
POLS/CSSS 503:
Advanced Quantitative Political Methodology

Problem Set 3

Professor: Chris Adolph, Political Science and CSSS

Spring Quarter 2014

Due in class, 6 May 2014

Investigating the Properties of Linear Regression Using Simulation

The purpose of this homework is to provide a guided, hands-on tour through the prop-
erties of the least squares estimator, especially under common violations of the Gauss-
Markov assumptions. We will work through a series of programs which use simulated
data – i.e., data created with known properties – to investigate how these violations
affect the accuracy and precision of least squares estimates of slope parameters. Using
repeated study of simulated datasets to explore the properties of statistical models is
called Monte Carlo experimentation.

Although you will not have to write much R code, you will need to read through
the provided programs carefully to understandwhat is happening. (For this assignment

 Monte Carlo experiments always produce the same results as analytic proofs for the specific
case considered. Each method has advantages and disadvantages: proofs are more general and
elegant, but are not always possible. MC experiments are much easier to construct and can
always be carried out, but findings from these experiments only apply to the specific scenario
under study. Where proofs are available, they are generally preferable to MC experiments, but
proofs of the properties of more complicated models are sometimes impossible or impractically
difficult. This is almost always the case for the properties of models applied to small samples of
data. Here, we use Monte Carlo not out of necessity but for pedagogical purposes, as a tool to
gain a more intuitive and hands-on understanding of least squares and its properties. See Fox
for a more formal treatment of the Gauss-Markov theorem.





only, I ask that you not attach your code, since you will be making only small changes
in long programs. You may find it helpful to show just those few lines of code which
you changed. Likewise, report only those results and figures needed to answer the
questions asked below.)

Getting Acquianted with the Basic Simulation Code

Open the file mcls.r, and read through the code carefully. I recommend thinking
through what is happening line by line, perhaps even running pieces of the code and
checking for yourself what variables have been created (e.g., by printing the variables
in memory).

You will note several new commands, such as for, rnorm(), mvrnorm(), etc. A brief
guide to these functions appears in Table .

Table 1. New R functions used in this homework.

Command Effect

for (i in a:b) {} Loop over the commands in {} once for each element in the se-
quence a:b. On each iteration of the loop, increment i by one.

rnorm(n) Take n draws from the standard Normal distribution, which has
mean zero and standard deviation one. To get draws from a
Normal with mean mu and standard deviation sigma, use mu +

sigma*rnorm(n)

mvrnorm(n,mu,Sigma) Function from the MASS library. Take n draws from the Multi-
variate Normal with means given by the vector mu and variance-
covariance matrix given by Sigma

apply(x,2,mean) Calculate the means of each column of x and return them as a
vector. (This function works generally; to “apply” a different
function, just change mean to the desired function; to apply that
function over rows instead of columns, change 2 to 1.)

density(x) Calculate a smoothed histogram of x, which can then be
plot()ed.

expression(math) Used to plot mathematical notation; see help for the command
text() for examples of syntax of math





Careful study will reveal that mcls.r works through four steps:

. Set up the joint distribution of x1, x2, and x3, which are multivariate normal
with means μX (denoted muX) and variance-covariance matrix ΣX (denoted Sig-

maX). Defines the true values of β (denoted b) and σ (denoted sigma), to be used
in step .

. Loop over sims simulation runs, at each iteration drawing n observations of x1,
x2, and x3 (collected in the matrix X), from which y (denoted y) is generated as:

yi = β0 + β1x1i + β2x2i + β3x3i + εi

where εi is a draw from the Normal distribution with mean 0 and variance σ2.

. At the end of each simulation run, find the least squares estimates of the β’s above,
and save them, along with their standard errors and t-statistics.

. After the simulation runs are complete, print the average estimates, standard
errors, and t-statistics, comparing each to the “true” values. Then plot the dis-
tributions of the estimated β̂’s, again comparing to the truth.

An example will help explain the output from step . If we run mcls.r at its default
settings (which correspond to an ideal case in which the Gauss-Markov assumptions
hold, and there is no omitted variable or selection bias), we obtain the following text
output:

True parameters

1 2 3 4

Average LS estimate across 1000 simulation runs

(Intercept) X1 X2 X3

1.000479 1.992530 3.000542 3.989724

The above shows that on average across 1000 simulations, linear regression recovered
the true values of the intercept and three slope coefficients almost exactly, despite not
knowing these true values. Linear regression works, and without bias, at least under
ideal conditions.

 That is, we create a set of covariates which are jointly Normal, X = MVN (μX,ΣX).





Of course, in any particular regression, our estimates may be off from their expected
values. The standard error is an estimate of how far off we can expect regression es-
timates to be – but is the standard error itself well estimated? It should match the
standard deviation of estimates of β across different samples of data from the same dis-
tribution.

True standard errors across 1000 simulation runs

(Intercept) X1 X2 X3

0.1408317 0.1447928 0.1417090 0.1491686

Average estimated standard errors across 1000 simulation runs

(Intercept) X1 X2 X3

0.1435155 0.1451408 0.1448281 0.1452036

Comparing the average standard error with the “true” standard deviation across β̂’s
shows that under ideal conditions, linear regression also produces unbiased estimates
of its own error.

Because the t-statistic is just the ratio of the estimated β to its standard error, it too
should be well estimated on average – as we can see below.

[1] "True t-stat across 1000 simulation runs"

(Intercept) X1 X2 X3

7.100677 13.812843 21.170141 26.815302

[1] "Average estimated t-stat across 1000 simulation runs"

(Intercept) X1 X2 X3

6.971224 13.728258 20.717954 27.476750

We also receive Figure  as a pdf file.

Moving Beyond the Default Simulation Settings

The default settings in mcls.r create three uncorrelated covariates (note the default
SigmaX) and generate y from them using the “true” model,

yi = 1 + 2x1i + 3x2i + 4x3i + εi, εi ∼ N (0, 2).

Then we attempt to recover these specific true β’s by regressing y on x1, x2, and x3.





0 1 2 3 4 5 6 7 8

0
1

2
3

4

LS with Uncorrelated X's

D
en

si
ty

Trueβ1 Trueβ2 Trueβ3 

β̂1 β̂2
β̂3

Figure 1. The true and estimated linear regression coefficients under ideal conditions across 1000 sim-
ulated datasets. Vertical marks indicate the true coefficients used to generate the 1000 datasets.
The distribution of least squares estimated coefficients across the 1000 datasets are shown as
shaded regions. The distribution of estimates implied by the average estimated standard error
is superimposed as a solid line, and matches the actual distribution of estimates almost exactly.

We will use mcls.r as a template to explore when regression works and when and
how it fails. By changing the settings in the first and second part of the code, we can
estimate the linear regression model using different types of data, and see the conse-
quences of different data problems on estimation bias and efficiency. By changing the
third part of the code, we can change the model used, to compare the performance
of different least squares models applied to the same data. You will be provided al-
ternative versions of the code to accomplish this, but will also be asked to make some
changes to the code on your own.





Problems to Solve

Now that we have read through the code, we are ready to begin.

a. un mcls.r using its default settings. Make a note of the results. erun the
program three times, setting the correlation of x1 and x2 to 0.5, 0.9, and 0.99,
respectively. Based on the results from these runs, what can you say about the
effect of partial collinearity on least squares estimates? In particular, does raising
the correlation of x1 and x2 add bias to our estimates of β1, β2, or β3? Does
raising the correlation of x1 and x2 affect the precision of estimates of β1, β2, or
β3?

b. Set the correlation of x1 and x2 to 1, and rerun mcls.r. What has happened, and
why? It will help to look at the summary of the regression results for the last
run, using print(summary(res)).

c. Now open the program mcovb.r in your text editor. Note that this program is
identical to mcls.r, with one exception. When this program runs lm(), it omits
x2 from the regression. Now run the program at its default settings, with the
correlation of x1 and x2 set to 0. What effect does the omission of x2 have on
the bias and precision of the estimates of β1 and β3?

d. Set the correlation of x1 and x2 to 0.9, and rerun mcovb.r. Now what effect does
the omission of x2 have on the bias and precision of the estimates of β1 and β3?
Do our findings differ from those in part c? Why?

e. Finally, keep the correlation of x1 and x2 at 0.9, but rewrite mcovb.r to run the
regression of y on x1 and x2, omitting x3. What effect does the omission of x2
have on the bias and precision of the estimates of β1 and β2?

f. What explains the differences in your results across parts c, d, and e? Based on
these results, and your findings in part a, how would you recommend users of
least squares deal with highly correlated covariates?

g. Open the program mcselect.r in your text editor. Note that this program is
identical to mcls.r, except now, all observations in which y is greater than its

 Be careful that you set SigmaX to possible values only. This matrix must always be symmetric,
so to set the covariance of x1 and x2 to 0.5, you must set both SigmaX[2,1] and SigmaX[1,2] to
0.5.





sample mean are deleted prior to running the regression. What effect does selec-
tion on y have on the bias and precision of the estimates of β1, β2, and β3?

h. Open the program mchet.r in your text editor. Note that this program is identi-
cal to mcls.r, except the structure of sigma has changed. In this simulation, we
will assume the data yi are Normally distributed such that

yi ∼ N (μi, σ
2
i ),

μi = β0 + β1x1i + β2x2i + β3x3i, and

σ2
i = exp(γ0 + γ1x1i).

That is, our data are heteroskedastic. (The γ’s are set in a vector called g.)

un mchet.r under its default setting, which sets γ0 = log(2) and γ1 = 0. Con-
firm that under these settings, y is still homoskedastic. Note the result. Now try
adding heteroskedasticity by increasing γ1 to 1. Confirm that changing this set-
ting has made y heteroskedastic. What effect does this added heteroskedasticity
have on our results?

i. Open the program mcautocor.r in your text editor. Note that this program is
identical to mcls.r, except for two differences. First, y now depends on the
present and past error term:

yi = β0 + β1x1i + β2x2i + β3x3i + ρεi−1 + εi.

This is a moving average process of order 1, or MA(1). If ρ ̸= 0, the yi’s will be
serially correlated.

Second, the present value of the kth covariate, xk,i, now depends on the random
part of the past value of the covariate, xk,i−1, such that

xk,i = μxk
+ ρxk

εxk,i−1 + εxk,i .

This is also a moving average process of order lnt, or MA(1). If ρxk
̸= 0 for some

k, that xk will also be serially correlated.

un mcautocor.r under its default settings, with ρ = 0 and ρxk
= 0 for all

covariates k. Note the results. erun it twice: first set ρ = 0.5 and ρxk
= 0.5

for all k; then set ρ = 0.9 and ρxk
= 0.9 for all k. Based on the results from





these runs, what can you say about the effect of serial correlation on least squares
estimates? Experimenting further, what happens if you have serial correlation
in y but not in X, or vice versa?

j. Come up with a question about the properties of least squares to investigate
using one ormore of the provided programs, or modifications thereof. Illustrate
the answer to your question by running the program(s) under different settings,
and comparing results.

An example question:

Which of the problems identified in this homework can be mitigated by gather-
ing more data (e.g., by setting n=1000, instead of n=100), and which problems
will stay just as severe no matter how much data are collected?

You are welcome to answer the example question for full credit, but will receive
bonus points for formulating your own.




