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Data in temporal context

All the models we’ve looked at have been based on an assumption:

Observations are idenitcally and independently distributed, conditional on covariates

Often this is an unrealistic assumption:

• Clustering in physical space (geography)

• Clustering in latent space (networks)

• Temporal dependence (time series)

Inter-dependent observations are intrinsic to social phenomena. Ask any historian or
sociologist

Can we rescue iid somehow?



Data in temporal context

Time’s arrow: The past shapes the future.

Perhaps if we condition on the past (control for it), then we’ll have iid error terms

But it turns out there are many ways to think about the effect of the past



Notation

We assume time is discrete.

Observations take place in periods. No two observations happen at the same time.

Periods could be years, months, quarters, days, etc.

Index our observations as yt, t = 1, . . . , T

For a single (ie, non-panel) time series yt, we have T observations total.

Today we won’t consider any covariates.



Dynamic processes

Several conceptually different ways to think of the effect of history

• Past realizations of y influence current levels of y

• Past shocks to y influence current levels of y

• Past expectations of y influence current levels of y



Examples of dynamic processes

Past realizations of y influence current levels of y.

Example: Unemployment; Welfare state spending uses last years budget as baseline

Past shocks to Y influence current levels of Y

Example: Some forms of financial volatility? Voting in Congress?

Past expectations of Y influence current levels of Y

Example: Polling time series (shocks are partly measurement error); anything
determined by modelers?

Let’s incorporate these dynamics into our baseline model.



Past realizations of y

yt = yt−1φ1 + εt

Known as an autoregressive process

Each new realization of yt incorporates the last period’s realization, yt−1

Note that only one lag of yt appears in our model.

This is an AR(1) process, of an autoregressive process of degree 1.

However, the distance past still has an effect. Implied by above:

yt−1 = yt−2φ1 + εt−1

and so

yt−2 = yt−3φ1 + εt−2

. . . and on and on back to the “original” period



Autoregressive Processes

Recursive reparameterization: Iterating through all past periods and substituting
back into the first formula.



Autoregressive Processes

For AR(1), recursion reveals the following:

yt = yt−1φ1 + εt

= (yt−2φ1 + εt−1)φ1 + εt

= yt−2φ
2
1 + εt−1φ1 + εt

= (yt−3φ1 + εt−2)φ2
1 + εt−1φ1 + εt

= yt−3φ
3
1 + εt−2φ

2
1 + εt−1φ1 + εt

. . . substitute through yt−k

= yt−kφ
k
1 +

k−1∑
j=0

εt−jφ
j

. . . substitute through yt−∞

=
∞∑

j=0

εt−jφ
j



Autoregressive Processes

yt =
∞∑

j=0

εt−jφ
j

In the limit, if yt is AR(1), then
yt includes the effects of every disturbance back to the beginning of time:
εt−1, . . . εt−∞

Effect of history lasts forever in autoregressive processes

So what would happen if |φ1| < 1?

And if |φ1| > 1?

And if |φ1| = 1 exactly?



Autoregressive Processes

But if −1 < φ1 < 1, the effect of the past approaches zero as time passes, but never
completely fades

If |φ1| > 1, the process is explosive, tending quickly to infinity. Not a reasonable
model of any natural or social process (at least anything that lasts very long!)

If φ1 = 1 exactly, we have a random walk or unit root. Very persistent effects of
history, and many unusual properties.



Simulating time series

Basic idea:

1. Start at some y0, e.g., y0 = 0, and choose a φ1 to study

2. Draw y1 = y0φ1 + ε1, where ε1 ∼ N(0, σ2)

3. Iterate on step 2 to generate y2, y3, etc.

In R, just use arima.sim()

E.g., to simulate 1000 iterations of an AR(1) with φ1 = 0.67:

y <- arima.sim(list(order = c(1,0,0),
ar = 0.67,
ma = NULL),

n=1000)
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Here are 100 draws from an AR(1) with φ1 = 0

Nice, but can we “see” that these iterations are not serially correlated (ie, a “white
noise” process, or just N(0, σ2)?



Autocorrelation functions

Simplest way to “see” autocorrelation is to calculate and plot the correlation
between observations separated by a given distance k for k = 1, 2, 3, . . ..

Define the autocorrelation function as

ACFj =
cov(xt, xt+j)

var(xt)

Note that for an AR(1) with φ1, the ACFj is just φj
1

To have R estimate the ACF, just use acf(y)
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Autocorrelation functions

A useful refinement of the ACF is to “partial out” the effects of intervening lags

That is, we want to isolate the conditional correlation of yt and yt−k controlling for
the values yt−1 to yt−k+1.

We call this the partial autocorrelation function, or PACF.

In R, just do pacf(y)
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Simulated AR(1) process with φφ1 = 0.5
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Simulated AR(1) process with φφ1 = 0.75
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Simulated AR(1) process with φφ1 = 0.90
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Observations about AR(1) when |φ1| < 1

• As |φ1| approaches 0, series reverts to its mean at 0 quickly.

• As |φ1| approaches 1, series takes longer to revert to mean.

• Still gets there eventually. (Even for φ1 = 0.99?)

• ACF appears to gradually decline in the lag, as expected

• ACF decays more slowly as |φ1| approaches 1

• But for all process, PACF is large only for lag of 1, because all series are AR(1)
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What’s happening here?

Explosive process. Shouldn’t ever see this in real data
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Is φ1 = 1 really that different from φ1 = 0.99?

Will both eventually bounce around the mean?
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Let’s extend the φ1 = 0.99 sequence

Note that it stays away from the mean for a while, but always comes back

So does the φ1 = 0.9999 sequence, and the φ1 = 0.999999 sequence
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φ1 = 1 doesn’t mean revert ever.

Only passes back through 0 by chance.

Major difference from φ1 = 0.99, but almost identical ACF, PACF
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Stationary Series

AR(1) processes with |φ1| ≥ 1 lack three related properties
which all AR(1) processes with smaller φ1 possess:

1. Mean stationarity

2. Covariance stationarity

3. Ergodicity



Mean stationarity

A time series is mean stationary if its mean does not depend on t

Formally, E(yt) = µ for all t

Note that we are abstracting from trends and other covariates

Suppose we add t itself as a covariate

yt = 0.5yt−1 + tβ + εt

Although this series trends upward, the time series component remain
mean-stationary



Covariance stationarity

A time series is covariance stationary if neither the mean of xt

nor the covariance of xt and xt+k depend on t

The covariance may still depend on the length of time between two observations, k

Formally,
cov(yt, yt+k) = E ((yt − µ)(yt+k − µ)) = γk

for all t and k

Also known as “weak stationarity”



Ergodicity

A time series is ergodic if it converges in probability to its mean

Formally, ergodicity implies E(yt)→ µ as t→∞

Usually the same in practice as stationarity

Unless µ itself is a random function of time



Non-stationary time series

Non-stationary series are “random walks”

Non-stationarity creates several problems

• The ACF and PACF are not defined (since covariances depend on t),
so hard to distinguish a random walk (φ = 1)
from a stationary process with large lags (φ = 0.99)

• Long-run forecasts are hard—don’t tend towards any particular mean

• Spurious regression: Regressing one random walk on another
tends to find large correlations even when the series are really independent

Spurious regression a major problem.

Identified by Granger & Newbold 1974;
called into question a vast amount of past (and future) econometric work.
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Spurious correlation

These were the first two random walks I generated. They are correlated ≈ 0.6 over
the first 100 observations, and ≈ 0.3 over the first 1000

Few social science relationships are this strong. . .
and these are totally unrelated variables!

Many time series look like random walks over the period we can observe them

Grave danger of spurious “significant” findings

Techniques to mitigate this problem later in the course

Techniques to analyze stationary time series next time



Autoregression with p lags: AR(p) process

An autoregressive process may have many lags, e.g.,

yt = yt−1φ1 + yt−2φ2 + . . .+ yt−pφp + εt

This general case is known as AR(p).

The distant past has a direct effect on the present

Distant past should show up in PACF, not just ACF
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Alternative representations of lag structure

The most obvious way to write out an AR(p) process is the equation used above:

yt = yt−1φ1 + yt−2φ2 + . . .+ yt−pφp + εt

But there are alternatives using the lag operator, L
(sometimes called the backshift operator)

Define Lyt = yt−1.

L is an operation that shifts yt back one period

Repeated applications of L create more distant lags: Lkyt−1 = yt−k

Somewhat unusual notation: makes an operation look like a variable

Will turn out to be handy



Example of lag operator: random walk

Recall the equation for a random walk (note that φ1 = 1):

yt = Lyt + εt

yt − Lyt = εt

(1− L)yt = εt

yt =
εt

1− L
yt = (1 + L + L2 + L3 + . . .+ L∞)εt

yt = εt + εt−1 + εt−2 + . . .+ εt−∞

So the Lag operator shows us that the random walk consists of all past disturbances
with equal weight.



Unit roots

Now suppose we have an AR(2) process:

yt = yt−1φ1 + yt−2φ2 + εt

Using the lag operator, this is

yt = φ1Lyt + φ2L2yt + εt

Rearranging, we find (
1− φ1L + φ2L2

)
yt = εt

Isolate the polynomial:
1− φ1L + φ2L2



Unit roots

1− φ1L + φ2L2 = 0

Setting this equal to 0, and solving for the roots of L yields 2 numbers

If the absolute value of both roots > 1, then yt is stationary

If either root = 1 or −1, or is a unit root, then yt is non-stationary

For AR(2) this is conceptually easy; if the sum of φ1, φ2 is 1 or −1, you have a
non-stationary series



Unit roots

This generalizes to AR(p):

yt = yt−1φ1 + yt−2φ2 + yt−3φ3 + . . .+ yt−pφpεt

Using the lag operator, this is

yt = φ1Lyt + φ2L2yt + φ3L3yt + . . .+ φpLpyt + εt

Rearranging, we find(
1− φ1L + φ2L2 + φ3L3 + · · ·+ φpLp

)
yt = εt



Unit roots

(
1− φ1L + φ2L2 + φ3L3 + · · ·+ φpLp

)
yt = εt

You can solve for the roots for a given polynomial using polyroot in R

Should worry if any (empirical) roots “close” to 1.

More on finding unit roots next time

Very hard to do well, unless t is very large (not likely in political science)
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Does this picture remind you of another time series process?
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Past shocks

Suppose we think yt responds to past shocks εt−q only, not past values of yt

Many financial examples (day-trading)

A political example: Voting after a major roll call in Congress

A model that response to last period’s disturbance:

yt = εt−1ρ1 + εt

This is known as a moving average process of order 1

So called because the stochastic component is a weighted average of the current and
previous error



MA(1) Processes

Notice something interesting when we calculate the autocorrelations for lags 1 and 2.

Remember that because εt is white noise, cov(εt, εt+k) = 0 for all k ≥ 1

E(yt − µ)(yt−1 − µ) = E(εt + ρ1εt−1)(εt−1 + ρ1εt−2)

= E(εtεt−1 + ρ1ε
2
t−1 + ρ1εtεt−2 + ρ2

1εt−1εt−2)

= 0 + ρσ2
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MA(1) Processes

Notice something interesting when we calculate the autocorrelations for lags 1 and 2.

Remember that because εt is white noise, cov(εt, εt+k) = 0 for all k ≥ 1

E(yt − µ)(yt−1 − µ) = E(εt + ρ1εt−1)(εt−1 + ρ1εt−2)

= E(εtεt−1 + ρ1ε
2
t−1 + ρ1εtεt−2 + ρ2

1εt−1εt−2)

= 0 + ρσ2 + 0 + 0

In MA(1), yt and yt+1 are correlated



MA(1) Processes

However, for any larger lags . . .

E(yt − µ)(yt−2 − µ) = E(εt + ρ1εt−1)(εt−2 + ρ1εt−3)

= E(εtεt−2 + ρ1εt−1εt−2 + ρ1εtεt−3 + ρ2
1εt−1εt−3)

= 0 + 0
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= 0 + 0 + 0 + 0



MA(1) Processes

However, for any larger lags . . .

E(yt − µ)(yt−2 − µ) = E(εt + ρ1εt−1)(εt−2 + ρ1εt−3)

= E(εtεt−2 + ρ1εt−1εt−2 + ρ1εtεt−3 + ρ2
1εt−1εt−3)

= 0 + 0 + 0 + 0

In MA(1), yt and yt+k are uncorrelated if k > 1

Shocks die out completely after 1 period. PACF will be 0 after 1 period.

So MA(1) processes are always stationary and ergodic.



The MA(q) process

We can add any number of moving average terms to our equation

yt = εt−1ρ1 + εt−2ρ2 + . . .+ εt−qρq + εt

This is known as a moving average process of order q, or an MA(q) process

Note that as in the AR(1), the effect of past shocks dies out after q periods

So MA(q) processes are always stationary and ergodic for finite q.

Contrast to the AR(1) or AR(p), in which shocks never (quite) die out, and
non-stationarity can occur



Simulating MA(q)

To simulate 1000 iterations of an MA(2) with ρ1 = 0.67 and ρ2 = 0.5:

y <- arima.sim(list(order = c(0,0,2),
ar = NULL,
ma = c(0.67,0.5)),

n=1000)
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Equivalence of AR and MA processes

For any AR(1) with parameter φ1, there is some MA(∞) with the right
ρ1, ρ2, . . . , ρ∞ which is equivalent (produces the same time series)

That is, there is an endless pattern of MA terms that exactly replicates the rate of
decay of a shock to the time series over time

For any MA(1) with parameter ρ1, there is some AR(∞) with the right
φ1, φ2, . . . , φ∞ which is equivalent (produces the same time series)

That is, there is an infinite set of AR terms that exact cancel out the long term
effect of a shock except for a transitory moving average-like effect



Equivalence of AR and MA processes

When looking for the best representation of a time series, and can only choose an
AR(p) or an MA(q), one or the other may involve fewer parameters to estimate

But why choose only one? Why not a little of each? Even more efficient:
ARMA(p,q)



Past expectations

µt = xtβ + µt−1φ

implies
µt−1 = xt−1β + µt−2φ

substituting back, we find

µt = xtβ + (xt−1β + µt−2φ)φ

= xtβ + xt−1βφ+ µt−2φ
2

= xtβ + xt−1βφ+ (xt−2β + µt−3φ)φ2

= xtβ + xt−1βφ+ xt−2βφ
2 + µt−3φ

3

= µ1φ
t−1 +

t−2∑
j=0

xt−jβφ
j

The final line can be substituted into a Normal likelihood function.



Past expectations

µt = µ1φ
t−1 +

t−2∑
j=0

xt−jβφ
j

Notice three things about the final line

1. We still have the first µ1. We could estimate it.
Or make some assumption about the first period (e.g., µ1 = y1)

2. The present value of yt turns out to depend on all past values of x

3. But more ancient xt matter less for smaller |φ|
|φ| > 1 is again implausible (effects would get bigger and bigger as they aged),
eventually becoming infinite

This model is known as a geometric distributed lag.



Ambiguity of different dynamic specifications

We have talked about controlling for

• past realized values (AR processes)

• past expected values (MA process)

• past shocks (distributed lag processes)

But note that these concepts are closely related:

yt−1 = µt−1 + εt−1

Any two are equivalent to the third.

So choosing any two produces identical results to choosing any other two

But with a different interpretation


