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Inference for a Sample Mean

Last time:

Inference from the Sample Mean to the Population Mean

Inference of the Difference of Population Means

(which we saw was also inference for a 2 × 2 table)

Both used the t-test

What if we wanted to make inferences about associations
in a larger R× C table?
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Example: Education & Partisan Identification

We have two variables from the General Social Survey:

Education Highest degree attained: No degree, High School diploma,
Associates Degree, Bachelors Degree, Graduate Degree

Party Identification Strong Democrat, Democrat, Leans Democratic,
Independent, Leans Republican, Republican, Strong
Republican, Other

We take these data from the 1990 and 2006 samples of the GSS
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2006 GSS: Collapse partisans, treat leaners as independent

Highest Degree Attained
None HS Assoc College Grad Sum

P
ar

ty
ID Democrat 212 731 106 226 160 1435

Independent 369 936 164 239 143 1851
Republican 96 563 101 276 96 1132
Other 9 32 3 18 3 65

Sum 686 2262 374 759 402 4483

Recall these data from earlier in the quarter
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2006 GSS: Column percentages

Highest Degree Attained
None HS Assoc College Grad Sum

P
ar

ty
ID Democrat 30.9% 32.3% 28.3% 29.8% 39.8% 32.0%

Independent 53.8 41.4 43.9 31.5 35.6 41.3
Republican 14.0 24.9 27.0 36.4 23.9 25.3
Other 1.3 1.4 0.8 2.4 0.7 1.4

Sum 100.0 100.0 100.0 100.0 100.0 100.0

Recall that to see associations, we converted to “column percentages.”
Most useful presentation of a cross-tab
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Inference for Tabular Data

We’ve learned how to assess relationships between discrete variables using
cross-tabs

Powerful technique for detecting even complex non-monotonic relationships

What’s missing?
1 Are we sure the population has the same relationship as this sample?

2 What about confounders? Might the relationship we see between two
variables be a spurious effect of a third variable?
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2006 GSS: Marginal sums only

Highest Degree Attained
None HS Assoc College Grad Sum

P
ar

ty
ID Democrat 1435

Independent 1851
Republican 1132
Other 65

Sum 686 2262 374 759 402 4483

To tackle inference from a sample to a population,
we need to focus first on the marginal counts of the cross-tab
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2006 GSS: Marginal proportions

Highest Degree Attained
None HS Assoc College Grad Sum

P
ar

ty
ID Democrat 0.32

Independent 0.41
Republican 0.25
Other 0.01

Sum 0.15 0.50 0.08 0.17 0.09 1.00

To convert the marginal counts to marginal probabilities,
we divide through by N = 4483

Now we have the distributions of our two categorical variables
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2006 GSS: Estimated probabilities

Highest Degree Attained
None HS Assoc College Grad Sum

P
ar

ty
ID Democrat Pr(d)

Independent Pr(ind)
Republican Pr(rep)
Other Pr(oth)

Sum Pr(ND) Pr(HS) Pr(AS) Pr(CO) Pr(GR)
∑

Pr(·)

To emphasize this,
we can replace these specific probabilities with their formal names
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Independence

If Education and Party ID vary independently,
what is the expected probability of having a specific combination of values?

Our point is broader than the two variables in our example, so let’s imagine

the rows of the table are indexed by i ∈ {1, . . . , I}

the columns of the table are indexed by j ∈ {1, . . . J}

the count in cell i, j is nij

the overall count is N =
∑

i

∑
j nij
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Independence

Call the probability we are in the ith row πi·

Call the probability that we are in the jth column π·j

Call the probability we are in cell i, j as πij

If the rows and columns are independent, πij has a simple form:

πij = πi· × π·j
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2006 GSS: Predicted cell probabilities under independence

Highest Degree Attained
None HS Assoc College Grad Sum

P
ar

ty
ID Democrat 0.05 0.16 0.03 0.05 0.03 0.32

Independent 0.06 0.21 0.03 0.07 0.04 0.41
Republican 0.04 0.13 0.02 0.04 0.02 0.25
Other 0.00 0.01 0.00 0.00 0.00 0.01

Sum 0.15 0.50 0.08 0.17 0.09 1.00

Assuming no dependence between the rows and cells,
we obtain the above predicted probabilities

If Education and Party ID have nothing to do with each other,
these are the sample estimates that a random person from the population falls
in each cell
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2006 GSS: Predicted cell counts under independence

Highest Degree Attained
None HS Assoc College Grad Sum

P
ar

ty
ID Democrat 219.6 724.1 119.7 243.0 128.7 1435.0

Independent 283.2 934.0 154.4 313.4 166.0 1851.0
Republican 173.2 571.2 94.4 191.7 101.5 1132.0
Other 9.9 32.8 5.4 11.0 5.8 65.0

Sum 686.0 2262.0 374.0 759.0 402.0 4483.0

To convert the predicted probabilities for each cell into predicted counts for the
sample, we just multiply each probability by N = 4483

The above predictions are for the model assuming independence,
or no relationship between education and party
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2006 GSS: Error under Independence Model

Highest Degree Attained
None HS Assoc College Grad Sum

P
ar

ty
ID Democrat −7.6 6.9 −13.7 −17.0 31.3 0.0

Independent 85.8 2.0 9.6 −74.4 −23.0 0.0
Republican −77.2 −8.2 6.6 84.3 −5.5 0.0
Other −0.9 −0.8 −2.4 7.0 −2.8 0.0

Sum 0.0 0.0 0.0 0.0 0.0 0.0

All models are simplifications, and thus predict real data with error

If we used independence to “predict” the sample, how many cases would we
misclassify? That is, how much error is there?

Above are the residuals, or nij − n̂ij:
the actual count in the cell minus the estimated count
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The χ2 test

If Education and Party ID are not related in the general population,
then they should appear to be independent variables in our sample

If our table represents the cross-tabulation of two independent variables,
then each cell should be approximately n̂ij = Nπiπj

This independence model forms our null hypothesis;
if we reject it, we find some relationship holds between our variables

As with estimating the mean of a population, we will construct a test statistic,
and see if that statistic seems “too large” to have been likely to occur if the null
hypothesis is true
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The χ2 test

We can construct a statistic, X2, which is 0 when our sample is perfectly
predicted by the independence model

The worse independence appears to predict our sample, the bigger X2

Specifically, we calculate:

Pearson X2 =

I∑
i=1

J∑
j=1

(nij − n̂ij)
2

n̂ij

Notice the numerator is the squared error for the cell,
which we divide by the independence model prediction
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The χ2 test

If the population really has independent education and party ID,
then we will only see a large X2 very rarely

To see how rarely a large X2 occurs by chance, note that X2, as the sum of a
finite series of squared normal variables, follows the χ2 distribution

We can calculate this probability of seeing a particular X2 by summing the
area to the right of that value in the χ2 distribution with (I − 1)(K − 1) degrees
of freedom

If this probability is very small, we consider that evidence against the chance
that the variables are independent

Small p-values for the χ2 suggest Education and Party ID depend on each
other, but does not tell us the shape of this relationship, or the direction

To answer those questions, would need methods beyond CSSS 321
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The χ2 distribution with 12 df

0.000 10.000 21.026 30.000 40.000 50.000

Only 5% of this distribution has a value higher than 20.026

If we see a table with X2
df=12 > 20.026, we can conclude that table has an

association between rows and columns that would occur by chance only 1 in
20 samples

(Why are we only testing for extreme values in one tail of χ2?)
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The χ2 distribution with 12 df

0.000 10.000 21.026 30.000 40.000 50.000

This exercise is only valid if X2 really follows this χ2
df=12distribution

That requires N be large, that all nij be above some threshold (e.g., 10 or so),
and that each observation is an independently drawn random sample from the
population
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The χ2 distribution with 12 df

0.000 10.000 21.026 30.000 40.000 50.000

If your test is “close” to the critical value,
you should make sure the χ2 approximation is appropriate

If your N or some nij are small, try one of the many available alternatives and
corrections to χ2 (e.g., Fisher’s exact test, the Deviance, or X2 with the Yates
correction)
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2006 GSS: Pearson Residuals
Highest Degree Attained

None HS Assoc College Grad Sum

P
ar

ty
ID Democrat 0.3 0.1 1.6 1.2 7.6 10.7

Independent 26.0 0.0 0.6 17.7 3.2 47.4
Republican 34.4 0.1 0.5 37.1 0.3 72.4
Other 0.1 0.0 1.1 4.4 1.4 7.0

Sum 60.7 0.2 3.7 60.4 12.5 137.5

The cell entries above are the Pearson residuals, (nij − n̂ij)
2/n̂ij

The sum of these, in the bottom right corner, is thus X2

X2 closer to 0 indicates a better fitting model; far from 0 a poor one.
If independence is a poor model, these variables are probably related
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2006 GSS: Column percentages

Highest Degree Attained
None HS Assoc College Grad Sum

P
ar

ty
ID Democrat 30.9% 32.3% 28.3% 29.8% 39.8% 32.0%

Independent 53.8 41.4 43.9 31.5 35.6 41.3
Republican 14.0 24.9 27.0 36.4 23.9 25.3
Other 1.3 1.4 0.8 2.4 0.7 1.4

Sum 100.0 100.0 100.0 100.0 100.0 100.0

N = 4483. Pearson X2 = 137.5 on 12 degrees of freedom,
p < 0.00000000000000022.

If Education and Party ID are unrelated in the population, a X2 this large would
occur by chance in less than 1 in 4,500,000,000,000,000 large random
samples.
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The impact of tuition hikes on first-in-family college attendees

For the next example, we will revisit an example from a class survey of
University of Washington undergraduates (January 2012 convenience
sample):

Does a student’s parents and/or grandparents college attendance predict that
student’s self-reported ability to cope with tuition hikes?

We expect a positive association.

Possible mechanisms: older generations’ college could produce wealth,
income, knowledge about college aid/admission/preparation, or a
pro-education ethic
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The impact of tuition hikes on first-in-family college attendees

PG Whether any of a student’s parents and/or grandparents
attended college. Ordered, from oldest family history of college
to newest, in three categories:

1 at least one parent and at least one grandparent attended
2 at least one parent but no grandparents attended
3 no parents and no grandparents attended.

Tuition Self-reported ability to cope with recent UW tuition hikes.
Ordered in four categories from greatest to least ability to cope:

1 No material effect
2 Difficult but manageable
3 Taking out more loans
4 Time off or transfer
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2012 Class survey of UW students: Raw counts

Family college attendance history

At least At least No
one parent one parent parents

and one and no and no
grand- grand- grand-
parent parents parents Total

Tu
iti

on
H

ik
e No material effect 228 119 59 406

Difficult but manageable 248 185 146 579
Took out more loans 89 75 70 234
Taking time off or transferring 2 10 9 21

Total 567 389 284 1240
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2012 Class survey of UW students: Column percentages

Family college attendance history

At least At least No
one parent one parent parents

and one and no and no
grand- grand- grand-
parent parents parents Mean

Tu
iti

on
H

ik
e No material effect 0.402 0.306 0.208 0.305

Difficult but manageable 0.437 0.476 0.514 0.476
Took out more loans 0.157 0.193 0.246 0.199
Taking time off or transferring 0.004 0.026 0.032 0.020

Total 1.000 1.000 1.000 1.000

N = 1, 240. Pearson X2 = 44.63 with 6 df. p < 0.0000000554.

(We can just write p < 0.001 to save space.)

What does this all mean, statistically and substantively?
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Proportional Reduction in Error

Proportional Reduction in Error (PRE) statistics show how much of the
variation in our dependent variable is explained by our independent variable

That is, if we know X, how much of the error in predicting Y can we eliminate?

χ2 is not a PRE statistic

Instead, for monotonic relationships between (ordered) discrete variables,
try the Gamma statistic

Chris Adolph (UW) Tabular Data 27 / 33



The Gamma Statistic

We will consider every possible “pair” of cases in our dataset, and classify into
three groups:

Concordant pairs If case 1 is higher than case 2 on X, it is also higher on Y.
The more concordant pairs, the more likely a positive,
monotonic relationship

Discordant pairs If case 1 is higher than case 2 on X, it is lower on Y.
The more discordant pairs, the more likely a negative,
monotonic relationship

Tied pairs The cases share at least one value
The Gamma statistic ignores these pairs
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The Gamma Statistic

Gamma has a simple form:

Gamma =
# of Concordant Pairs − # of Discordant Pairs
# of Concordant Pairs + # of Discordant Pairs

Gamma has a possible range from:

−1 (X completely explains Y, and is negatively related)

1 (X completely explains Y, and is positive related)
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2012 Class survey of UW students: Column percentages

Family college attendance history

At least At least No
one parent one parent parents

and one and no and no
grand- grand- grand-
parent parents parents Mean

Tu
iti

on
H

ik
e No material effect 0.402 0.306 0.208 0.305

Difficult but manageable 0.437 0.476 0.514 0.476
Took out more loans 0.157 0.193 0.246 0.199
Taking time off or transferring 0.004 0.026 0.032 0.020

Total 1.000 1.000 1.000 1.000

N = 1, 240. Pearson X2 = 44.63 with 6 df. p < 0.001. Gamma = 0.244.

Knowing a student’s family college attendance history reduces error in
predicting effects of tuition hikes by 24.4%.

Note that just as on the midterm, we aren’t sure if this relationship is causal,
or just the result of confounders
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A graph is still a useful summary

Parents 
 & grand− 
 parents

Parents 
 Only

None

0

0.1

0.2

0.3
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Family History of College Attendance

Tu
iti

on
 H
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e 

E
ffe

ct
s

No material 
 effect

Manageable

More Loans

Time Off/ 
 Transfer

Proportion of students self-reporting difficult with tuition hikes by family
history of college attendance. Data taken from 221 class suvery

(convenience sample of fellow University of Washington students). N = 1, 240.
Pearson X2 = 44.63 with 6 df. p < 0.001. Gamma = 0.244.
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Final thoughts on 2-D cross-tabs

1 Inferential statistics like χ2 and Gamma can help confirm your table isn’t a
mirage resulting from sampling error

2 Column percentages are essential for pining down the substance of the
relationship

3 Graphics often best of all: easiest to read, and highlights the substantive
size of the relationship
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Contingency tables in the context of the course

Our study of associations between sampled variables began with comparison
of means

That limited us to assessing the effect of a binary variable on one other
variable

Crosstabulations allow us to infer relationships between two discrete variables
regardless of the number of categories in each

Still missing:
1 Methods for continuous variables
2 Controls for confounders
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