistent standard errors



Dynamic heteroskedasticity

As with cross-sectional models, we can model heteroskedasticity directly
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Dynamic heteroskedasticity

As with cross-sectional models, we can model heteroskedasticity directly

One possibility is to let heteroskedasticity evolve dynamically

We can let heteroskedasticity be (sort-of) “ARMA”, under the name “GARCH”
Generalized Autoregressive Conditional Heteroskedasticity:

yt = µt + εt εt ∼ fN
(
0, σ2

t

)
where

µt = α+ xtβ +
P∑
p=1

yt−pφp +
Q∑
q=1

εt−qθq

σ2
t = exp (η + ztγ) +

C∑
c=1

σ2
t−cλc +

D∑
d=1

ε2
t−dξd

In words, yt is an ARMA(P,Q)-GARCH(C,D) distributed time-series

(Of course, we could leave out x and/or z if we wanted)
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Dynamic heteroskedasticity

yt = µt + εt εt ∼ fN
(
0, σ2

t

)
where

µt = α+ xtβ +
P∑
p=1

yt−pφp +
Q∑
q=1

εt−qθq

σ2
t = exp (η + ztγ) +

C∑
c=1

σ2
t−cλc +

D∑
d=1

ε2
t−dξd

Models like the above are workhorses of financial forecasting

Can estimated by ML as usual

In R, garch() in the tseries package does GARCH

May have to look around a bit for ARMA-GARCH

Appears to be a package called dynamo in development that does ARMA-GARCH &
forecasts from it here:
http://cran.r-project.org/web/packages/dynamo/index.html



Dynamic and panel heteroskedasticity

Three different kinds of heteroskedasticity:

• Cross-sectional

• Dynamic

• Panel

All could be combined

[On Blackboard]
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Dynamic and panel heteroskedasticity

Consider a Panel ARMA-GARCH model:

yit = µit + εit εit ∼ fN
(
0, σ2

it

)

µit = αi + xitβ +
P∑
p=1

yi,t−pφp +
Q∑
q=1

εi,t−qθq

σ2
it = exp (ηi + zitγ) +

C∑
c=1

σ2
i,t−cλc +

D∑
d=1

ε2
i,t−dξd

This model includes two sources of panel heteroskedasticity:

• ηi, a random or fixed effect in the variance function, and

• λi, ξi, which make the variance time dependent
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Dynamic and panel heteroskedasticity

We could simplify this model to an AR(1) with panel heteroskedasticity:

yit = µit + εit εit ∼ fN
(
0, σ2

i

)

µit = αi + xitβ + yi,t−pφ

σ2
i = exp (ηi)

Only source of heteroskedasticity is now ηi:
panel heteroskedasticity, not dynamic heteroskedasticity

This is the model Beck & Katz advocate as a baseline for comparative politics.

They suggest estimating by LS, and then correcting the se’s for the omission of ηi
(what they call “panel-corrected standard errors”, PCSEs)

Note that treating αi as a fixed effect
and, in the presence of unit roots, differencing yit, would also be prudent
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Panel-corrected standard errors

To calculate panel-corrected standard errors, we need to estimate the right
variance-covariance matrix

We need an estimate of the variance-covariance matrix, Ω̂, which we can plug in to
the GLS formula for the var-cov of regressors:

Cov(β) = (X′X)−1(X′ΩX)(X′X)−1

In linear regression, Ω = σ2IN , or the variance of the errors times an identity matrix

To make PCSEs, suppose Ω is NT ×NT block-diagonal
with an N ×N matrix Σ of contemporaneous covariances on diagonal

In other words, allow for unit or contemporaneous heteroskedaticity that stays the
same over time

Visualizing this large matrix is tricky

Note that “NT ×NT block-diagonal” means we are ordering the observations first
by time, then by unit (reverse of our usual practice)



Panel-corrected standard errors
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Panel-corrected standard errors

Instead, suppose Ω is NT ×NT block-diagonal
with an N ×N matrix Σ of contemporaneous covariances on diagonal

In other words, allow for unit or contemporaneous heteroskedaticity that stays the
same over time

Beck and Katz (1995) show can estimate Σ using LS residuals ei,t:

Σ̂i,j =
T∑
t=1

ei,tej,t
T

And then use Σ̂ to calculate the covariance matrix.



Panel-corrected standard errors

Monte Carlo experiments show panel-coorrected standard errors are “correct”
unless contemporaneous correlation is very high.

(Note: alternative is to estimate random effects in variance by ML.
Tends to produce similar results.)

Beck and Katz suggest using LS with PCSEs and lagged DVs as a baseline model

Most practioners think fixed effects should also be used

Most important: getting the right lags structure & including FEs where appropriate

PCSEs, or choice of estimation strategy is a much smaller concern

In R, package pcse will calculate PCSEs for a linear regression

Getting them for ML models would take (considerable) extra work


