
POLS/CSSS 503:

Advanced Quantitative Political Methodology

Introduction to the Course & to R

Christopher Adolph

Department of Political Science

and

Center for Statistics and the Social Sciences

University of Washington, Seattle

POLS 503 Course Goals

Course Goals:

1. Learn the properties and limitations of the linear regression model

2. Develop further skills in interpreting & fitting linear models

3. Study extensions of the linear model to deal with common problems

4. Become comfortable with matrix algebra representions of models

5. Gain proficiency in R, a powerful and popular statistical package

6. Get ready to take POLS/CSSS 510: MLE, or other advanced CSSS courses

Agenda for this week

• Introductory example: why focus on model interpretation?

• Overview of syllabus & course requirements

• Introduction to R

How do we intrepret our models?
For simple versions of linear regression,
coefficients & se’s usefully summarize the relation between x and y

But how do we interpret β when we add to the linear regression model. . .

• transformed variables? log(income) = α+ β1age + ε

or

wealth = α+ β2age + β3age
2 + ε

• interactions? policy = α+ β4preferences + β5autonomy

+β6(preferences× autonomy) + ε

• time series dynamics? budgett = α+ β7budgett−1 + β8partisanshipt + εt

• multiple equations? campaign spending = α+ β9competitiveness + ε

and

competitiveness = η + β10campaign spending + ν

• non-linear models? Pr(war) = (1− exp(−α− β11distance))−1

How do we intrepret our models?

As models get more complicated,
learning to effectively interpret and present them gets more important

Model coefficients are not always easy to interpret

Focus on “coefficients alone” (or worse, “stars alone”) carries risks:

• being ignored or misunderstood by those who don’t understand the model

• misunderstanding your own model

• failing to see the relevant implications of your model

Graphics usually do a better job of explaining and exploring regression models

A famous simple example shows this well

The Challenger launch decision

In 1986, the Challenger space shuttle exploded moments after liftoff

Decision to launch one other most scrutinized in history

Failure of O-rings in the solid-fuel rocket boosters blamed for explosion

Could this failure have been foreseen?

The Challenger launch decision

Flights with O-ring damage
Flt Number Temp (F)

2 70
41b 57
41c 63
41d 70
51c 53
61a 79
61c 58

Morton-Thiokol engineers made this table
and worried about launching below 53 degrees (Why?)

O-ring would erode or have “blow-by” (2 ways to fail) in cold temp

Failed to convince administrators there was a danger

(Counter-argument: “damages at low and high temps”)

Are there problems with this presentation? with the use of data?

The Challenger launch decision

Engineerrs did not consider successes, only failures;
selection on the dependent variable

All flights, chronological order
Damage? Temp (F) Damage? Temp (F)

No 66 No 78
Yes 70 No 67
No 69 Yes 53
No 68 No 67
No 67 No 75
No 72 No 70
No 73 No 81
No 70 No 76
Yes 57 Yes 79
Yes 63 No 76
Yes 70 Yes 58

Other problems? Why sort by launch number?

The Challenger launch decision

O-ring damage pre-Challenger, by temperature at launch
Damage? Temp (F) Damage? Temp (F)

Yes 53 Yes 70
Yes 57 No 70
Yes 58 No 70
Yes 63 No 72
No 66 No 73
No 67 No 75
No 67 No 76
No 67 No 76
No 68 No 78
No 69 Yes 79
Yes 70 No 81

The evidence begins to speak for itself.

What if Morton-Thiokol engineers had made this table before the launch?

The Challenger launch decision

Why didn’t NASA make the right decision?

Many answers in the literature:
bureaucratic politics; group think; bounded rationality, etc.

But Edward Tufte thinks it may have been a matter of presentation & modeling:

• Never made the right tables or graphics

• Selected only failure data

• Never considered a simple statistical model

What do you think? How would you approach the data?

The Challenger launch decision
How about a scatterplot? Better for seeing relationships than a table

Vertical axis is an O-ring damage index (due to Tufte, who made the plot)

Suspicious. What the forecast temperature for launch?

The Challenger launch decision

What the forecast temperature for launch?

The Challenger launch decision

What the forecast temperature for launch? 26 to 29 degrees Fahrenheit!

The shuttle was launched in unprecendented cold

The Challenger launch decision

Imagine you are the analyst making the launch recommendation

You’ve made the scatterplot above. What would you add to it?

Put another way, what do you is the first question you expect from your boss?

“What’s the chance of failure at 26 degrees?”

The scatterplot suggests the answer is “high,” but that’s vague

But what if the next launch is at 58 degrees? Or 67 degrees?

Clearly, we want a more precise way to state the probability of failure

We need a model, and a way to convey that model to the public

The Challenger launch decision

A simple exercise is to model the probability of O-ring damage
as a function of temperature

We can use a statistical tool called “logit” for this purpose

The model is nonlinear: Pr(damage) = (1− exp(−β0 − β1temperature))−1

R gives us this lovely logit output. . .

Variable est. s.e. p

Temperature (F) −0.18 0.09 0.047
Constant 11.9 6.34 0.062

N 22
log-likelihood −10.9

which most social scientists read as “a statistically significant negative relationship
b/w temperature and probability of damage”

But that’s pretty vague too

Is there a more persuasive/clear/useful way to present these results?

30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1

Launch Temperature (F)

P
r(

O
−

ri
n
g

D
am

ag
e
)

predicted

 probability

67% CI

95% CI

A picture clearly shows non-linear model predictions and uncertainty

30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1

Launch Temperature (F)

P
r(

O
−

ri
n
g

D
am

ag
e
)

forecast

 temp

predicted

 probability

67% CI

95% CI

And gives a more precise sense of how foolhardy launching at 29 F is.

30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1

Launch Temperature (F)

P
r(

O
−

ri
n
g

D
am

ag
e
)

FF F FF FF

forecast

 temp

predicted

 probability

67% CI

95% CI

It’s also good to show the data giving rise to the model.

30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1

Launch Temperature (F)

P
r(

O
−

ri
n
g

D
am

ag
e
)

FF F FF FF

S SSS S SS SSS SS SSS

forecast

 temp

predicted

 probability

67% CI

95% CI

Remembering that the Failures are only meaningful compared to Successes

30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1

Launch Temperature (F)

P
r(

O
−

ri
n
g

D
am

ag
e
)

FF F FF FF

S SSS S SS SSS SS SSS

forecast

 temp

66 F = coldest

 safe launch

predicted

 probability

67% CI

95% CI

Looking just at the data tempts us to say that launches under 66 F are virtually
guaranteed O-ring failures. This inference is based on an unstated model.

30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1

Launch Temperature (F)

P
r(

O
−

ri
n
g

D
am

ag
e
)

FF F FF FF

S SSS S SS SSS SS SSS

forecast

 temp

How many F's

 are acceptable?

What's an acceptable

 Pr(Damage)?

predicted

 probability

67% CI

95% CI

But the estimated logit model should give us pause.

There is a significant risk of failure across the board.

30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1

Launch Temperature (F)

P
r(

O
−

ri
n
g

D
am

ag
e
)

FF F FF FF

S SSS S SS SSS SS SSS

forecast

 temp

How many F's

 are acceptable?

What's an acceptable

 Pr(Damage)?

predicted

 probability

67% CI

95% CI

What’s an acceptable risk of O-ring failure?

Was the shuttle safe at any temperature?

In a hearing, Richard Feynmann dramatically showed O-rings lose resilence when cold
by dropping one in his ice water.

Experiment cut thru weeks of technical gibberish concealing flaws in the O-ring

But it shouldn’t have taken a Nobel laureate:
any scientist with a year of statistical training could have
used the launch record to reach the same conclusion

And it would take no more than a single graphic to show the result

Going further

The Challenger example involves a simple, bivariate model

But even it goes beyond linear regression: the binary outcome requires a logit model

What else about these data might go beyond the simple linear regression framework?

• Serial correlation? Does wear from the last launch makes damage more likely next
time?

• Panel structure? Perhaps each rocket booster needs its own model

Going further

Social science data tend to be even more complicated:

Always many variables

Often interactive effects on responses

Serial correlation, heteroskedasticity, reverse causation, missing data. . .

In 503, we’ll expand the linear model to cope with these problems and more

And prepare for future classes expanding your toolkit beyond linear modeling

Why R?

Real question: Why programming?

Non-programmers stuck with package defaults

For your substantive problem, defaults may be

• inappropriate (not quite the right model, but “close”)

• unintelligible (reams of non-linear coefficients and stars)

Programming allows you to match the methods to the data & question

Get better, more easily explained results.

Why R?

Many side benefits:

1. Never forget what you did: The code can be re-run.

2. Repeating an analysis n times? Write a loop!

3. Programming makes data processing/reshaping easy.

4. Programming makes replication easy.

Why R?

R is

• free

• open source

• growing fast

• widely used

• the future for most fields

But once you learn one language, the others are much easier

Introduction to R

R is a calculator that can store lots of information in memory

R stores information as “objects”

> x <- 2

> print(x)

[1] 2

> y <- "hello"

> print(y)

[1] "hello"

> z <- c(15, -3, 8.2)

> print(z)

[1] 15.0 -3.0 8.2

Introduction to R

> w <- c("gdp", "pop", "income")

> print(w)

[1] "gdp" "pop" "income"

>

Note the assignment operator, <-, not =

An object in memory can be called to make new objects

> a <- x^2

> print(x)

[1] 2

> print(a)

[1] 4

> b <- z + 10

> print(z)

[1] 15.0 -3.0 8.2

> print(b)

[1] 25.0 7.0 18.2

Introduction to R

> c <- c(w,y)

> print(w)

[1] "gdp" "pop" "income"

> print(y)

[1] "hello"

> print(c)

[1] "gdp" "pop" "income" "hello"

Commands (or “functions”) in R are always written command()

The usual way to use a command is:

output <- command(input)

We’ve already seen that c() pastes together variables.

A simple example:

> z <- c(15, -3, 8.2)

> mz <- mean(z)

> print(mz)

[1] 6.733333

Introduction to R

Some commands have multiple inputs. Separate them by commas:

plot(var1,var2) plots var1 against var2

Some commands have optional inputs. If omitted, they have default values.

plot(var1) plots var1 against the sequence {1,2,3,. . . }

Inputs can be identified by their position or by name.

plot(x=var1,y=var2) plots var2 against var1

Entering code

You can enter code by typing at the prompt, by cutting or pasting, or from a file

If you haven’t closed the parenthesis, and hit enter, R let’s you continue with this
prompt +

You can copy and paste multiple commands at once

You can run a text file containing a program using source(), with the name of the
file as input (ie, in ””)

I prefer the source() approach. Leads to good habits of retaining code.

Data types

R has three important data types to learn now

Numeric y <- 4.3

Character y <- "hello"

Logical y <- TRUE

We can always check a variable’s type, and sometimes change it:

population <- c("1276", "562", "8903")

print(population)

is.numeric(population)

is.character(population)

Oops! The data have been read in as characters, or “strings”. R does not know they
are numbers.

population <- as.numeric(population)

Some special values

Missing data NA

A “blank” NULL

Infinity Inf

Not a number NaN

Data structures

All R objects have a data type and a data structure

Data structures can contain numeric, character, or logical entries

Important structures:

Vector

Matrix

Dataframe

List (to be covered later)

Vectors in R

Vector is R are simply 1-dimensional lists of numbers or strings

Let’s make a vector of random numbers:

x <- rnorm(1000)

x contains 1000 random normal variates drawn from a Normal distribution with
mean 0 and standard deviation 1.

What if we wanted the mean of this vector?

mean(x)

What if we wanted the standard deviation?

sd(x)

Vectors in R

What if we wanted just the first element?

x[1]

or the 10th through 20th elements?

x[10:20]

what if we wanted the 10th percentile?

sort(x)[100]

Indexing a vector can be very powerful. Can apply to any vector object.

What if we want a histogram?

hist(x)

Vectors in R

Useful commands for vectors:

seq(from, to, by) generates a sequence
rep(x,times) repeats x

sort() sorts a vector from least to greatest
rev() reverses the order of a vector
rev(sort()) sorts a vector from greatest to least

Matrices in R

Vector are the standard way to store and manipulate variables in R

But usually our datasets have several variables measured on the same observations

Several variables collected together form a matrix with one row for each observation
and one column for each variable

Matrices in R

Many ways to make a matrix in R

a <- matrix(data=NA, nrow, ncol, byrow=FALSE)

This makes a matrix of nrow × ncol, and fills it with missing values.

To fill it with data, substitute a vector of data for NA in the command. It will fill up
the matrix column by column.

We could also paste together vectors, binding them by column or by row:

b <- cbind(var1, var2, var3)

c <- rbind(obs1, obs2)

Matrices in R

Optionally, R can remember names of the rows and columns of a matrix

To assign names, use the commands:

colnames(a) <- c("Var1", "Var2")

rownames(a) <- c("Case1", "Case2")

Substituting the actual names of your variables and observations (and making sure
there is one name for each variable & observation)

Matrices in R

Matrices are indexed by row and column.

We can subset matrices into vectors or smaller matrices

a[1,1] Gets the first element of a
a[1:10,1] Gets the first ten rows of the first column
a[,5] Gets every row of the fifth column
a[4:6,] Gets every column of the 4th through 6th rows

To make a vector into a matrix, use as.matrix()

R defaults to treating one-dimensional arrays as vectors, not matrices

Useful matrix commands:

nrow() Gives the number of rows of the matrix
ncol() Gives the number of columns
t() Transposes the matrix

Much more on matrices next week.

Dataframes in R

Dataframes are a special kind of matrix used to store datasets

To turn a matrix into a dataframe (note the extra .):

a <- as.data.frame(a)

Dataframes always have columns names, and these are set or retrieved using the
names() command

names(a) <- c("Var1","Var2")

You can access a variable from a dataframe directly using $:

a$Var1

Dataframes can also be “attached,”
which makes each column into a vector with the appropriate name

attach(a)

Loading data

There are many ways to load data to R.

I prefer using comma-separated variable files, which can be loaded with read.csv()

You can also check the foreign library for other data file types

Suppose you load a dataset using

data <- read.csv("mydata.csv")

You can check out the names of the variables using names(data)

And access any variables, such as gdp, using data$gdp

Benefits and dangers of attach()

If your data have variable names, you can also “attach” the dataset like so:

data <- read.csv("mydata.csv")

attach(data)

to access all the variables directly through newly created vectors.

Be careful! attach() is tricky.

1. If you attach a variable data$x in data and then modify x,
the original data$x is unchanged.

2. If you have more than one dataset with the same variable names,
attach() is a bad idea: only one dataset can be attached!

Sometimes attach() is handy, but be careful!

Missing data

When loading a dataset, you can often tell R what symbol that file uses for missing
data using the option na.strings=

So if your dataset codes missings as ., set na.strings="."

If your dataset codes missings as a blank, set na.strings=""

If your dataset codes missings in multiple ways, you could set, e.g.,
na.strings=c(".","","NA")

Missing data

Many R commands will not work properly on vectors, matrices, or dataframes
containing missing data (NAs)

To check if a variables contains missings, use is.na(x)

To create a new variable with missings listwise deleted, use na.omit

If we have a dataset data with NAs at data[15,5] and data[17,3]

dataomitted <- na.omit(data)

will create a new dataset with the 15th and 17th rows left out

Be careful! If you have a variable with lots of NAs you are not using in your analysis,
remove it from the dataset before using na.omit()

Mathematical Operations

R can do all the basic math you need

Binary operators:

+ - * / ^

Binary comparisions:

< <= > >= == !=

Logical operators (and, or, and not; use parentheses!):

& | ! && ||

Math/stat fns:

log exp mean median min max sd var cov cor

Set functions (see help(sets)), Trigonometry (see help(Trig)),

R follows the usual order of operations; if it doubt, use parentheses

Example 1: US Economic growth

Let’s investigate an old question in political economy:

Are there partisan cycles, or tendencies, in economic performance?

Does one party tend to produce higher growth on average?

(Theory: Left cares more about growth vis-a-vis inflation than the Right

If there is partisan control of the economy,
then Left should have higher growth ceteris paribus)

Data from the Penn World Tables (Annual growth rate of GDP in percent)

Two variables:

grgdpch The per capita GDP growth rate
party The party of the president (Dem = -1, Rep = 1)

Example 1: US Economic growth

Load data

data <- read.csv("gdp.csv",na.strings="")

attach(data)

Construct party specific variables

gdp.dem <- grgdpch[party==-1]

gdp.rep <- grgdpch[party==1]

Make the histogram

hist(grgdpch,

breaks=seq(-5,8,1),

main="Histogram of US GDP Growth, 1951--2000",

xlab="GDP Growth")

Histogram of US GDP Growth, 1951−−2000

GDP Growth

F
re

qu
en

cy

−4 −2 0 2 4 6 8

0
2

4
6

8
10

GDP Growth under Democratic Presidents

GDP Growth

F
re

qu
en

cy

−4 −2 0 2 4 6 8

0
1

2
3

4
5

6

GDP Growth under Republican Presidents

GDP Growth

F
re

qu
en

cy

−4 −2 0 2 4 6 8

0
2

4
6

8

Make a box plot

boxplot(grgdpch~as.factor(party),

boxwex=0.3,

range=0.5,

names=c("Democratic\n Presidents",

"Republican\n Presidents"),

ylab="GDP growth",

main="Economic performance of partisan governments")

Note the unusual first input: this is an R formula

y~x1+x2+x3

In this case, grgdpch is being “modelled” as a function of party

boxplot() needs party to be a “factor” or an explicitly categorical variable

Hence we pass boxplot as.factor(party),
which turns the numeric variable into a factor

