POLS/CSSS 503: Advanced Quantitative Political Methodology

Outliers and Robust Regression Techniques

Christopher Adolph

Department of Political Science
and
Center for Statistics and the Social Sciences
University of Washington, Seattle
Outliers

Suppose we find no overall pattern in the mean or variance of our residuals.

But a handful of residuals look odd, as if they came from another distribution.
Outliers

Suppose we find no overall pattern in the mean or variance of our residuals.

But a handful of residuals look odd, as if they came from another distribution.

For example, suppose \(\varepsilon_i \sim \mathcal{N}(0, \sigma^2) \) and \(\sigma^2 = 2 \):

\[
Y_1 = X_1 \beta + \varepsilon_1, \quad \varepsilon_1 = -0.247
\]
Outliers

Suppose we find no overall pattern in the mean or variance of our residuals.

But a handful of residuals look odd, as if they came from another distribution.

For example, suppose \(\varepsilon_i \sim \mathcal{N}(0, \sigma^2) \) and \(\sigma^2 = 2 \):

\[
\begin{align*}
Y_1 &= X_1\beta + \varepsilon_1, \quad \varepsilon_1 = -0.247 \\
Y_2 &= X_2\beta + \varepsilon_2, \quad \varepsilon_2 = -0.829
\end{align*}
\]
Outliers

Suppose we find no overall pattern in the mean or variance of our residuals

But a handful of residuals look odd, as if they came from another distribution.

For example, suppose $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ and $\sigma^2 = 2$:

$$Y_1 = X_1\beta + \varepsilon_1, \quad \varepsilon_1 = -0.247$$

$$Y_2 = X_2\beta + \varepsilon_2, \quad \varepsilon_2 = -0.829$$

$$Y_3 = X_3\beta + \varepsilon_3, \quad \varepsilon_3 = 0.820$$

...

$$Y_{41} = X_{41}\beta + \varepsilon_{41}, \quad \varepsilon_{41} = 0.644$$
Outliers

Suppose we find no overall pattern in the mean or variance of our residuals

But a handful of residuals look odd, as if they came from another distribution.

For example, suppose $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ and $\sigma^2 = 2$:

\[
\begin{align*}
Y_1 &= X_1 \beta + \varepsilon_1, & \varepsilon_1 &= -0.247 \\
Y_2 &= X_2 \beta + \varepsilon_2, & \varepsilon_2 &= -0.829 \\
Y_3 &= X_3 \beta + \varepsilon_3, & \varepsilon_3 &= 0.820 \\
\ldots \\
Y_{41} &= X_{41} \beta + \varepsilon_{41}, & \varepsilon_{41} &= 0.644 \\
Y_{42} &= X_{42} \beta + \varepsilon_{42}, & \varepsilon_{42} &= 10000000
\end{align*}
\]

Imagine these were data on the charitable contributions of randomly selected Seattle residents, and observation 42 (by chance) was Bill Gates.
Outliers

Observations 1 through 41 should cause no difficulties.

If we regressed Y on X for just these observations, we would get $\hat{\beta}_{LS} \approx \beta$.
Outliers

Observations 1 through 41 should cause no difficulties.

If we regressed Y on X for just these observations, we would get $\hat{\beta}_{LS} \approx \beta$.

But when we include observation 42, all hell breaks loose.
Outliers

Observations 1 through 41 should cause no difficulties.

If we regressed Y on X for just these observations, we would get $\hat{\beta}_{LS} \approx \beta$.

But when we include observation 42, all hell breaks loose.

A less extreme, graphical presentation helps fix ideas

I’ll draw 10 observations from the model

$$y_i = 1 \times x_i + \varepsilon_i$$

$$\varepsilon \sim \mathcal{N}(0, \frac{1}{15})$$

And add an observation: $x_{11} = 0.99$, $y_{11} = 0$

Notice this last observation is *sui generis*

Not a product of the model that produced the other 10 cases
Artificial data with an outlier

What will least squares make of these data?
The outlier pulls the LS line towards itself. \(\hat{\beta}_{LS} = 0.61 \) (se = 0.33).

That's far from the \(\beta \) that generated the first 10 observations.
Deleting the outlier allows LS to fit the good data: \(\hat{\beta}_{LS} = 1.02, (se = 0.09) \).
Outliers

Outliers are observations that come from another distribution, e.g.,

- From a different “universe” of data
Outliers

Outliers are observations that come from another distribution, e.g.,

- From a different “universe” of data
- Coder error (typo)
Outliers

Outliers are observations that come from another distribution, e.g.,

- From a different “universe” of data
- Coder error (typo)
- We omitted a variable, Z conditional on which ε_{42} comes from $N(x_{42}\beta, \sigma^2)$
 For the Bill Gates outlier, this could be because we omitted log(income)
Outliers are observations that come from another distribution, e.g.,

- From a different “universe” of data
- Coder error (typo)
- We omitted a variable, Z conditional on which ε_{42} comes from $N(x_{42}\beta, \sigma^2)$
 For the Bill Gates outlier, this could be because we omitted $\log($income$)$
- ε_{42} was just a really really unusual event (a “black swan”)

Outliers

Outliers are observations that come from another distribution, e.g.,

- From a different “universe” of data
- Coder error (typo)
- We omitted a variable, Z conditional on which ε_{42} comes from $N(x_{42}\beta, \sigma^2)$
 For the Bill Gates outlier, this could be because we omitted $\log($income$)$
- ε_{42} was just a really really unusual event (a “black swan”)

The best approach depends on what caused the data to be an outlier

But we can’t always tell the cause
Outliers

Outliers are observations that come from another distribution, e.g.,

- From a different “universe” of data
- Coder error (typo)
- We omitted a variable, Z conditional on which ε_{42} comes from $N(x_{42}\beta, \sigma^2)$
 For the Bill Gates outlier, this could be because we omitted $\log(\text{income})$
- ε_{42} was just a really really unusual event (a “black swan”)

The best approach depends on what caused the data to be an outlier

But we can’t always tell the cause

And in the multivariate case, hard to tell whether an obs is an outlier at all
The Multivariate Case

To find outliers in multivariate regressions, we need special tools.

Tool 1: A measure of **leverage**

How much weight does an observation carry in LS?

A function of the distance of the observation from the mean in the space of the X’s.
The Multivariate Case

To find outliers in multivariate regressions, we need special tools.

Tool 1: A measure of **leverage**

How much weight does an observation carry in LS?

A function of the distance of the observation from the mean in the space of the X’s.

Tool 2: A measure of **discrepancy**

How “outlying” is each residual? Mainly a function of the size of the residual.
The Multivariate Case

To find outliers in multivariate regressions, we need special tools.

Tool 1: A measure of **leverage**

How much weight does an observation carry in LS?

A function of the distance of the observation from the mean in the space of the X’s.

Tool 2: A measure of **discrepancy**

How “outlying” is each residual? Mainly a function of the size of the residual.

Putting these tools together tells us the influence of an observation:

\[
\text{Influence} = \text{Leverage} \times \text{Discrepancy}
\]

Influence:

How much does the observation affect (or distort) the regression surface (line)?
Leverage

In the 2D case, the more extreme the X_i, the more leverage of Y_i on $\hat{\beta}_{LS}$.
Leverage

In the 2D case, the more extreme the X_i, the more leverage of Y_i on $\hat{\beta}_{LS}$

This generalizes to the multidimensional case:

The greater the distance of X_i from \bar{X}_i, the greater the leverage
Leverage

In the 2D case, the more extreme the X_i, the more leverage of Y_i on $\hat{\beta}_{LS}$.

This generalizes to the multidimensional case:

The greater the distance of X_i from \bar{X}_i, the greater the leverage.

A simple way to measure this distance is the *hat matrix*, which is derived as:
Leverage

In the 2D case, the more extreme the X_i, the more leverage of Y_i on $\hat{\beta}_{LS}$

This generalizes to the multidimensional case:

The greater the distance of X_i from \bar{X}_i, the greater the leverage

A simple way to measure this distance is the *hat matrix*, which is derived as:

$$\hat{y} = X\hat{\beta}$$
Leverage

In the 2D case, the more extreme the X_i, the more leverage of Y_i on $\hat{\beta}_{LS}$

This generalizes to the multidimensional case:

The greater the distance of X_i from \bar{X}_i, the greater the leverage

A simple way to measure this distance is the hat matrix, which is derived as:

$$
\hat{y} = X\hat{\beta}
$$

$$
\hat{y} = X(X'X)^{-1}X'y
$$
Leverage

In the 2D case, the more extreme the X_i, the more leverage of Y_i on $\hat{\beta}_{LS}$.

This generalizes to the multidimensional case:

The greater the distance of X_i from \bar{X}_i, the greater the leverage.

A simple way to measure this distance is the *hat matrix*, which is derived as:

$$\hat{y} = X\hat{\beta}$$
$$\hat{y} = X(X'X)^{-1}X'y$$
$$\hat{y} = Hy$$
Leverage

In the 2D case, the more extreme the \(X_i \), the more leverage of \(Y_i \) on \(\hat{\beta}_{LS} \).

This generalizes to the multidimensional case:

The greater the distance of \(X_i \) from \(\bar{X}_i \), the greater the leverage.

A simple way to measure this distance is the *hat matrix*, which is derived as:

\[
\hat{y} = X\hat{\beta} \\
\hat{y} = X(X'X)^{-1}X'y \\
\hat{y} = Hy \\
H = X(X'X)^{-1}X'
\]

so called the hat matrix because it transforms \(y \) to \(\hat{y} \).
Leverage

In the 2D case, the more extreme the X_i, the more leverage of Y_i on $\hat{\beta}_{LS}$

This generalizes to the multidimensional case:

The greater the distance of X_i from \bar{X}_i, the greater the leverage

A simple way to measure this distance is the *hat matrix*, which is derived as:

\[
\hat{y} = X\hat{\beta}
\]

\[
\hat{y} = X(X'X)^{-1}X'y
\]

\[
\hat{y} = Hy
\]

\[
H = X(X'X)^{-1}X'
\]

so called the hat matrix because it transforms y to \hat{y}

The diagonal elements of the hat matrix (the h_i's) are proportional to the distance between X_i from \bar{X}_i

Hence h_i is a simple measure of the leverage of Y_i
An aside on distances in multiple dimensions

When we say that obs i lies far away from the average observation on multiple dimensions x_1, x_2, what do we mean?
Aside on distances in multiple dimensions

Our usual measure of how far apart two things are is Euclidian distance.

Suppose we want the distance between a covariate x_j and its mean, \bar{x}_j.

In one dimension:

$$d_{\text{Euclid}} = x_1 - \bar{x}_1$$
Aside on distances in multiple dimensions

Our usual measure of how far apart two things are is *Euclidian distance*

Suppose we want the distance between a covariate x_j and its mean, \bar{x}_j

In one dimension:

$$d_{\text{Euclid}} = x_1 - \bar{x}_1$$

For many dimensions:

$$d_{\text{Euclid}} = \sqrt{\sum_j (x_j - \bar{x}_j)^2}$$
Aside on distances in multiple dimensions

Our usual measure of how far apart two things are is *Euclidian distance*

Suppose we want the distance between a covariate x_j and its mean, \bar{x}_j

In one dimension:

$$d_{\text{Euclid}} = x_1 - \bar{x}_1$$

For many dimensions:

$$d_{\text{Euclid}} = \sqrt{\sum_j (x_j - \bar{x}_j)^2}$$

This is the Pythagorean Theorem, which in matrix form is:

$$D_{\text{Euclid}} = \sqrt{(X - \bar{x})'(X - \bar{x})}$$

NB: This is also known as the *norm* of X, and is written as $||X||$
Aside on discrepancy in multiple dimensions

If we use Euclidean distance as our measure of discrepancy, we hold both of the above points to be equally discrepant.

Is this safe? Sensible?
Aside on discrepancy in multiple dimensions

What if the data look like this? Are these points equally “far out”?

Point 1

Point 2

Mean of X_1 & X_2
Aside on discrepancy in multiple dimensions

No. Distance from a distribution depends on the variance of x_1 in all cases, as well as the covariance of x_1 and x_2 (etc.) in the multidimensional case.
Now suppose the scales were adjusted, Point 2 looks much further out.

Euclid says this makes Point 2 farther from the mean than Point 1. Is he right?
Aside on discrepancy in multiple dimensions

Not unless we’re talking about map coordinates.

For social variables, the scales may differ radically.
Suppose X_1 is k of income and X_2 is % of family members with a college degree.
Aside on discrepancy in multiple dimensions

When we say that obs i lies far away from the average observation on multiple dimensions x_1, x_2, what do we mean?

We *don't* mean Euclidian distance

Two reasons:

1. If one x_j has a numerically wider scale (e.g., dollars instead of a 0-1 scale), it will dominate the above calculation

2. Outlyingness isn’t just about the distance from the mean, but takes into account variance and covariance.

To solve these problems, we need a scale-invariant measure of multidimensional distance.
Mahalanobis distance

We need a scale-invariant measure of multidimensional distance. *Mahalanobis distance* is a good option:

In one dimension, this is just a generalization of Euclid that standardizes for variance:

\[d_{\text{Mahalanobis}} = \frac{x_1 - \bar{x}_1}{\text{sd}(x_1)} \]
Mahalanobis distance

We need a scale-invariant measure of multidimensional distance.

Mahalanobis distance is a good option:

In one dimension, this is just a generalization of Euclid that standardizes for variance:

\[d_{\text{Mahalanobis}} = \frac{x_1 - \bar{x}_1}{\text{sd}(x_1)} \]

In multiple dimensions, we again need to average squared distances, but now we normalize those distances by the variances and covariance first by “dividing” them out:

\[D_{\text{Mahalanobis}} = \sqrt{(X - \bar{x})'\text{Var}(X)^{-1}(X - \bar{x})} \]
Mahalanobis distance

\[D_{\text{Mahalanobis}} = \sqrt{(X - \bar{x})'\text{Var}(X)^{-1}(X - \bar{x})} \]
Mahalanobis distance

\[D_{\text{Mahalanobis}} = \sqrt{(X - \bar{x})'\text{Var}(X)^{-1}(X - \bar{x})} \]

Mahalanobis distance is closely related to hat matrix leverage \(h_i \):

\[h_i = \frac{d_{\text{Mahalanobis}}^2}{n - 1} + \frac{1}{n} \]

So \(h_i \) is measuring just how far out a given observation is in the Mahalanobis space created by the \(X \)'s

Note that we **do not** take the dependent variable \(Y \) into consideration when calculating \(h_i \)
Mahalanobis in practice

X1 has mean = 0, sd = 2.
X2 has mean 0, sd = 5.
Their correlation is 0.6.
Mahalanobis in practice

Euclidian distance Mahalanobis distance

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Point 1</td>
<td>5.00</td>
<td>9.77</td>
</tr>
<tr>
<td>Point 2</td>
<td>5.00</td>
<td>1.57</td>
</tr>
</tbody>
</table>
Aside from the aside: Convex hulls

A related issue we’ve discussed before: extrapolation versus interpolation

What does it mean for a hypothetical set of X’s to lie “outside” the above data?
Extrapolation asks a question about a set of X values outside the convex hull

A convex hull is an elastic band wrapped around the cloud of X’s such that all vertices of the hull are convex
Aside from the aside: Convex hulls

Not coincidentally, the more Mahalanobis distant case is outside the convex hull, while the closer point in is inside.
The reason we’re talking about all this is to understand leverage, which we are measuring with the hat matrix h.

Further notes on the hat matrix:

- The h_i’s sum to the number of parameters
The reason we’re talking about all this is to understand leverage, which we are measuring with the hat matrix h.

Further notes on the hat matrix:

- The h_i’s sum to the number of parameters

- Often we standardize the h_i’s (divide by their mean) to ease interpretation
The reason we’re talking about all this is to understand leverage, which we are measuring with the hat matrix h.

Further notes on the hat matrix:

- The h_i’s sum to the number of parameters
- Often we standardize the h_i’s (divide by their mean) to ease interpretation
- There are no bright lines between low and high h_i’s (but above 2 or 3 is often said to be high)

To get the hat matrix in R, use `hatvalues(res)`, where `res` is the result from `lm()`

```
hatvalues(res)/mean(hatvalues(res))
```

gives standardized hat scores: how many times the average leverage each obs has
Discrepancy

To measure discrepancy, we need residuals that reveal the “outlyingness” of each obs

Here we face a problem:
Discrepancy

To measure discrepancy, we need residuals that reveal the "outlyingness" of each observation.

Here we face a problem:

> Any observation with high influence reduces its own residual!
Discrepancy

To measure discrepancy, we need residuals that reveal the “outlyingness” of each obs

Here we face a problem:

Any observation with high influence reduces its own residual!

This can “mask” outliers. How can we uncover them?
Discrepancy

To measure discrepancy, we need residuals that reveal the “outlyingness” of each observation.

Here we face a problem:

Any observation with high influence reduces its own residual!

This can “mask” outliers. How can we uncover them?

First, we need to correct for the effect of leverage.

We can standardize the residuals for leverage using the hat matrix:

\[\hat{\varepsilon}_{i}^{\text{stand}} = \frac{\hat{\varepsilon}_{i}}{\sqrt{\sum_{i} \hat{\varepsilon}_{i}^2 / (n - k - 1) \sqrt{1 - h_{i}}} \right] \]

(Note the residuals are now in standard deviation units; a residual as big as 2 will be seen only 5 percent of the time)
Discrepancy

But this leaves a second problem:

Not just leverage, but also the discrepancy itself reduce the residual

→ the larger the “true” residual, the greater the downward bias in the observed residual

How can we overcome this?
Discrepancy

But this leaves a second problem:

Not just leverage, but also the discrepancy itself reduce the residual

→ the larger the “true” residual, the greater the downward bias in the observed residual

How can we overcome this?

Studentized residuals:

\[
\hat{e}_{i,\text{stud}} = \frac{\hat{e}_i}{\sqrt{\sum \hat{e}_{\sim i}^2 / (n - k - 1) \sqrt{1 - h_i}}}
\]

(I.e., calculate the variance of residuals from a regression without observation \(i\))

Equivalent to fitting a (standardized) residual to \(\hat{e}_i\) from a regression omitting \(Y_i\)

Easy to get from \(\text{R}\)

Use \texttt{rstudent(res)} where \(\text{res}\) is the result from \texttt{lm()}
We can combine leverage and discrepancy in a simple graphical diagnostic.

Helps us decide which obs to investigate (and possibly delete).

Another alternative is respecification (outliers may indicate omitted variables).
Influence Plots

Let’s learn how to make these plots, and apply them to the life expectancy example

A common (minor) problem: `lm()` does listwise deletion for us

But then the rows of our original data no longer match the data used in the regression

To plot the data *used in the regression*, we should do the listwise deletion first:

```r
library(simcf) # download from chrisadolph.com
data <- read.csv(file="theData.csv", header=TRUE)
model <- lifeexp~I(log(gdpcap85))+I(log(school))+civlib5+wartime
lwdData <- extractdata(formula=model, data, extra=country, 
                        na.rm = TRUE)
row.names(lwdData) <- lwdData$country
```

The above sets up a dataframe, `data`, and a set of variables, all of which have only the observations used in the regression

The row names of the dataframe are also our observation names
Influence Plots

To make an influence plot, we use the following code:

```r
res <- lm(lifeexp~I(log(gdpcap85))+I(log(school))+civlib5+wartime, 
          na.action="na.omit")  # Run the regression

hatscore <- hatvalues(res)/mean(hatvalues(res))  
            # get the hat scores

rstu <- rstudent(res)  # get the studentized residuals

plot(hatscore,rstu)  # make the plot

identify(hatscore,rstu,row.names(data))  
            # Use the mouse to label points
```
Applied to the life expectancy data

Would help to know which cases these are

Then we could look for explanations or leave them out
Beware unnecessary dichotomies. . .

Deleting outliers altogether is one solution to the outlier problem

But involves two uncomfortable dichotomies:

Outliers versus non-outliers
Beware unnecessary dichotomies. . .

Deleting outliers altogether is one solution to the outlier problem.

But involves two uncomfortable dichotomies:

Outliers versus non-outliers

Delete versus include
Beware unnecessary dichotomies.

Deleting outliers altogether is one solution to the outlier problem.

But involves two uncomfortable dichotomies:

Outliers versus non-outliers

Delete versus include

What about a continuous version?

Outliers partial outliers non-outliers
Delete Partially include include

How might we accomplish this?
Robust and resistant regression

Usually, we’re unsure which observations are “junk”, and which are “good”

Two strategies:

Robust regression: *Reduce*, but do not eliminate, the influence of outliers, at a moderate efficiency cost. Also known as M-estimation.

Resistant regression: *Eliminate* some fraction of the outlying data from the estimation altogether, at a heavy efficiency cost, because much good data will be discarded.
How outliers *should* influence our estimates

Suppose you thought the % of blacks voting Democratic was 0.85, based on many years of data.

Now suppose I analyzed the voting patterns in 2006 and found black %DVS was...
How outliers should influence our estimates

Suppose you thought the % of blacks voting Democratic was 0.85, based on many years of data.

Now suppose I analyzed the voting patterns in 2006 and found black %DVS was . . .

0.80
How outliers *should* influence our estimates

Suppose you thought the % of blacks voting Democratic was 0.85, based on many years of data.

Now suppose I analyzed the voting patterns in 2006 and found black %DVS was... 0.80 “Probably just random fluctuation”
How outliers should influence our estimates

Suppose you thought the % of blacks voting Democratic was 0.85, based on many years of data.

Now suppose I analyzed the voting patterns in 2006 and found black %DVS was...

0.80 “Probably just random fluctuation”

0.70
How outliers *should* influence our estimates

Suppose you thought the % of blacks voting Democratic was 0.85, based on many years of data.

Now suppose I analyzed the voting patterns in 2006 and found black %DVS was . . .

0.80 “Probably just random fluctuation”

0.70 “Maybe racial politics is changing”
How outliers *should* influence our estimates

Suppose you thought the % of blacks voting Democratic was 0.85, based on many years of data.

Now suppose I analyzed the voting patterns in 2006 and found black %DVS was...

0.80 “Probably just random fluctuation”

0.70 “Maybe racial politics is changing”

0.60
How outliers *should* influence our estimates

Suppose you thought the % of blacks voting Democratic was 0.85, based on many years of data.

Now suppose I analyzed the voting patterns in 2006 and found black %DVS was . . .

0.80 “Probably just random fluctuation”

0.70 “Maybe racial politics is changing”

0.60 “Drastic change in political landscape”
How outliers \textit{should} influence our estimates

Suppose you thought the % of blacks voting Democratic was 0.85, based on many years of data.

Now suppose I analyzed the voting patterns in 2006 and found black %DVS was . . .

0.80 “Probably just random fluctuation”

0.70 “Maybe racial politics is changing”

0.60 “Drastic change in political landscape”

0.40
How outliers *should* influence our estimates

Suppose you thought the % of blacks voting Democratic was 0.85, based on many years of data.

Now suppose I analyzed the voting patterns in 2006 and found black %DVS was...

- 0.80 “Probably just random fluctuation”
- 0.70 “Maybe racial politics is changing”
- 0.60 “Drastic change in political landscape”
- 0.40 “You probably made a coding error somewhere”
How outliers *should* influence our estimates

Suppose you thought the % of blacks voting Democratic was 0.85, based on many years of data.

Now suppose I analyzed the voting patterns in 2006 and found black %DVS was. . .

0.80 “Probably just random fluctuation”

0.70 “Maybe racial politics is changing”

0.60 “Drastic change in political landscape”

0.40 “You probably made a coding error somewhere”

Our mental software is treating outliers in *redescending* fashion:

Small deviations have little weight,

Moderate deviations have large weight,

But huge deviations are treated as mistake, and given little weight
What LS *actually* does with outliers

LS minimizes squared residuals: \(\hat{\beta}_{LS} \) chosen to knock down big \(\hat{\varepsilon}_i \)

\[
|\varepsilon_i| \approx 0 \quad \text{obs } i \text{ has little effect on } \hat{\beta}
\]

\[
|\varepsilon_i| > 0 \quad \text{obs } i \text{ has moderate effect on } \hat{\beta}
\]

\[
|\varepsilon_i| >> 0 \quad \text{obs } i \text{ has huge effect on } \hat{\beta}
\]

→ If all of your data are “clean”, and from the same DGP, this is exactly what you want

Gauss-Markov theorem still applies: LS is BLUE or even MVU

Big residuals tell us a lot about the data generating process of interest

Help us estimate the right \(\hat{\beta} \) and \(\hat{\sigma}^2 \)
What LS *actually* does with outliers

LS minimizes squared residuals: \(\hat{\beta}_{LS} \) chosen to knock down big \(\hat{\varepsilon}_i \)

\[
|\varepsilon_i| \approx 0 \quad \text{obs } i \text{ has little effect on } \hat{\beta}
\]

\[
|\varepsilon_i| > 0 \quad \text{obs } i \text{ has moderate effect on } \hat{\beta}
\]

\[
|\varepsilon_i| >> 0 \quad \text{obs } i \text{ has huge effect on } \hat{\beta}
\]

→ If there is a big outlier or coding error in your data, and you run LS that outlier may have more effect on \(\hat{\beta} \) than any other observation!

GM still applies, but LS is estimating parameters for a mixed population

You just want \(\hat{\beta} \) for the clean part of the dataset

From that perspective, you could have massive “bias”
Belgian phone calls example

Data: Rousseuw & Leroy 1987
Example: Venables & Ripley 2002
Belgian phone calls example

Data: Rousseuw & Leroy 1987
Example: Venables & Ripley 2002
Outliers: 1964–96, total minutes of calls recorded

Millions of phone calls in Belgium

Data: Rousseuw & Leroy 1987
Example: Venables & Ripley 2002

Year
Outliers: 1964–96, total minutes of calls recorded

Data: Rousseuw & Leroy 1987
Example: Venables & Ripley 2002
M-estimators

If we think we have outliers, we’d like to give less weight to them.

Clearly, LS, which chooses $\hat{\beta}$ to minimize $\sum_{i=1}^{n} \hat{\varepsilon}_i^2$, is the problem.

So let’s try a generalization called an M-estimator:

Choose $\hat{\beta}$ to minimize a function of the errors, $\sum_{i=1}^{n} \rho(\hat{\varepsilon}_i)$.

By clever choice of $\rho(\cdot)$, we reduce influence of outliers, at some cost in efficiency.
M-estimators

M-estimators solve the general estimation problem:

$$\min \sum_{i=1}^{n} \rho(\hat{\varepsilon}_i) = \min \sum_{i=1}^{n} \rho(y_i - x_i \hat{\beta})$$
M-estimators

M-estimators solve the general estimation problem:

\[
\min \sum_{i=1}^{n} \rho(\hat{\varepsilon}_i) = \min \sum_{i=1}^{n} \rho(y_i - x_i \hat{\beta})
\]

Set the partial derivatives (wrt the elements of \(\hat{\beta} \)) equal to 0:

\[
\sum_{i=1}^{n} \psi(y_i - x_i \hat{\beta}) x_i = 0
\]

where \(\psi(\cdot) \) is the derivative of \(\rho(\cdot) \)
M-estimators

M-estimators solve the general estimation problem:

$$\min \sum_{i=1}^{n} \rho(\hat{\varepsilon}_i) = \min \sum_{i=1}^{n} \rho(y_i - x_i \hat{\beta})$$

Set the partial derivatives (wrt the elements of $\hat{\beta}$) equal to 0:

$$\sum_{i=1}^{n} \psi(y_i - x_i \hat{\beta})x_i = 0$$

where $\psi(\cdot)$ is the derivative of $\rho(\cdot)$

Note that $y_i - x_i \hat{\beta}$ are the residuals $\hat{\varepsilon}_i$,
M-estimators

\[\sum_{i=1}^{n} \psi(\hat{e}_i) x_i = 0 \]

Now define the weight function, \(\omega(\cdot) \) as

\[\omega(\hat{e}_i) = \frac{\psi(\hat{e}_i)}{\hat{e}_i} \]
M-estimators

\[\sum_{i=1}^{n} \psi(\hat{\varepsilon}_i)x_i = 0 \]

Now define the weight function, \(\omega(\cdot) \) as

\[\omega(\hat{\varepsilon}_i) = \frac{\psi(\hat{\varepsilon}_i)}{\hat{\varepsilon}_i} \]

Further, define weights, \(w_i \) as

\[w_i = \omega(\hat{\varepsilon}_i) \]
M-estimators

\[
\sum_{i=1}^{n} \psi(\hat{\epsilon}_i) x_i = 0
\]

Now define the weight function, \(\omega(\cdot) \) as

\[
\omega(\hat{\epsilon}_i) = \frac{\psi(\hat{\epsilon}_i)}{\hat{\epsilon}_i}
\]

Further, define weights, \(w_i \) as

\[
w_i = \omega(\hat{\epsilon}_i)
\]

Using this function, rewrite the estimating equations as:

\[
\sum_{i=1}^{n} \omega_i(\hat{\epsilon}_i) x_i = 0
\]
M-estimators

\[\sum_{i=1}^{n} \psi(\hat{\varepsilon}_i)x_i = 0 \]

Now define the weight function, \(\omega(\cdot) \) as

\[\omega(\hat{\varepsilon}_i) = \frac{\psi(\hat{\varepsilon}_i)}{\hat{\varepsilon}_i} \]

Further, define weights, \(w_i \) as

\[w_i = \omega(\hat{\varepsilon}_i) \]

Using this function, rewrite the estimating equations as:

\[\sum_{i=1}^{n} w_i(\hat{\varepsilon}_i)x_i = 0 \]

\(\hat{\beta} \)'s which solve this are the weighted least squares estimates that minimize

\[\sum_{i=1}^{n} w_i^2 \hat{\varepsilon}_i^2 \]
The M-estimation framework is quite general

We can choose any function, ρ, of the residuals to minimize

That function could just be the sum of squared errors, so LS is a special case

Let’s look at some different choices of ρ, and see what implications they have for the influence of outliers on our estimates
Influence functions: Least squares example

Least squares minimizes the objective function ρ_{LS}:

$$\rho_{LS} = \hat{e}^2$$

Without loss of generality, let’s say that least squares actually minimizes the $\frac{1}{2}$ times the sum of squared errors, so...
Least squares minimizes the objective function ρ_{LS}:

$$\rho_{LS} = \frac{1}{2} \hat{e}^2$$
Influence functions: Least squares example

Least Squares Objective Function

\[\rho(\varepsilon) \]

\[(\varepsilon^\rho) \]
Influence functions: Least squares example

Least squares minimizes the objective function ρ_{LS}:

$$\rho_{LS} = \frac{1}{2} \hat{\varepsilon}^2$$

We call the derivative of $\rho(\hat{\varepsilon})$ the influence function, $\psi(\hat{\varepsilon})$:

$$\psi_{LS} = \frac{\partial \rho_{LS}}{\partial \hat{\varepsilon}} = \varepsilon$$
Influence functions: Least squares example

Least Squares Influence Function

\[\psi((\hat{\varepsilon})^2) \]

In LS, influence of observation grows with size of the residual
Influence functions: Least squares example

Least squares minimizes the objective function ρ_{LS}:

$$\rho_{LS} = \frac{1}{2} \hat{\varepsilon}^2$$

We call the derivative of $\rho(\hat{\varepsilon})$ the influence function, $\psi(\hat{\varepsilon})$:

$$\psi_{LS} = \frac{\partial \rho_{LS}}{\partial \hat{\varepsilon}} = \varepsilon$$

Finally, the weight for each observation implied by $\psi(\hat{\varepsilon})$ is:

$$\omega_{LS} = \frac{\psi_{LS}(\hat{\varepsilon})}{\hat{\varepsilon}} = 1$$
Influence functions: Least squares example

Least Squares Weight Function

\[\omega(\hat{\varepsilon}) = \varepsilon^{2} \]

LS gives equal weight to each observation, even if residual is large
Influence functions: Biweight example

Suppose we choose to minimize this objective function of our residuals:

\[\rho_{\text{Biweight}}(\hat{\varepsilon}) = \begin{cases} \frac{k^2}{6} \left\{ 1 - \left[1 - \left(\frac{\hat{\varepsilon}}{k} \right)^2 \right]^3 \right\} & \text{for } |\hat{\varepsilon}| \leq k \\ \frac{k^2}{6} & \text{for } |\hat{\varepsilon}| > k \end{cases} \]
A biweight objective function with tuning constant $k = 2$
A biweight objective function with tuning constant $k = 4$
Influence functions: Biweight example

Suppose we choose to minimize this objective function of our residuals:

\[\rho_{\text{Biweight}}(\hat{\varepsilon}) = \begin{cases} \frac{k^2}{6} \left\{ 1 - \left[1 - \left(\frac{\hat{\varepsilon}}{k} \right)^2 \right]^3 \right\} & \text{for } |\hat{\varepsilon}| \leq k \\ \frac{k^2}{6} & \text{for } |\hat{\varepsilon}| > k \end{cases} \]

This implies a new, more complex influence function:

\[\psi_{\text{Biweight}}(\hat{\varepsilon}) = \frac{\partial \rho_{\text{Biweight}}}{\partial \hat{\varepsilon}} = \begin{cases} \hat{\varepsilon} \left[1 - \left(\frac{\hat{\varepsilon}}{k} \right)^2 \right]^2 & \text{for } |\hat{\varepsilon}| \leq k \\ 0 & \text{for } |\hat{\varepsilon}| > k \end{cases} \]
Influence functions: Biweight example

Note that the biweight influence function is *redescending*
Influence functions: Biweight example

Extreme outliers get no weight—but if lots of junk data, good data will be outliers!
Influence functions: Biweight example

Suppose we choose to minimize this objective function of our residuals:

\[
\rho_{\text{Biweight}}(\hat{e}) = \begin{cases}
\frac{k^2}{6} & \text{for } |\hat{e}| \leq k \\
\frac{k^2}{6} \left(1 - \left(\frac{\hat{e}}{k}\right)^2\right)^3 & \text{for } |\hat{e}| > k
\end{cases}
\]

This implies a new, more complex influence function:

\[
\psi_{\text{Biweight}}(\hat{e}) = \frac{\partial \rho_{\text{Biweight}}}{\partial \hat{e}} = \begin{cases}
\hat{e} \left[1 - \left(\frac{\hat{e}}{k}\right)^2\right]^2 & \text{for } |\hat{e}| \leq k \\
0 & \text{for } |\hat{e}| > k
\end{cases}
\]

Which implies a (no longer constant) weight function:

\[
\omega_{\text{Biweight}}(\hat{e}) = \frac{\psi_{\text{Biweight}}(\hat{e})}{\hat{e}} = \begin{cases}
\left[1 - \left(\frac{\hat{e}}{k}\right)^2\right]^2 & \text{for } |\hat{e}| \leq k \\
0 & \text{for } |\hat{e}| > k
\end{cases}
\]
Influence functions: Biweight example

Biweight Weight Function, $k = 2$

Note the extreme outliers get weight of zero
Influence functions: Biweight example

Biweight Weight Function, $k = 4$

But these could be exactly the data we want to keep if too much contamination!
Influence functions: Huber example

Now suppose we choose to minimize this function of our residuals:

\[
\rho_{\text{Huber}}(\hat{\varepsilon}) = \begin{cases}
\frac{1}{2} \hat{\varepsilon}^2 & \text{for } |\hat{\varepsilon}| \leq k \\
 k|\hat{\varepsilon}| - \frac{1}{2}k^2 & \text{for } |\hat{\varepsilon}| > k
\end{cases}
\]
A Huber objective function with tuning constant $k = 2$
Influence functions: Huber example

A Huber objective function with tuning constant $k = 4$
Influence functions: Huber example

Now suppose we choose to minimize this function of our residuals:

\[\rho_{\text{Huber}}(\hat{\varepsilon}) = \begin{cases} \frac{1}{2} \hat{\varepsilon}^2 & \text{for } |\hat{\varepsilon}| \leq k \\ k|\hat{\varepsilon}| - \frac{1}{2}k^2 & \text{for } |\hat{\varepsilon}| > k \end{cases} \]

This implies a new influence function:

\[\psi_{\text{Huber}}(\hat{\varepsilon}) = \frac{\partial \rho_{\text{Huber}}}{\partial \hat{\varepsilon}} = \begin{cases} k & \text{for } \hat{\varepsilon} > k \\ \hat{\varepsilon} & \text{for } |\hat{\varepsilon}| \leq k \\ -k & \text{for } \hat{\varepsilon} < -k \end{cases} \]
Huber influence function is *not* redescending. Easier to estimate.
Even extreme outliers allowed to influence. Huber less “robust” than Biweight
Influence functions: Huber example

Now suppose we choose to minimize this function of our residuals:

\[\rho_{\text{Huber}}(\hat{e}) = \begin{cases}
\frac{1}{2} \hat{e}^2 & \text{for } |\hat{e}| \leq k \\
 k|\hat{e}| - \frac{1}{2}k^2 & \text{for } |\hat{e}| > k
\end{cases} \]

This implies a new influence function:

\[\psi_{\text{Huber}}(\hat{e}) = \frac{\partial \rho_{\text{Huber}}}{\partial \hat{e}} = \begin{cases}
k & \text{for } \hat{e} > k \\
 \hat{e} & \text{for } |\hat{e}| \leq k \\
 -k & \text{for } \hat{e} < -k
\end{cases} \]

... and weight function:

\[\omega_{\text{Huber}}(\hat{e}) = \frac{\psi_{\text{Huber}}(\hat{e})}{\hat{e}} = \begin{cases}
1 & \text{for } |\hat{e}| \leq k \\
 k/|\hat{e}| & \text{for } |\hat{e}| > k
\end{cases} \]
Huber is like LS for non-outliers, and minimum absolute value for outliers
Influence functions: Huber example

Huber Weight Function, $k = 4$

\[
\omega(\varepsilon) = \begin{cases}
0 & \text{if } |\varepsilon| < k \\
1 - \frac{|\varepsilon|}{k} & \text{if } k \leq |\varepsilon| < 2k \\
0 & \text{if } |\varepsilon| \geq 2k
\end{cases}
\]
M-estimation

How do we choose the tuning constant, k?

Lower k adds more resistance, but gives up more efficiency.

We can choose k to give a certain efficiency relative to LS under the assumption that the errors really are all Normal, $\varepsilon \sim N(0, \sigma^2)$.

First we need a robust estimate of the standard error of the regression, assuming Normality.

The median absolute deviation divided by 0.6745 serves this purpose:

$$\text{median} |\hat{\varepsilon}_i| / 0.6745$$

which we will call the scale, S. Then we will set $k = cS$.

For Huber, to get 95% efficiency when $\varepsilon \sim N(0, \sigma^2)$, set: $k = 1.345 \times S$

For Biweight, to get 95% efficiency when $\varepsilon \sim N(0, \sigma^2)$, set: $k = 4.685 \times S$
Wait! How can we actually implement this method?

We have a problem!

- $\omega(\hat{e})$ is a function of \hat{e}

- We need $\hat{\beta}$ to calculate it

- But to get $\hat{\beta}$, we need $\omega(\hat{e})$, and thus \hat{e} itself!
Wait! How can we actually implement this method?

We have a problem!

- $\omega(\hat{e})$ is a function of \hat{e}
- We need $\hat{\beta}$ to calculate it
- But to get $\hat{\beta}$, we need $\omega(\hat{e})$, and thus \hat{e} itself!

Solution: *iterative estimation*

- Start with a guess of $\hat{\beta}$.
- Calculate \hat{e} for this guess
- Then calculate a new $\hat{\beta}$
- And so on until we get stable estimates of $\hat{\beta}$ and \hat{e}
Robust regression by Iteratively Re-Weighted Least Squares (IRWLS)

1. Select $\hat{\beta}^0$. We might use $\hat{\beta}_{LS}$ for this, but there are other choices.
Robust regression by Iteratively Re-Weighted Least Squares (IRWLS)

1. Select $\hat{\beta}^0$. We might use $\hat{\beta}_{LS}$ for this, but there are other choices.

2. Calculate $\hat{\varepsilon}^0 = y_i - x_i \hat{\beta}^0$.
Robust regression by Iteratively Re-Weighted Least Squares (IRWLS)

1. Select $\hat{\beta}^0$. We might use $\hat{\beta}_{LS}$ for this, but there are other choices.

2. Calculate $\hat{\varepsilon}^0 = y_i - x_i \hat{\beta}^0$.

3. Repeat the following steps for $\ell = 1, \ldots$ until $\hat{\beta}^\ell \approx \hat{\beta}^{\ell-1}$:
Robust regression by Iteratively Re-Weighted Least Squares (IRWLS)

1. Select $\hat{\beta}^0$. We might use $\hat{\beta}_{LS}$ for this, but there are other choices.

2. Calculate $\hat{\varepsilon}^0 = y_i - x_i\hat{\beta}^0$.

3. Repeat the following steps for $\ell = 1, \ldots$ until $\hat{\beta}^\ell \approx \hat{\beta}^{\ell-1}$:

 (a) Let $w_i^{\ell-1} = \omega \left(\hat{\varepsilon}_i^{\ell-1} \right)$, where $\omega(\cdot)$ depends on the chosen influence function.
Robust regression by Iteratively Re-Weighted Least Squares (IRWLS)

1. Select $\hat{\beta}^0$. We might use $\hat{\beta}_{LS}$ for this, but there are other choices.

2. Calculate $\hat{\varepsilon}^0 = y_i - x_i \hat{\beta}^0$.

3. Repeat the following steps for $\ell = 1, \ldots$ until $\hat{\beta}^\ell \approx \hat{\beta}^{\ell-1}$:

 (a) Let $w_{i}^{\ell-1} = \omega \left(\hat{\varepsilon}_{i}^{\ell-1} \right)$, where $\omega(\cdot)$ depends on the chosen influence function.

 (b) Construct weight matrix W with $w_{i}^{\ell-1}$'s on diagonal.
Robust regression by Iteratively Re-Weighted Least Squares (IRWLS)

1. Select \(\hat{\beta}^0 \). We might use \(\hat{\beta}_{LS} \) for this, but there are other choices.

2. Calculate \(\hat{\varepsilon}^0 = y_i - x_i \hat{\beta}^0 \).

3. Repeat the following steps for \(\ell = 1, \ldots \) until \(\hat{\beta}^\ell \approx \hat{\beta}^{\ell-1} \):

 (a) Let \(w_i^{\ell-1} = \omega \left(\hat{\varepsilon}_i^{\ell-1} \right) \), where \(\omega(\cdot) \) depends on the chosen influence function.

 (b) Construct weight matrix \(W \) with \(w_i^{\ell-1} \)'s on diagonal.

 (c) Solve \(\hat{\beta}^\ell = \left(X'WX \right)^{-1} X'Wy \).
Robust regression by Iteratively Re-Weighted Least Squares (IRWLS)

1. Select $\hat{\beta}^0$. We might use $\hat{\beta}_{LS}$ for this, but there are other choices.

2. Calculate $\hat{\varepsilon}^0 = y_i - x_i \hat{\beta}^0$.

3. Repeat the following steps for $\ell = 1, \ldots$ until $\hat{\beta}^\ell \approx \hat{\beta}^{\ell-1}$:

 (a) Let $w_i^{\ell-1} = \omega \left(\hat{\varepsilon}_i^{\ell-1} \right)$, where $\omega(\cdot)$ depends on the chosen influence function.
 (b) Construct weight matrix W with $w_i^{\ell-1}$'s on diagonal.
 (c) Solve $\hat{\beta}^\ell = (X'WX)^{-1}X'Wy$.
 (d) Calculate $\hat{\varepsilon}^\ell = y_i - x_i \hat{\beta}^\ell$.
Robust regression by Iteratively Re-Weighted Least Squares (IRWLS)

1. Select $\hat{\beta}^0$. We might use $\hat{\beta}_{LS}$ for this, but there are other choices.

2. Calculate $\hat{\epsilon}^0 = y_i - x_i \hat{\beta}^0$.

3. Repeat the following steps for $\ell = 1, \ldots$ until $\hat{\beta}^\ell \approx \hat{\beta}^{\ell-1}$:

 (a) Let $w_i^{\ell-1} = \omega \left(\hat{\epsilon}_i^{\ell-1} \right)$, where $\omega(\cdot)$ depends on the chosen influence function.
 (b) Construct weight matrix W with $w_i^{\ell-1}$'s on diagonal.
 (c) Solve $\hat{\beta}^\ell = (X'WX)^{-1}X'Wy$.
 (d) Calculate $\hat{\epsilon}^\ell = y_i - x_i \hat{\beta}^\ell$.

4. Report $\hat{\beta}^\ell$ from the final iteration as the robust M-estimates $\hat{\beta}_M$.
Doing this in R

```r
library(MASS)
rlm(y~x,
    method="M",
    init="ls" # Starting values: a vector,
    # or ls for least squares,
    # or lts for Least Trimmed Squares
    psi=psi.huber, # Options include psi.bisquare, psi.hampel
    k2 = 1.345 # Tuning constant for psi.huber
    maxit = 20, # Maximum iterations of WLS to do
    acc = 1e-4 # Required precision of estimates
)
```

Special problems for iterative estimation techniques:

- Does the choice of starting values \(\hat{\beta}^0 \) influence the result?
- That is, does the iteration always lead to the same result?
- How do we know when we can stop?
Limitations of robust regression

- Less efficient than LS
 If there are no outliers, you have discarded valuable information
Limitations of robust regression

- Less efficient than LS
 If there are no outliers, you have discarded valuable information

- Not robust to outliers on X. Just Y.
Limitations of robust regression

- Less efficient than LS
 If there are no outliers, you have discarded valuable information

- Not robust to outliers on X. Just Y.

- Not even fully “robust” for Y, because every obs is still there
Limitations of robust regression

- Less efficient than LS
 If there are no outliers, you have discarded valuable information

- Not robust to outliers on X. Just Y.

- Not even fully “robust” for Y, because every obs is still there

- What if the outlier(s) have high leverage? Then they won’t even have large $\hat{\epsilon}$ to begin with, so robust regression won’t really be enough
Breakdown points

The robust regression methods discussed so far downweight outliers compared to LS but they are still vulnerable to extreme/numerous outliers. Imagine two cases:

- Case 1: A large fraction (e.g., one-third) of the data are high leverage outliers (i.e., come from a different distribution)
Breakdown points

The robust regression methods discussed so far downweight outliers compared to LS but they are still vulnerable to extreme/numerous outliers. Imagine two cases:

- **Case 1:** A large fraction (e.g., one-third) of the data are high leverage outliers (i.e., come from a different distribution)

- **Case 2:** A single high-leverage outlier is massive, such that it dominates even a robust regression (e.g., your sample of 1000 American’s incomes drew Bill Gates)
Breakdown points

The robust regression methods discussed so far downweight outliers compared to LS.

But they are still vulnerable to extreme/numerous outliers. Imagine two cases:

- **Case 1**: A large fraction (e.g., one-third) of the data are high leverage outliers (i.e., come from a different distribution).

- **Case 2**: A single high-leverage outlier is massive, such that it dominates even a robust regression (e.g., your sample of 1000 American’s incomes drew Bill Gates).

In either case, there is no logical limit to the influence of the outliers, even in robust regression.
Breakdown points

The robust regression methods discussed so far downweight outliers compared to LS. But they are still vulnerable to extreme/numerous outliers. Imagine two cases:

- Case 1: A large fraction (e.g., one-third) of the data are high leverage outliers (i.e., come from a different distribution)
- Case 2: A single high-leverage outlier is massive, such that it dominates even a robust regression (e.g., your sample of 1000 American’s incomes drew Bill Gates)

In either case, there is no logical limit to the influence of the outliers, even in robust regression.

Define the **breakdown point** as the fraction of observations which can shift the estimator arbitrarily far from the truth for the non-outlying subset.
Breakdown points

The robust regression methods discussed so far downweight outliers compared to LS. But they are still vulnerable to extreme/numerous outliers. Imagine two cases:

- Case 1: A large fraction (e.g., one-third) of the data are high leverage outliers (i.e., come from a different distribution)

- Case 2: A single high-leverage outlier is massive, such that it dominates even a robust regression (e.g., your sample of 1000 American’s incomes drew Bill Gates)

In either case, there is no logical limit to the influence of the outliers, even in robust regression.

Define the **breakdown point** as the fraction of observations which can shift the estimator arbitrarily far from the truth for the non-outlying subset.

The breakdown point of both LS and robust regression is \(\frac{1}{N} \), the lowest possible.
Breakdown points

The robust regression methods discussed so far downweight outliers compared to LS. But they are still vulnerable to extreme/numerous outliers. Imagine two cases:

- Case 1: A large fraction (e.g., one-third) of the data are high leverage outliers (i.e., come from a different distribution)

- Case 2: A single high-leverage outlier is massive, such that it dominates even a robust regression (e.g., your sample of 1000 American’s incomes drew Bill Gates)

In either case, there is no logical limit to the influence of the outliers, even in robust regression.

Define the **breakdown point** as the fraction of observations which can shift the estimator arbitrarily far from the truth for the non-outlying subset.

The breakdown point of both LS and robust regression is $1/N$, the lowest possible.

Not coincidentally, this happens to be the breakdown point for the mean of a distribution.
Resistant regression

What would be more resistant than LS and robust regression?
Resistant regression

What would be more resistant than LS and robust regression?

Let’s turn to univariate statistics.
Resistant regression

What would be more resistant than LS and robust regression?

Let’s turn to univariate statistics.

The mean is a non-resistant measure of the center of a distribution
Resistant regression

What would be more resistant than LS and robust regression?

Let’s turn to univariate statistics.

The mean is a non-resistant measure of the center of a distribution

A very resistant measure of the center is the median.

Fully 50% - 1 of the observations could shift and not change the median.

Hence the breakdown point of the median is 0.5, the highest possible.
Resistant regression

Regression models with high breakdown points are resistant

A price: Hard to estimate, very inefficient

- Least Median Squares
- Least Quantile Squares
- Least Trimmed Squares
Resistant regression: Least Median Squares

The median is a very robust measure, so let’s build a regression model around it.

Choose $\hat{\beta}_{LMS}$ such that we minimize the median squared residual,
Resistant regression: Least Median Squares

The median is a very robust measure, so let’s build a regression model around it. Choose $\hat{\beta}_{LMS}$ such that we minimize the median squared residual,

$$\min \text{median}(\hat{\epsilon}_i^2)$$

Note that we don’t know which residual is the middle-most one until we run a regression.

Then we iterate through many possible $\hat{\beta}$’s until we find a set that makes this median residual as small as possible.
Properties of Least Median Squares

- High breakdown point (approaching 50%)
Properties of Least Median Squares

- High breakdown point (approaching 50%)
- Resistant to outliers on Y and X
Properties of Least Median Squares

- High breakdown point (approaching 50%)
- Resistant to outliers on Y and X
- Very inefficient
Properties of Least Median Squares

- High breakdown point (approaching 50%)
- Resistant to outliers on Y and X
- Very inefficient
- Computationally difficult to estimate
Properties of Least Median Squares

- High breakdown point (approaching 50%)
- Resistant to outliers on Y and X
- Very inefficient
- Computationally difficult to estimate
- Difficult to calculate standard errors
Resistant regression: Other methods

Least Quantile Squares:

Choose $\hat{\beta}_{LQS}$ to minimize the qth quantile of the residuals,

$$\min \text{quantile}(\hat{\varepsilon}_i^2, q)$$
Resistant regression: Other methods

Least Quantile Squares:

Choose $\hat{\beta}_{LQS}$ to minimize the qth quantile of the residuals,

$$\min \text{quantile}(\hat{\varepsilon}_i^2, q)$$

Least Trimmed Squares:

Choose $\hat{\beta}_{LTS}$ to minimize the q smallest residuals

$$\min \sum_{i=1}^{q} \hat{\varepsilon}_i^2 \text{ such that } \hat{\varepsilon}_i^2 < \hat{\varepsilon}_j^2 \quad \forall i \neq j$$

LTS is as resistant as LMS but more efficient. Other methods available too (S-estimation).

All resistant estimators have very low efficiency compared to LS (<30% or so)
Resistant regression: In R

Many of the above methods are available through `lqs`

```r
# Least median squares
library(MASS)
lqs(y~x,
    method = "lms"
)

# Least quantile squares
library(MASS)
lqs(y~x,
    quantile,
    method = "lqs",
)

# Least trimmed squares
library(MASS)
lqs(y~x,
    method = "lts"
)
```
S-estimator
library(MASS)
lqs(y~x,
 method = "S"
)
Belgian phone calls example

Data: Rousseuw & Leroy 1987
Example: Venables & Ripley 2002

- LS
- M-est (Huber)
- LTS

Year
Millions of phone calls in Belgium
Resistant regression and beyond

We can also combine resistant and robust regression to get some benefits of each
Resistant regression and beyond

We can also combine resistant and robust regression to get some benefits of each

1. Estimate an (inefficient) resistant regression
Resistant regression and beyond

We can also combine resistant and robust regression to get some benefits of each.

1. Estimate an (inefficient) resistant regression

2. Use the result as a starting point for robust regression
Resistant regression and beyond

We can also combine resistant and robust regression to get some benefits of each

1. Estimate an (inefficient) resistant regression

2. Use the result as a starting point for robust regression

3. Resulting MM-estimator has high breakdown from step 1, and high efficiency from step 2

In R:

```r
library(MASS)
rlm(y~x,
    method = "MM")
```

performs MM-estimation using the Biweight influence function initialized by a resistant S-estimator
Belgian phone calls example

Data: Rousseuw & Leroy 1987
Example: Venables & Ripley 2002

LS
M-est (Huber)
LTS
MM-est (S, Biweight)
Example: Redistribution in Rich Democracies

Let’s look at an example from Iversen and Soskice (2003).

(Warning: I will ignore most of their data analysis and theory for didactic purposes)
Example: Redistribution in Rich Democracies

Let’s look at an example from Iversen and Soskice (2003).

(Warning: I will ignore most of their data analysis and theory for didactic purposes)

IS are interested in the relationship between party systems and redistributive effort
Example: Redistribution in Rich Democracies

Let’s look at an example from Iversen and Soskice (2003).

(Warning: I will ignore most of their data analysis and theory for didactic purposes)

IS are interested in the relationship between party systems and redistributive effort

They capture the first using the effective number of parties
Example: Redistribution in Rich Democracies

Let’s look at an example from Iversen and Soskice (2003).

(Warning: I will ignore most of their data analysis and theory for didactic purposes)

IS are interested in the relationship between party systems and redistributive effort

They capture the first using the effective number of parties

& the second using the % of people lifted from poverty by taxes and transfers
Example: Redistribution in Rich Democracies

Let’s look at an example from Iversen and Soskice (2003).

(Warning: I will ignore most of their data analysis and theory for didactic purposes)

IS are interested in the relationship between party systems and redistributive effort.

They capture the first using the effective number of parties

& the second using the % of people lifted from poverty by taxes and transfers

Let’s look at a scatterplot of the data
Example: Redistribution in Rich Democracies

![Graph showing the relationship between Poverty Reduction and Effective parties.](image.png)
Example: Redistribution in Rich Democracies

Now it’s your turn. We’re going to use linear regression to analyze these data.

What do we need to do to get it right?
Example: Redistribution in Rich Democracies

First: Because it is a count, and the plot suggests it, let’s log the independent variable.
Example: Redistribution in Rich Democracies

What next?
Example: Redistribution in Rich Democracies

Second: Because it is a proportion, we will logit transform PovRed that is, the new DV is $\ln(\text{povred}/(1 - \text{povred}))$
Example: Redistribution in Rich Democracies

Second: Because it is a proportion, we will logit transform PovRed that is, the new DV is \(\ln(povred/(1 - povred)) \)

(This second step adds considerable interpretative difficulty, so in practice, we might skip it, if the relation looks essentially linear)
Example: Redistribution in Rich Democracies

Second: Because it is a proportion, we will logit transform PovRed that is, the new DV is $\ln(\frac{\text{povred}}{1 - \text{povred}})$

(This second step adds considerable interpretative difficulty, so in practice, we might skip it, if the relation looks essentially linear)

Technical details: I plot the fit by reversing the logit transformation on a set of fitted values
Example: Redistribution in Rich Democracies

Second: Because it is a proportion, we will logit transform PovRed that is, the new DV is $\ln(\frac{\text{povred}}{1 - \text{povred}})$

(This second step adds considerable interpretative difficulty, so in practice, we might skip it, if the relation looks essentially linear)

Technical details: I plot the fit by reversing the logit transformation on a set of fitted values

That is, I calculate

$$\hat{y}_k^* = \frac{1}{1 + \exp(-\hat{y}_k)}$$

for $k = \{0.50, 0.51, \ldots 1.99, 2.00\}$

This puts a little S-curvature in the fitted line.
Logit transformation only slightly different (more in a moment). What next?
Example: Redistribution in Rich Democracies

Third: Outliers. There are two. One is particularly gruesome.

Let’s look at the influence plot
Two or three notable outliers

Now, let’s try our battery of robust and resistant estimators
Example: Redistribution in Rich Democracies

The graph shows the relationship between poverty reduction and the natural logarithm of the effective number of political parties, with two regression lines: LS and M-est.
Example: Redistribution in Rich Democracies

Poverty Reduction vs. ln(Effective parties)

- LTS
- LS
Example: Redistribution in Rich Democracies

Which fit looks best?
Example: Redistribution in Rich Democracies

Which fit looks best?

Here’s the tabular summary (note the DV is logit(povred), so take care with coefs)

<table>
<thead>
<tr>
<th></th>
<th>LS</th>
<th>M est.</th>
<th>LTS</th>
<th>MM est.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(Effective Parties)</td>
<td>1.076</td>
<td>1.292</td>
<td>0.986</td>
<td>1.458</td>
</tr>
<tr>
<td></td>
<td>(0.616)</td>
<td>(0.391)</td>
<td>(0.364)</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>−1.302</td>
<td>−1.374</td>
<td>−0.631</td>
<td>−1.486</td>
</tr>
<tr>
<td></td>
<td>(0.781)</td>
<td>(0.495)</td>
<td>(0.461)</td>
<td></td>
</tr>
</tbody>
</table>

Let’s take one last look, this time with more information . . .
Source: Torben Iversen and David Soskice, 2002, “Why do some democracies redistribute more than others?”, manuscript, Harvard University. Redrawn.
Learning from outliers

Outliers are a nuisance, not substance
Outliers are a nuisance, not substance

We’d like to explain all the data, rather than throw out observations as “different”
Learning from outliers

Outliers are a nuisance, not substance

We’d like to explain all the data, rather than throw out observations as “different”

Best case: use substantive knowledge to convert an outlier to an explanation
Learning from outliers

Outliers are a nuisance, not substance

We’d like to explain all the data, rather than throw out observations as “different”

Best case: use substantive knowledge to convert an outlier to an explanation

If we can’t reach that case, we may rely on robust/resistant methods more heavily
Learning from outliers

Outliers are a nuisance, not substance

We’d like to explain all the data, rather than throw out observations as “different”

Best case: use substantive knowledge to convert an outlier to an explanation

If we can’t reach that case, we may rely on robust/resistant methods more heavily

Regardless, check whether your results are sensitive to outliers
Learning from outliers

Outliers are a nuisance, not substance

We’d like to explain all the data, rather than throw out observations as “different”

Best case: use substantive knowledge to convert an outlier to an explanation

If we can’t reach that case, we may rely on robust/resistant methods more heavily

Regardless, check whether your results are sensitive to outliers

Easy to do in R—influence plots, rlm, and lqs take seconds
Learning from outliers

Outliers are a nuisance, not substance

We’d like to explain all the data, rather than throw out observations as “different”

Best case: use substantive knowledge to convert an outlier to an explanation

If we can’t reach that case, we may rely on robust/resistant methods more heavily

Regardless, check whether your results are sensitive to outliers

Easy to do in R—influence plots, rlm, and lqs take seconds

One more lesson for today: a mystery...
The case of the missing standard errors

LTS doesn’t return any standard errors, just a point estimate
The case of the missing standard errors

LTS doesn’t return any standard errors, just a point estimate

I argued earlier that results without estimates of uncertainty were dangerous

What can we do?
The case of the missing standard errors

LTS doesn’t return any standard errors, just a point estimate.

I argued earlier that results without estimates of uncertainty were dangerous.

What can we do?

Let’s think about what standard errors are:

Expected difference between the \(\hat{\beta} \) and the average \(\bar{\hat{\beta}} \) from repeated samples.
The case of the missing standard errors

LTS doesn’t return any standard errors, just a point estimate

I argued earlier that results without estimates of uncertainty were dangerous

What can we do?

Let’s think about what standard errors are:

Expected difference between the $\hat{\beta}$ and the average $\bar{\hat{\beta}}$ from repeated samples

If we could draw more samples from the population, we could:

1. Run a separate regression on each sample

2. Take the standard deviation of the coefficients across samples

Is there any way we could *simulate* this using just our extant sample?
Re-sampling

There’s a nifty, very general trick we can use, based on an analogy:

Samples are to the Population
Re-sampling

There’s a nifty, very general trick we can use, based on an analogy:

Samples are to the Population

as

Subsamples are to the Sample
Re-sampling

There’s a nifty, very general trick we can use, based on an analogy:

Samples are to the Population

as

Subsamples are to the Sample

We can’t draw any more samples from the population.

But we can re-sample from our own sample.
The bootstrap

Re-sampling means

1. drawing N observations with replacement from a dataset of size N
The bootstrap

Re-sampling means

1. drawing N observations with replacement from a dataset of size N

2. running a regression on each re-sampled dataset
The bootstrap

Re-sampling means

1. drawing N observations with replacement from a dataset of size N

2. running a regression on each re-sampled dataset

3. repeating to build up a distribution of results
The bootstrap

Re-sampling means

1. drawing N observations with replacement from a dataset of size N

2. running a regression on each re-sampled dataset

3. repeating to build up a distribution of results

It turns out this distribution of re-sampled statistics approximates the dist of sampled statistics

Its standard deviation estimates the standard error

So we can simulate SEs even if we don’t know how to calculate them analytically
The bootstrap

Bootstrapping can be time consuming, especially if the underlying analysis is too
And you may need to replicate many times to get stable se’s (how can you tell?)
The bootstrap

Bootstrapping can be time consuming, especially if the underlying analysis is too
And you may need to replicate many times to get stable se’s (how can you tell?)
I ran 250,000 bootstrap replications of the least trimmed squares regression
for the Poverty Reduction data to get 1 sig digit
The bootstrap

Bootstrapping can be time consuming, especially if the underlying analysis is too complicated.

And you may need to replicate many times to get stable se’s (how can you tell?)

I ran 250,000 bootstrap replications of the least trimmed squares regression for the Poverty Reduction data to get 1 sig digit.

The code I used:

```r
# A function that runs the underlying regression
leasttrimmed <- function(d,i) {
  lts.result <- lqs(d[,1]~d[,2:ncol(d)], method = "lts",
                   nsamp="exact",subset=i)
  lts.result$coefficients
}

# Putting the data in a single matrix
yx <- cbind(y,x)

# Running the bootstrap 250,000 times
lts.boot <- boot(yx,leasttrimmed,R=250000,stype="i")
```
LTS redux

It turns out the LTS results are very poorly estimated
LTS redux

It turns out the LTS results are very poorly estimated

Recall that LTS is very inefficient (throws away a lot of potentially good data)
LTS redux

It turns out the LTS results are very poorly estimated

Recall that LTS is very inefficient (throws away a lot of potentially good data)

Hence they aren’t much use here

But in larger datasets with lots of potential outliers, LTS is worth checking

<table>
<thead>
<tr>
<th></th>
<th>LS</th>
<th>M est.</th>
<th>LTS</th>
<th>MM est.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(Effective Parties)</td>
<td>1.076</td>
<td>1.292</td>
<td>0.986</td>
<td>1.458</td>
</tr>
<tr>
<td></td>
<td>(0.616)</td>
<td>(0.391)</td>
<td>(2.5)</td>
<td>(0.364)</td>
</tr>
<tr>
<td>Intercept</td>
<td>−1.302</td>
<td>−1.374</td>
<td>−0.631</td>
<td>−1.486</td>
</tr>
<tr>
<td></td>
<td>(0.781)</td>
<td>(0.495)</td>
<td>(3.5)</td>
<td>(0.461)</td>
</tr>
</tbody>
</table>