
POLS/CSSS 503

Advanced Quantitative Political Methodology

Models of Stationary & Non-Stationary Time Series

Christopher Adolph∗

University of Washington, Seattle

May 19, 2011

∗Assistant Professor, Department of Political Science and Center for Statistics and the Social Sciences.

The story so far

We’ve learned:

• why our LS models don’t work well with time series

• the basics of time series dynamics

Next steps:

• Estimate AR(p), MA(q), and ARMA(p,q) models for stationary series

• Use our time series knowledge to select p and q

• Use simulations to understand how ŷt changes as we vary xt

An AR(1) Regression Model

To create a regression model from the AR(1), we allow the mean of the process to
shift by adding ct to the equation:

yt = yt−1φ1 + ct + εt

We then parameterize ct as the sum of a set of time varying covariates,

x1t, x2t, x3t, . . .

and their associated parameters,

β1, β2, β3, . . .

which we compactly write in matrix notation as ct = xtβ

An AR(1) Regression Model

Substituting for ct, we obtain the AR(1) regression model:

yt = yt−1φ1 + xtβ + εt

Estimation is by maximum likelihood, not LS

(We will discuss the LS version later)

MLE accounts for dependence of yt on past values; complex derivation

Let’s focus on interpreting this model in practice

Interpreting AR(1) parameters

Suppose that a country’s GDP follows this simple model

GDPt = φ1GDPt−1 + β0 + β1Democracyt + εt

GDPt = 0.9×GDPt−1 + 10 + 2×Democracyt + εt

Suppose that at year t, GDPt = 100,
and the country is a non-democracy, Democracyt = 0.

What would happen if we “made” this country a democracy in period t+ 1?

Interpreting AR(1) parameters

yt = yt−1φ1 + xtβ + εt

Recall:
an AR(1) process can be viewed as the geometrically declining sum of all its past
errors.

When we add the time-varying mean xtβ to the equation, the following now holds:

yt = (xtβ + εt) + φ1(xt−1β + εt−1) + φ2
1(xt−2β + εt−2) + φ3

1(xt−3β + εt−3) + . . .

That is, yt represents the sum of all past xt’s as filtered through β and φ1

Interpreting AR(1) parameters

Take a step back: suppose ct is actually fixed for all time at c,
so that c = ct

Now, we have

yt = (c+ εt) + φ1(c+ εt−1) + φ2
1(c+ εt−2) + φ3

1(c+ εt−3) + . . .

=
c

1− φ1
+ εt + φ1εt−1 + φ2

1εt−2 + φ3
1εt−3 . . .

which follows from the limits for infinite series

Taking expectations removes everything but the first term:

E(yt) =
c

1− φ1

Implication:
if, starting at time t and going forward to ∞,
we fix xtβ,
then yt will converge to xtβ/(1− φ1)

Interpreting AR(1) parameters

GDPt = φ1GDPt−1 + β0 + β1Democracyt + εt

GDPt = 0.9×GDPt−1 + 10 + 2×Democracyt + εt

If at year t, GDPt = 100 and the country is a non-democracy Democracyt = 0, then:

This country is in a steady state:
it will tend to have GDP of 100 every period, with small errors from εt (verify this)

Interpreting AR(1) parameters

GDPt = φ1GDPt−1 + β0 + β1Democracyt + εt

GDPt = 0.9×GDPt−1 + 10 + 2×Democracyt + εt

Now suppose we make the country a democracy in period t+ 1:
Democracyt+1 = 1.

The model predicts that in period t+ 1, the level of GDP will rise by β = 2, to 102.

This appears to be a small effect, but. . .

Interpreting AR(1) parameters

GDPt = φ1GDPt−1 + β0 + β1Democracyt + εt

GDPt = 0.9×GDPt−1 + 10 + 2×Democracyt + εt

. . . the effect accumulates, so long as Democracy = 1

E(ŷt+2|xt+2) = 0.9× 102 + 10 + 2 = 103.8

E(ŷt+3|xt+3) = 0.9× 103.8 + 10 + 2 = 105.42

E(ŷt+4|xt+4) = 0.9× 105.42 + 10 + 2 = 106.878

. . .

E(ŷt=∞|xt=∞) = (10 + 2)/(1− 0.9) = 120

So is this a big effect or a small effect?

Interpreting AR(1) parameters

E(ŷt=∞|xt=∞) = (10 + 2)/(1− 0.9) = 120

So is this a big effect or a small effect?

It depends on the length of time your covariates remain fixed.

Many comparative politics variables change rarely, so their effects accumulate slowly
over time (e.g., institutions)

Presenting only β1, rather than the accumulated change in yt after xt changes,
could drastically understate the relative substantive importance of our comparative
political covariates compared to rapidly changing covariates

This understatement gets larger the closer φ1 gets to 1
—which is where our φ1’s tend to be!

Interpreting AR(1) parameters

Recommendation:
Simulate the change in yt given a change in xt through enough periods to capture
the real-world impact of your variables

If you are studying partisan effects, and new parties tend to stay in power 5 years,
don’t report β1 or the one-year change in y. Iterate out to five years.

What is the confidence interval around these cumulative changes in y given a
permanent change in x?

A complex function of the se’s of φ and β

So simulate out to yt+k using draws from the estimated distributions of φ̂ and β̂

R will help with this, using predict() and (in simcf), ldvsimev()

Example: UK vehicle accident deaths

Number of monthly deaths and serious injuries in UK road accidents

Data range from January 1969 to December 1984.

In February 1983, a new law requiring seat belt use took effect

Source: Harvey, 1989, p.519ff.

http://www.staff.city.ac.uk/~sc397/courses/3ts/datasets.html

Simple, likely stationary data

Simplest possible covariate: a single dummy

The time series

0 50 100 150

10
00

20
00

Vehicular accident deaths, UK, 1969−1984

Time

de
at

hs

The time series

0 50 100 150

10
00

20
00

Vehicular accident deaths, UK, 1969−1984

Time

de
at

hs

Seat
 belt
 law

ACF

0 5 10 15 20

0.
0

0.
4

0.
8

Lag

A
C

F

Series death

Partial ACF

5 10 15 20

−
0.

2
0.

2
0.

6

Lag

P
ar

tia
l A

C
F

Series death

AR(1) specification

Estimate an AR(1) using arima
xcovariates <- law
arima.res1a <- arima(death, order = c(1,0,0),

xreg = xcovariates, include.mean = TRUE
)

Coefficients:
ar1 intercept xcovariates

0.644 1719.19 -377.5
s.e. 0.055 42.08 107.7

sigma^2 estimated as 39289: log likelihood = -1288, aic = 2585

AR(1) specification with Q4 control

Estimate an AR(1) using arima
xcovariates <- c(q4,law)
arima.res1a <- arima(death, order = c(1,0,0),

xreg = xcovariates, include.mean = TRUE
)

Coefficients:
ar1 intercept q4 law

0.535 1638.03 324.6 -395.7
s.e. 0.064 28.12 34.5 72.3

sigma^2 estimated as 26669: log likelihood = -1251, aic = 2512

What is the effect of adding the law?

In period t+ 1? t+ 12? t+ 60

How “significant” is this effect over those periods?

An AR(p) Regression Model

The AR(p) regression model is a straightforward extension of the AR(1)

yt = yt−1φ1 + yt−2φ2 + . . .+ yt−pφp + xtβ + εt

Note that for fixed mean, yt now converges to

E(yt) =
c

1− φ1 − φ2 − φ3 − . . .− φp

Implication:
if, starting at time t and going forward to ∞, we fix xiβ,
then yt will converge to xiβ/(1− φ1 − φ2 − φ3 − . . .− φp)

Estimation and interpretation similar to above & uses same R functions

MA(1) Models

To create a regression model from the MA(1):

yt = εt−1ρ1 + xtβ + εt

Estimation is again by maximum likelihood

Once again a complex procedure, but still a generalization of the Normal case

Any dynamic effects in this model are quickly mean reverting

ARMA(p,q): Putting it all together

To create a regression model from the ARMA(p,q):

yt = yt−1φ1 + yt−2φ2 + . . .+ yt−pφp + εt−1ρ1 + εt−2ρ2 + . . .+ εt−qρq + xtβ + εt

Will need a MLE to obtain φ̂, ρ̂, and β̂

Once again a complex procedure, but still a generalization of the Normal case

Note the AR(p) process dominates in two senses:

• Stationarity determined just by AR(p) part of ARMA(p,q)

• Long-run level determined just by AR(p) terms: still xiβ/(1−
∑

p φp)

AR(1,1) specification: Model 1c

xcovariates <- cbind(q4,law)
arima.res1c <- arima(death, order = c(1,0,1),

xreg = xcovariates, include.mean = TRUE
)

Coefficients:
ar1 ma1 intercept q4 law

0.958 -0.768 1619.48 391.64 -384.56
s.e. 0.029 0.075 59.38 26.28 85.92

sigma^2 estimated as 24572: log likelihood = -1243, aic = 2499

AR(1,2) specification: Model 1d

xcovariates <- cbind(q4,law)
arima.res1d <- arima(death, order = c(1,0,2),

xreg = xcovariates, include.mean = TRUE
)

Coefficients:
ar1 ma1 ma2 intercept q4 law

0.965 -0.665 -0.133 1622.1 378.19 -377.03
s.e. 0.023 0.076 0.067 61.8 28.67 85.58

sigma^2 estimated as 24097: log likelihood = -1241, aic = 2497

AR(1,3) specification: Model 1e

xcovariates <- cbind(q4,law)
arima.res1e <- arima(death, order = c(1,0,3),

xreg = xcovariates, include.mean = TRUE
)

Coefficients:
ar1 ma1 ma2 ma3 intercept q4 law

0.967 -0.637 -0.102 -0.067 1623.7 371.57 -373.97
s.e. 0.022 0.083 0.078 0.073 61.9 30.16 86.58

sigma^2 estimated as 23995: log likelihood = -1241, aic = 2498

AR(1,3) specification: Model 1f

xcovariates <- cbind(q4,law)
arima.res1f <- arima(death, order = c(2,0,1),

xreg = xcovariates, include.mean = TRUE
)

Coefficients:
ar1 ar2 ma1 intercept q4 law

1.155 -0.182 -0.840 1622.53 374.31 -375.38
s.e. 0.098 0.091 0.054 61.92 30.00 86.11

sigma^2 estimated as 24060: log likelihood = -1241, aic = 2497

Selected model 1: ARMA(1,2)

xcovariates <- cbind(q4,law)
arima.res1d <- arima(death, order = c(1,0,2),

xreg = xcovariates, include.mean = TRUE
)

Coefficients:
ar1 ma1 ma2 intercept q4 law

0.965 -0.665 -0.133 1622.1 378.19 -377.03
s.e. 0.023 0.076 0.067 61.8 28.67 85.58

sigma^2 estimated as 24097: log likelihood = -1241, aic = 2497

What does this mean?

Where does this series go in the limit?

Counterfactual forecasting

1. Start in period t with the observed yt and xt

2. Choose hypothetical xc,t for every period t to t+ k you wish to forecast

3. Estimate β, φ, ρ, and σ2

4. Draw a vector of these parameters from their predictive distribution as estimated
by the MLE

5. Calculate one simulated value of ỹ for the next step, t+ 1, using:

ỹt+1 =
∑

p

yt−pφ̃p + xc,t+1β̃ +
∑

q

εt+qρ̃q + ε̃t

6. Move to the next period, t + 2, and using the past actual and forecast values of
yt and εt as lags; repeat until you reach period t+ k

7. You have one simulated forecast. Repeat steps 4–6 until you have many (say, 1000)
simulated forecasts. These are your predicted values, and can be summarized by a
mean and predictive intervals

8. To get a simulated expected forecast, repeat step 7 many times (say 1000),
each time taking the average forecast. You now have a vector of 1000 expected
forecasts, and can summarize them with a mean and confidence intervals

Effect of repealing seatbelt law?

What does the model predict would happen if we repealed the law?

How much would deaths increase after one month? One year? Five years?

If we run this experiment, how much might the results vary from model expectations?

Need forecast deaths—no law for the next 60 periods, plus predictive intervals

predict(arima.res1, # The model
n.ahead = 60, # predict out 60 periods
newxreg = newdata) # using these counterfactual x’s

1969 1972 1975 1978 1981 1984 1987

10
00

20
00

30
00

Predicted effect of reversing seat belt law

Time

D
ea

th
s

The observed time series

1969 1972 1975 1978 1981 1984 1987

10
00

20
00

30
00

Predicted effect of reversing seat belt law

Time

D
ea

th
s

What the model predicts would happen if the seat belt requirement is repealed

1969 1972 1975 1978 1981 1984 1987

10
00

20
00

30
00

Predicted effect of reversing seat belt law

Time

D
ea

th
s

adding the 95 % predictive interval

1969 1972 1975 1978 1981 1984 1987

10
00

20
00

30
00

Predicted effect of reversing seat belt law

Time

D
ea

th
s

which is easier to read as a polygon

1969 1972 1975 1978 1981 1984 1987

10
00

20
00

30
00

Predicted effect of reversing seat belt law

Time

D
ea

th
s

comparing to what would happen with the law left intact

1969 1972 1975 1978 1981 1984 1987

10
00

20
00

30
00

Predicted effect of reversing seat belt law

Time

D
ea

th
s

comparing to what would happen with the law left intact

Confidence intervals vs. Predictive Intervals

Suppose we want confidence intervals instead of predictive intervals

CIs just show the uncertainty from estimation

Analog to se(β) and significance tests

predict() won’t give us CIs

Need to use another package, Zelig. (Will review code later.)

Time

T
im

e
S

er
ie

s
V

al
ue

0 50 100 150 200

10
00

20
00

The blue lines show what the model predicts would have happened if no seat belt
law had been implemented. Dashed lines are 95% confidence intervals around the
expected number of deaths given the lack of a law

Time

T
im

e
S

er
ie

s
V

al
ue

0 50 100 150 200

10
00

20
00

The blue lines now show what the model predicts should have happened under the
(factual) scenario in which a law was implemented.

Time

T
im

e
S

er
ie

s
V

al
ue

0 50 100 150 200

10
00

20
00

The model expectations fit closely with the actual data

Time

T
im

e
S

er
ie

s
V

al
ue

0 50 100 150 200

10
00

20
00

E[Y|X1] − E[Y|X]

Time From First Counterfactual

D
iff

er
en

ce

5 10 15 20

−
50

0
−

35
0

−
20

0

The model estimates a large, statistically significant and constant reduction in
deaths due to the law. Won’t always be constant

Neat. But is ARMA(p,q) appropriate for our data?

ARMA(p,q) an extremely flexible, broadly applicable model of single time series yt

But ONLY IF yt is stationary

If data are non-stationary (have a unit root), then:

• Results may be spurrious

• Long-run predictions impossible

Can assess stationarity through two methods:

1. Examine the data: time series, ACF, and PACF plots

2. Statistical tests for a unit root

Unit root tests: Basic notion

• If yt is stationary, large negative shifts should be followed by large positive shifts,
and vice versa (mean-reversion)

• If yt is non-stationary (has a unit root), large negative shifts should be uncorrelated
with large positive shifts

Thus if we regress yt − yt−1 on yt−1, we should get a negative coefficient if and only
if the series is stationary

To do this:

Augmented Dickey-Fuller test adf.test() in the tseries library

Phillips-Perron test: PP.test()

Tests differ in how they model heteroskedasticity, serial correlation, and the number
of lags

Unit root tests: Limitations

Form of unit root test: rejecting the null of a unit root.

Will tend to fail to reject for many non-unit roots with high persistence

Very hard to distinguish near-unit roots from unit roots with test statistics

Famously low power tests

Unit root tests: Limitations

Analogy: Using polling data to predict a very close election

Null Hypothesis: Left Party will get 50.01% of the vote

Alternative Hypothesis: Left will get < 50% of the vote

We’re okay with a 3% CI if we’re interested in alternatives like 45% of the vote

But suppose we need to compare the Null to 49.99%

To confidently reject the Null in favor of a very close alternative like this, we’d need
a CI of about 0.005% or less

Unit root tests: Limitations

In comparative politics, we usual ask whether φ = 1 or, say, φ = 0.99

Small numerical difference makes a huge difference for modeling

And unit root tests are weak, and poorly discriminate across these cases

Simply not much use to us

Unit root tests: usage

> # Check for a unit root
> PP.test(death)

Phillips-Perron Unit Root Test

data: death
Dickey-Fuller = -6.435, Truncation lag parameter = 4, p-value = 0.01

> adf.test(death)

Augmented Dickey-Fuller Test

data: death
Dickey-Fuller = -6.537, Lag order = 5, p-value = 0.01
alternative hypothesis: stationary

Linear regression with Yt−1

A popular model in comparative politics is:

yt = yt−1φ1 + xtβ + εt

estimated by least squares, rather than maximum likelihood

That is, treat yt−1 as “just another covariate”, rather than a special term

Danger of this approach: yt−1 and εt are almost certainly correlated

Violates G-M condition 3: Bias in β, incorrect s.e.’s

When can you use a lagged y?

My recommendation:

1. Estimate an LS model with the lagged DV

2. Check for remaining serial correlation (Breusch-Godfrey)

3. Compare your results to the corresponding AR(p) estimated by ML

4. Use LS only if it make no statistical or substantive difference

Upshot: You can use LS in cases where it works just as well as ML

If you model the right number of lags, and need no MA(q) terms, LS often not far off

Still need to interpret the β’s and φ’s dynamically

Testing for serial correlation in errors

In LS models, serial correlation makes estimates inefficient (like heteroskedasticity)

If the model includes a lagged dependent variable, serial correlation → inconsistent
estimates (E(xε) 6= 0)

So we need to be able to test for serial correlation.

A general test that will work for single time series or panel data is based on the
Lagrange Multiplier

Called Breusch-Godfrey test, or the LM test

Lagrange Multiplier test for serial correlation

1. Run your time series regression by least squares, regressing

yt = β0 + β1x1t + . . .+ βkxkt + φ1yt−1 + . . .+ φkyt−k + ut

2. Regress (using LS) ût on a constant,
the explanatory variables x1, . . . , xk, yt−1, . . . , yt−k,
and the lagged residuals, ût−1, . . . ût−m

Be sure to chose m < p. If you choose m = 1, you have a test for
1st degree autocorrelation; if you choose m = 2, you have a test
for 2nd degree autocorrelation, etc.

3. Compute the test-statistic (T − p)R2, where R2 is the coefficient of determination
from the regression in step 2. This test statistic is distributed χ2 with m degrees
of freedom.

4. Rejecting the null for this test statistic is equivalent to rejecting no autocorrelation.

Regression with lagged DV for Accidents

Call:
lm(formula = death ~ lagdeath + q4 + law)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 848.4006 79.4700 10.68 < 2e-16 ***
lagdeath 0.4605 0.0469 9.82 < 2e-16 ***
q4 311.5325 27.8085 11.20 < 2e-16 ***
law -211.2391 39.8187 -5.31 3.2e-07 ***

Multiple R-squared: 0.714, Adjusted R-squared: 0.709

Tests for serial correlation

> bgtest(lm.res1)

Breusch-Godfrey test for serial correlation of order 1

data: lm.res1
LM test = 0.016, df = 1, p-value = 0.8995

> bgtest(lm.res1,2)

Breusch-Godfrey test for serial correlation of order 2

data: lm.res1
LM test = 10.92, df = 2, p-value = 0.004259

What we’re doing today

Next steps:

• Review ARMA(p,q) prediction and confidence intervals

• Discuss distributed lag models

• Learn some (weak) techniques for identifying non-stationary time series

• Analyze non-stationary series using differences

• Analyze non-stationary series using cointegration

Differences & Integrated time series

Define ∆dyt as the dth difference of yt

For the first difference (d = 1), we write

∆yt = yt − yt−1

For the second difference (d = 2), we write

∆2yt = (yt − yt−1)− (yt−1 − yt−2)

or the difference of two first differences

or the difference in the difference

Differences & Integrated time series

For the third difference (d = 3), we write

∆3yt = ((yt − yt−1)− (yt−1 − yt−2))− (yt−1 − yt−2)− (yt−2 − yt−3)

or the difference of two second differences

or the difference in the difference in the difference

This gets perplexing fast.

Fortunately, we will rarely need d > 1, and almost never d > 2.

Differences & Integrated time series

What happens if we difference a stationary AR(1) process (|φ1| < 1)?

yt = yt−1φ1 + xtβ + εt

yt − yt−1 = yt−1φ1 − yt−1 + xtβ + εt

∆yt = (1− φ)yt−1 + xtβ + εt

We still have an AR(1) process, and we’ve thrown away some useful information (the
levels in yt) that our covariates xt might explain

Differences & Integrated time series

What happens if we difference a random walk?

yt = yt−1 + xtβ + εt

yt − yt−1 = yt−1 − yt−1 + xtβ + εt

∆yt = xtβ + εt

The result is AR(0), and stationary—
we could analyze it using ARMA(0,0), which is just LS regression!

When a single differencing removes non-stationarity from a time series yt,
we say yt is integrated of order 1, or I(1).

A time series that does not need to be differenced to be stationary is I(0).

This differencing trick comes at a price:
we can only explain changes in yt, not levels,
and hence not the long-run relationship between yt and xt.

Differences & Integrated time series

What happens if we difference an AR(2) unit root process?

yt = 1.5yt−1 − 0.5yt−2 + xtβ + εt

yt − yt−1 = 1.5yt−1 − yt−1 − 0.5yt−2 + xtβ + εt

∆yt = 0.5yt−1 − 0.5yt−2 + xtβ + εt

We get a stationary AR(2) process. We could analyze this new process with
ARMA(2,0).

We say that the original process is ARI(2,1),
or an integrated autoregressive process of order 2, integrated of order 1.

Differences & Integrated time series

Recall our GDP & Democracy example

GDPt = φ1GDPt−1 + β0 + β1Democracyt + εt

GDPt = 0.9×GDPt−1 + 10 + 2×Democracyt + εt

At year t, GDPt = 100 and the country is a non-democracy Democracyt = 0,
and we are curious what would happen to GDP if in t+ 1 to t+ k,
the country becomes a democracy.

Differences & Integrated time series

At year t, GDPt = 100 and the country is a non-democracy Democracyt = 0,
and we are curious what would happen to GDP if in t+ 1 to t+ k,
the country becomes a democracy.

GDPt = φ1GDPt−1 + β0 + β1Democracyt + εt

GDPt −GDPt−1 = φ1GDPt−1 −GDPt−1 + β0 + β1Democracyt + εt

∆GDPt = (1− φ1)GDPt−1 −GDPt−1 + β0 + β1Democracyt + εt

∆GDPt = −0.1×GDPt−1 + 10 + 2×Democracyt + εt

Works just as before—but we have to supply external information on the levels

The model doesn’t know them

ARIMA(p,d,q) models

An ARIMA(p,d,q) regression model has the following form:

∆dyt = ∆dyt−1φ1 + ∆dyt−2φ2 + . . .+ ∆dyt−pφp

+εt−1ρ1 + εt−2ρ2 + . . .+ εt−qρq

+xtβ + εt

This just an ARMA(p,q) model applied to differenced yt

The same MLE that gave us ARMA estimates still estimates φ̂, ρ̂, and β̂

We just need to choose d based on theory, ACFs and PACFs, and unit root tests
(ugh)

ARIMA(p,d,q) models

Conditional forecasting and in-sample counterfactuals work just as before

Same code from last time will work; just change the d term of the ARIMA order to 1

Example: Presidential Approval

We have data on the percent (× 100) of Americans supporting President Bush,
averaged by month, over 2/2001–6/2006.

Our covariates include:

The average price of oil per month, in $/barrel

Dummies for September and October of 2001

Dummies for first three months of the Iraq War

Let’s look at our two continuous time series

0 10 20 30 40 50 60

40
60

80
US Presidential Approval

Time

P
er

ce
nt

 A
pp

ro
vi

ng

9/11
Iraq
 War

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Series approve

5 10 15

−
0.

2
0.

2
0.

6

Lag

P
ar

tia
l A

C
F

Series approve

0 10 20 30 40 50 60

15
0

25
0

Average Price of Oil

Time

$
pe

r
B

ar
re

l

9/11
Iraq
 War

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Series avg.price

5 10 15

−
0.

2
0.

2
0.

6

Lag

P
ar

tia
l A

C
F

Series avg.price

0 10 20 30 40 50 60

−
5

5
15

US Presidential Approval

Time

C
ha

ng
e

in
 P

er
ce

nt
 A

pp
ro

vi
ng

9/11
Iraq
 War

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Series approveDiff

5 10 15

−
0.

2
0.

0
0.

2

Lag

P
ar

tia
l A

C
F

Series approveDiff

0 10 20 30 40 50 60

−
40

0
20

Average Price of Oil

Time

C
ha

ng
e

in
 $

 p
er

 B
ar

re
l

9/11
Iraq
 War

0 5 10 15

−
0.

2
0.

4
0.

8

Lag

A
C

F

Series avg.priceDiff

5 10 15

−
0.

4
0.

0

Lag

P
ar

tia
l A

C
F

Series avg.priceDiff

Example: Presidential Approval

Many suspect approve and avg.price are non-stationary processes

Theoretically, what does this mean? Could an approval rate drift anywhere?

Note a better dependent variable would be the logit transformation of approve,
ln(approve/(1− approve)), which is unbounded and probably closer to the latent
concept of support

And extenting approve out to T =∞ would likely stretch the concept too far for a
democracy with regular, anticipated elections

We’ll ignore this to focus on the TS issues

Example: Presidential Approval

To a first approximation, we suspect approve and avg.price may be
non-stationary processes

We know that regressing one I(1) process on another risks spurrious correlation

How can we investigate the relationship between these variables?

Strategy 1: ARIMA(0,1,0), first differencing

Example: Presidential Approval

We load the data, plot it, with ACFs and PACFs

Then perform unit root tests

> PP.test(approve)

Phillips-Perron Unit Root Test

data: approve
Dickey-Fuller = -2.839, Truncation lag parameter = 3, p-value = 0.2350

> adf.test(approve)

Augmented Dickey-Fuller Test

data: approve
Dickey-Fuller = -3.957, Lag order = 3, p-value = 0.01721
alternative hypothesis: stationary

Example: Presidential Approval

> PP.test(avg.price)

Phillips-Perron Unit Root Test

data: avg.price
Dickey-Fuller = -2.332, Truncation lag parameter = 3, p-value = 0.4405

> adf.test(avg.price)

Augmented Dickey-Fuller Test

data: avg.price
Dickey-Fuller = -3.011, Lag order = 3, p-value = 0.1649
alternative hypothesis: stationary

Example: Presidential Approval

We create differenced versions of the time series, and repeat

> adf.test(na.omit(approveDiff))

Augmented Dickey-Fuller Test

data: na.omit(approveDiff)
Dickey-Fuller = -4.346, Lag order = 3, p-value = 0.01
alternative hypothesis: stationary

> adf.test(na.omit(avg.priceDiff))

Augmented Dickey-Fuller Test

data: na.omit(avg.priceDiff)
Dickey-Fuller = -5.336, Lag order = 3, p-value = 0.01
alternative hypothesis: stationary

Example: Presidential Approval

We estimate an ARIMA(0,1,0), which fit a little better than ARIMA(2,1,2) on the
AIC criterion

Call:
arima(x = approve, order = c(0, 1, 0),

xreg = xcovariates, include.mean = TRUE)

Coefficients:
sept.oct.2001 iraq.war avg.price

11.207 5.690 -0.071
s.e. 2.519 2.489 0.034

sigma^2 estimated as 12.4: log likelihood = -171.2, aic = 350.5

Example: Presidential Approval

To interpret the model, we focus on historical counterfactuals

What would Bush’s approval have looked like if 9/11 hadn’t happened?

What if Bush had not invaded Iraq?

What if the price of oil had remained at pre-war levels?

Naturally, we only trust our results so far as we trust the model

(which is not very much—we’ve left out a lot, like unemployment, inflation,
boundedness of approve, . . .)

We simulate counterfactual approval using Zelig’s implementation of ARIMA

Time

T
im

e
S

er
ie

s
V

al
ue

0 10 20 30 40 50 60

40
60

80

In blue: Predicted Bush approval without Iraq

In black: Actual approval

Time

T
im

e
S

er
ie

s
V

al
ue

0 10 20 30 40 50 60

40
60

80

At first, starting the war in Iraq appears to help Bush’s popularity

Then, it hurts—a lot. Sensible result. So are we done?

Time

T
im

e
S

er
ie

s
V

al
ue

0 10 20 30 40 50 60

40
60

80

In blue: Predicted Bush approval with Iraq war

In black: Actual approval

Time

T
im

e
S

er
ie

s
V

al
ue

0 10 20 30 40 50 60

40
60

80

Wait—can the model predict the long run approval rate? Not even close

Time

T
im

e
S

er
ie

s
V

al
ue

0 10 20 30 40 50 60

40
60

80

The model fit well for the first few months, then stays close to the ex ante“mean”
approval

But reality (which is I(1)) drifts off into the cellar

Time

T
im

e
S

er
ie

s
V

al
ue

0 10 20 30 40 50 60

40
50

60
70

80
E[Y|X1] − E[Y|X]

Time From First Counterfactual

D
iff

er
en

ce

0 10 20 30 40

0
2

4
6

8
10

First differences show that all the action is in the short-run

Long-run predictions are not feasible with unit root processes

Time

T
im

e
S

er
ie

s
V

al
ue

0 10 20 30 40 50 60

55
65

75
85

Suppose Oil had stayed at its pre-war price of $161/barrel

Then Bush’s predicted popularity looks higher than the data

Time

T
im

e
S

er
ie

s
V

al
ue

0 10 20 30 40 50 60

40
60

80

But wait—here are the factual “predictions” under the actual oil price

Miss the data by a mile

Time

T
im

e
S

er
ie

s
V

al
ue

0 10 20 30 40 50 60

55
65

75
85

E[Y|X1] − E[Y|X]

Time From First Counterfactual

D
iff

er
en

ce

0 10 20 30 40

−
15

−
5

0

The first difference makes more sense, and avoids predicting unknowable levels

Limits of ARIMA

ARIMA(p,1,q) does a good job of estimating the short run movement of stationary
variables

But does a terrible job with long-run levels

No surprise: The model includes no level information

While the observed level could drift anywhere

Limits of ARIMA

Using ∆yt as our response has a big cost

Purging all long-run equilibrium relationships from our time series

These empirical long-run relationships may be spurious (why we’re removing them)

But what if they are not? What if yt and xt really move together over time?

Then removing that long-run relationship removes theoretically interesting
information from our data

Since most of our theories are about long-run levels of our variables, we have usually
just removed the most interesting part of our dataset!

Cointegration

Consider two time series yt and xt:

xt = xt−1 + εt

yt = yt−1 + 0.6xt + νt

where εt and νt are (uncorrelated) white noise

xt and yt are both: AR(1) processes, random walks, non-stationary, and I(1).

They are not spuriously correlated, but genuinely causally connected

Neither tends towards any particular level, but each tends towards the other

A particularly large νt may move yt away from xt briefly,
but eventually, yt will move back to xt’s level

As a result, they will move together through t indefinitely

xt and yt are said to be cointegrated

Cointegrated I(1) variables

Time

0 20 40 60 80 100

−
5

0
5

10

Cointegration

Any two (or more) variables yt, xt are said to be cointegrated if

1. each of the variables is I(1)

2. there is some vector α such that

zt = cbind(yt, xt)α

zt ∼ I(0)

or in words, there is some linear combination of the non-stationary variables which
is stationary

There may be many cointegrating vectors;
the cointegration rank r gives their number

Cointegration: Engle-Granger Two Step

Several ways to find the cointegration vector(s) and use it to anaylze the system

Simplest is Engle-Granger Two Step Method

Works best if cointegration rank is r = 1

Step 1: Estimate the cointegration vector by least squares with no constant:

yt = α∗1xt−1 + α∗2xt−2 + . . .+ α∗Kxt−K + zt

This gives us the cointegrating vector α = (1,−α∗1,−α∗2, . . .− α∗K)

and the long-run equilibrium path of the cointegrated variables, ẑt

We can test for cointegration by checking that ẑt is stationary

Note that the usual unit root tests work, but with different critical values

This is because the α̂’s are very well estimated: “super-consistent”
(converge to their true values very fast as T increases)

Cointegration: Engle-Granger Two Step

Step 2: Estimate an Error Correction Model

After obtaining the cointegration ẑt and confirming it is I(0), we can estimate a
particularly useful specification known as an error correction model, or ECM

ECMs simultaneously estimate long- and short-run effects for a system of
cointegrated variables

Better than ARI(p,d) because we don’t throw away level information

Interestingly, can be estimated with least squares

Cointegration: Engle-Granger Two Step

For a bivariate system of yt, xt, two equations describe how this cointegrated process
evolves over time:

∆yt = ψ0 + γ1ẑt−1 +
J∑

j=1

ψ1j∆xt−j +
K∑

k=1

ψ2k∆yt−k + ut

∆xt = ζ0 + γ2ẑt−1 +
J∑

j=1

ζ1j∆yt−j +
K∑

k=1

ζ2k∆xt−k + vt

These equations are the “error correction” form of the model

Show how yt and xt respond to deviations from their long run relationship

Cointegration: Engle-Granger Two Step
Let’s focus on the evolution of yt as a function of its lags, lags of xt, and the error in
the long-run equilibrium, ẑt−1:

∆yt = ψ0 + γ1ẑt−1 +
J∑

j=1

ψ1j∆xt−j +
K∑

k=1

ψ2k∆yt−k + ut

γ1 < 0 must hold: This is the speed of adjustment back to equilibrium;
larger negative values imply faster adjustment

This is the central assumption of cointegration:
In the long run, yt and xt cannot diverge

So short-run differences must be made up later by convergence

For example, yt must eventually reverse course after a big shift away from xt

γ1 shows how quickly yt reverse back to xt

Cointegration: Engle-Granger Two Step

Recall our cointegrated time series, yt and xt:

xt = xt−1 + εt

yt = yt−1 + 0.6xt + νt

To estimate the Engle-Granger Two Step for these data, we do the following in R:

set.seed(123456)

Generate cointegrated data
e1 <- rnorm(100)
e2 <- rnorm(100)
x <- cumsum(e1)
y <- 0.6*x + e2

Run step 1 of the E-G two step
coint.reg <- lm(y ~ x)
coint.err <- residuals(coint.reg)

Make the lag of the cointegration error term
coint.err.lag <- coint.err[1:(length(coint.err)-2)]

Make the difference of y and x
dy <- diff(y)
dx <- diff(x)

And their lags
dy.lag <- dy[1:(length(dy)-1)]
dx.lag <- dx[1:(length(dx)-1)]

Delete the first dy, because we are missing lags for this obs
dy <- dy[2:length(dy)]

Estimate an Error Correction Model with LS
ecm1 <- lm(dy ~ coint.err.lag + dy.lag + dx.lag)
summary(ecm1)

Call:
lm(formula = dy ~ coint.err.lag + dy.lag + dx.lag)

Residuals:
Min 1Q Median 3Q Max

-2.959 -0.544 0.137 0.711 2.307

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0034 0.1036 0.03 0.97
coint.err.lag -0.9688 0.1585 -6.11 2.2e-08 ***
dy.lag -1.0589 0.1084 -9.77 5.6e-16 ***
dx.lag 0.8086 0.1120 7.22 1.4e-10 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.03 on 94 degrees of freedom
Multiple R-squared: 0.546, Adjusted R-squared: 0.532
F-statistic: 37.7 on 3 and 94 DF, p-value: 4.24e-16

Cointegration: Johansen estimator

Alternatively, we can use the urca package, which handles unit roots and
cointegration analysis:

Create a matrix of the cointegrated variables
cointvars <- cbind(y,x)

Perform cointegration tests
coint.test1 <- ca.jo(cointvars,

ecdet = "const",
type="eigen",
K=2,
spec="longrun"
)

summary(coint.test1) # Check the cointegration rank here

Using the output of the test, estimate an ECM
ecm.res1 <- cajorls(coint.test1,

r = 1, # Cointegration rank
reg.number = 1) # which variable(s) to put on LHS

(column indexes of cointvars)

summary(ecm.res1$rlm)

Cointegration: Johansen estimator
######################
Johansen-Procedure
######################

Test type: maximal eigenvalue statistic (lambda max) , without linear trend and constant in cointegration

Eigenvalues (lambda):
[1] 3.105e-01 2.077e-02 -1.400e-18

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct
r <= 1 | 2.06 7.52 9.24 12.97
r = 0 | 36.44 13.75 15.67 20.20

Eigenvectors, normalised to first column:
(These are the cointegration relations)

y.l2 x.l2 constant
y.l2 1.00000 1.00 1.000
x.l2 -0.58297 10.13 -1.215

constant -0.02961 -50.24 -38.501

Weights W:
(This is the loading matrix)

y.l2 x.l2 constant
y.d -0.967715 -0.001015 -1.004e-18
x.d 0.002461 -0.002817 -2.899e-19

Cointegration: Johansen estimator

Call:
lm(formula = substitute(form1), data = data.mat)

Residuals:
Min 1Q Median 3Q Max

-2.954 -0.536 0.150 0.712 2.318

Coefficients:
Estimate Std. Error t value Pr(>|t|)

ect1 -0.968 0.158 -6.13 2.0e-08 ***
y.dl1 -1.058 0.108 -9.82 4.1e-16 ***
x.dl1 0.809 0.112 7.26 1.1e-10 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.02 on 95 degrees of freedom
Multiple R-squared: 0.546, Adjusted R-squared: 0.532
F-statistic: 38.1 on 3 and 95 DF, p-value: 2.97e-16

Example: Approval

Return to our Bush approval example, and estimate an ECM equivalent to the
ARIMA(0,1,0) model we chose:

Residuals:
Min 1Q Median 3Q Max

-7.140 -1.675 -0.226 1.643 5.954

Coefficients:
Estimate Std. Error t value Pr(>|t|)

ect1 -0.1262 0.0301 -4.20 9.4e-05 ***
sept.oct.2001 19.5585 2.1174 9.24 5.4e-13 ***
iraq.war 5.0187 1.6243 3.09 0.0031 **
approve.dl1 -0.3176 0.0945 -3.36 0.0014 **
avg.price.dl1 -0.0505 0.0259 -1.95 0.0561 .

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2.67 on 58 degrees of freedom
Multiple R-squared: 0.63, Adjusted R-squared: 0.598
F-statistic: 19.8 on 5 and 58 DF, p-value: 1.91e-11

