
Burrows & Langford – Chapter 9 page 1
Learning Programming Using Visual Basic .NET

CHAPTER 9
ACCESSING DATA
USING XML

The eXtensible Markup Language (XML) is a language used to represent data in
a form that does not rely on any particular proprietary technology. The technology-
neutral language is defined by standards set up by the World Wide Web Consortium
(w3c.org) and has rapidly become the standard for data exchange using the Internet. Not
only is XML technology neutral, but also it is based on simple character formatting (is
human-readable like HTML) and thus is compatible with the network protocols (TCP/IP)
that manage data transmission on the Internet.

In addition to XML, a number of associated technologies have evolved that makes
XML even more useful. One of these is the XML Schema1 Language. This language
provides a way of defining how an XML document should be formed. Since XML can be
easily customized for a specific application, an XML Schema provides a way of
defining and validating XML documents to be sure that they follow the rules of the
schema. Business partners can agree upon a specific XML Schemas for XML documents
that they exchange. In this way they are sure that the documents they exchange include
all the data they expect that is in a format they can understand.

Another useful technology associated with XML is the eXtensible Stylesheet
Language (XSL) and eXtensible Stylesheet Language Transforms (XSLT). XSLT
provides a means of transforming one XML document into another XML document.
This capability is useful because it provides a way to take a single XML document and
transform it into a variety of different versions (include HTML) that are specialized for
specific uses.

In this chapter we first take a closer look at XML and its related technologies. We
then see how Visual Basic .NET works with XML, XML Schemas, and XSLT. A number
of classes within Visual Basic .NET provide methods that work directly with XML. In
fact, Microsoft’s .NET initiative uses XML as its foundation data technology.
Specifically we will see how Visual Basic .NET can work directly with XML, how it can
take data from a relational database and convert it into XML, and how an XML document
can be transformed into other XML documents.
Objectives

After studying this chapter you should be able to
• Understand what XML is and how it is used within business-to-business

transactions.
• Understand XML Schemas and XSL Transforms and how they are used within

the context of XML.
• Read and process data that is stored in an XML document.
• Read data from a relational database and transform it into its equivalent XML.
• Transform one XML document into a new XML document using an XSLT

document.
9.1 AN XML PRIMER

1 Generically, a schema, pronounced "skeema", is the definition of an entire database. It defines the
structure and the type of contents that each data element within the database. (Source: TechWeb.com). An
XML Schema defines of the content used in an XML document.

03/10/02 Draft

Burrows & Langford – Chapter 9 page 2
Learning Programming Using Visual Basic .NET

What is XML

As the Internet became more popular and businesses starting using it to support a
variety of commercial applications, both Business-to-Consumer (B2C) and Business-to-
Business (B2B), it became clear that the Hypertext Markup Language (HTML) had a
number of shortcomings. HTML is a language that focuses on the presentation of
information for human consumption. That is, it is designed to transform data into a
form that makes it easy for humans to understand. Consider the web page shown in
Figure 9.1.

Figure 9.1 Typical web page formatted using HTML

It should be fairly clear what the meaning (semantics) of the information displayed
on the web site is. We see information on three products that includes the Product
Number, Description and Price. If you were asked to determine the price of the product
with a Product Number equal to 54321, you would have no difficulty coming up with a
price of $0.02. In fact, this task is so easy that you could do it without any thought. This
is because you are intelligent and are able to attach a meaning to the visual information
you process.2

What happens if another machine were to process the same data. First of all,
another machine would likely not process the image as shown in the browser. Instead, the
machine would most likely see the data in its original form, that is, the HTML that was
used by the browser to create the display in Figure 9.1. What does this HTML look like?
Figure 9.2 shows the HTML that was rendered by the browser in the previous figure.

2 Note that some people with certain learning disabilities might have difficulty with the question posed
because their ability to process a visual display is not developed as expected.

03/10/02 Draft

Burrows & Langford – Chapter 9 page 3
Learning Programming Using Visual Basic .NET

<html>
<head>
<title>No title</title>
</head>
<body bgcolor="white" text="black" link="blue" vlink="purple" alink="red">

…
<table border="1">
 <tr>
 <td width="299">
 <p align="center">Product Number</p>
 </td>
 <td width="299">
 <p align="center">Description</p>
 </td>
 <td width="299">
 <p align="center">Price</p>
 </td>
 </tr>
 <tr>
 <td width="299">
 <p align="center">12345</p>
 </td>
 <td width="299">
 <p align="center">Ball Point Pen</p>
 </td>
 <td width="299">
 <p align="center">$0.45</p>
 </td>
 </tr>

…
</table>
</body>
</html>

Figure 9.2 The HTML used to create the browser rendering in Figure 9.1
You may not understand HTML, but the symbol <tr>, known as a tag, means the

start of a table row while the tag </tr> means the end of a table row. Within a table row,
each new column is defined within the pair of tags <td> </td>. Figure 9.3 shows just one
table row definition.

 <tr>
 <td width="299">
 <p align="center">12345</p>
 </td>
 <td width="299">

03/10/02 Draft

Burrows & Langford – Chapter 9 page 4
Learning Programming Using Visual Basic .NET

 <p align="center">Ball Point Pen</p>

font /font>

Opening tag Closing tag

 </td>
 <td width="299">
 <p align="center">$0.45</p>
 </td>
 </tr>

Figure 9.3 The HTML definition for one row in a table
We will focus on the third line of Figure 9.3 that defines one table column using the

following HTML:
<p align="center">12345</p>

What does this mean? The <p> tag defines a new paragraph and </p> defines the end of
the paragraph. Within the paragraph tag we see an attribute named align that is equal to
the string “center”. This means that the contents of the paragraph will be centered. The
 tag defines the font to be used as indicated with the face attribute (Tahoma in this
case). Finally, within the paragraph tag, between the and tags, we see
12345. This is defined as the content, which is in a centered paragraph using Tahoma
font. It should be clear that HTML deals with the display of information. Figure 9.4
summarizes the terminology we just used. We should also add that the terms “tag”,
“node”, and “element” might be used interchangeably.

Figure 9.4 Terminology used to describe HTML
We now ask, what does tag content 12345 mean? From the HTML, we know how it

should look but we have no clue what it means. Again, referring to Figure 9.1, we know

that its meaning is a product number because we see it under the column heading
“Product Number”. But strictly from the HTML, it would be hard to draw that
conclusion.

< face="Tahoma">12345<

Attribute

Value

Tag content

This demonstrates the major shortcoming of HTML: it does an excellent job
describing how to display content but it does a very poor job communicating the meaning
of its content. How does this shortcoming impact our applications? First of all,
applications like search engines end up giving you some useless information because they
generally search content without any application of semantics. Assume you want to
search for the table of elements used in chemistry and you enter the search criteria
“element table”. Figure 9.5 shows the results of such a search.

03/10/02 Draft

Burrows & Langford – Chapter 9 page 5
Learning Programming Using Visual Basic .NET

Figure 9.5 The results of a search engine searching for information on “element

table”
You can see some “hits” and some “misses” because the semantics of “element

table” have a number of different interpretations. In an application like this we again rely
on the human to decide which “hits” are valuable and which ones are junk. Most humans
are able to make this decision but having a computer make the decision is difficult at
best.

What if the HTML shown in Figure 9.2 were replaced with the data shown in
Figure 9.6? Note that the tags are now using terminology that is directly relevant to the
data that is being stored. If the question “What does the content ‘Legal Tablet’ mean?”
we can easily see that it is a product description (it’s in the Description tag that is inside a
Product tag so it’s a product’s description). In Figure 9.6 you are looking at the definition
of a product list using the Extensible Markup Language or XML (www.w3c.org). Where
did the tags such as <Product> and <Price> come from? The authors made them up.
That’s the meaning of “extensible” – one is free to “extend” any XML freely as long
as a few simple rules that we will cover later are followed.

03/10/02 Draft

Burrows & Langford – Chapter 9 page 6
Learning Programming Using Visual Basic .NET

Figure 9.6 XML equivalent to the HTML content in Figure 9.2

However, you may be observing that the data doesn’t look as good as the HTML
rendering. You are correct but you need to understand that with XML, we separate the
data content from the data presentation. Using several different techniques, we can
present the same XML in a number of different ways. Figure 9.7 shows two different
renderings of the XML from Figure 9.6

<combine into one figure>

03/10/02 Draft

Burrows & Langford – Chapter 9 page 7
Learning Programming Using Visual Basic .NET

Figure 9.7 The same XML document rendered (displayed) in two different ways

03/10/02 Draft

Burrows & Langford – Chapter 9 page 8
Learning Programming Using Visual Basic .NET

Both renderings in Figure 9.7 use the same XML file. Here you can see the power
associated with separating data content from presentation – the same data can be rendered
in any way that is useful. For example, one rendering might be HTML destined for a
desktop browser (like shown in Figure 9.7), another rendering might be WML (Wireless
Markup Language) destined for a wireless device, and a third rendering might be the
original XML destined for a wholesale’s electronic catalog. There is no practical limit to
the number of different renderings possible for one XML file. One of the best examples is
the use of XML in Newspaper industry. Many major newspapers have both a printed and
a web version of their paper. By storing their news articles in XML, they can use the
same information as the basis of both versions of their paper (since both are electronically
rendered). This makes the publication of multiple formats very efficient.

As you might guess, XML is rapidly becoming the data format “standard” for the
exchange of data on the Internet. Computer-to computer data transfers are possible
because the computers can be programmed to find particular tags (such as <Price>) and
use their content as appropriate. Standards, such as ebXML3 (electronic business XML)
for business-to-business transaction processing are already being used. In addition,
companies are finding that the ability to transform XML data into a form that can be
displayed in a browser, that is, transformed into HTML, makes it possible to create
dynamic and current content.

XML data represent what is called a tree. A tree is a data structure that is
characterized by a single “root” with branches and leaves. For example, that XML we
saw previously in Figure 9.7 can be drawn as a tree as shown in Figure 9.8.

Figure 9.8 The “tree” view of XML

In Figure 9.8 “ProductList” is the root node, “Product” represents a branch node,

and “ProductNumber”, “Description”, and “Price” are leaf nodes. The textual content of
elements (string or numeric) is usually associated with leaf nodes. It is also possible to
assign some content values to non-leaf nodes using “attributes” that will be discussed
later.

ProductList

Product

ProductNumber Description Price

Product

ProductNumber Description Price

Product

ProductNumber Description Price

Product

ProductNumber Description Price

Product

ProductNumber Description Price

Product

ProductNumber Description Price

In addition to having just one root node, a non-root node (branch and leaf) can only
be associated with a single node above it (a child node can have only one parent). Thus it
would not be legal for a specific ProductNumber leaf node to be a child of more that one
product.

To summarize, XML provides a way of storing structured data that is self-
describing, i.e., the content meaning is more apparent due the use of “tags” that are
meaningful in the context of the application. It is useful for exchanging data on the
Internet either through computer-to-computer communications or as a source to be

03/10/02 Draft

3 For more information on ebMXL see www.ebxml.org/.

Burrows & Langford – Chapter 9 page 9
Learning Programming Using Visual Basic .NET

transformed into a display for use by people. This ability to transform the “view” of the
data for the particular viewer is a very important capability.
XML Syntax

XML syntax involves understanding and following a few straightforward rules.
These include:

• The language is case sensitive. This means that the tags <price> and <Price> do
not refer to the same thing.

• There is one and only one root node.
• All elements must have both a start tag and an end tag. This means that if you

have <price> as a starting tag, you must have a corresponding closing tag. The
closing tag could be </price>, that is, the same as the opening tag except a slash
(/) must precede the tag name. There is a shortcut that can be used for leaf nodes
if they have empty content. For example, if the <price> element had no content,
you could say <price/> and this would be considered both the starting and
ending tag for the “price” tag. Thus, <price></price> and <price/> are identical.

• Tags must be nested correctly. That is, one tag may be inside another tag
(“nested”) but its starting and ending tags must be within the starting and ending
tags of the surrounding tag. The following is legal:

 <product>
 <price> 1.25 </price>
 </product>
 In this example, “price” is nested in “product”. Illegal nesting is shown in the

next example:
 <product>
 <price> 1.25 </product>
 </price>
 This is not legal because the price element’s starting and ending tags are not

both within the product element’s starting and ending tags.
• If an element has an attribute, the attribute value must be quoted. Attributes are

values associated with a node. For example, you might see the following XML
fragment:

 <product hazardous=“true”>
 <name> nitroglycerin </name>
 </product>
 In this example, the product element has an attribute named hazardous. Each

element can have zero or more attributes defined for it. The value of attributes
must be enclosed in either single- or double-quotes.

You are free to make up element and attribute names. They must start with a letter
or an underscore and can contain any number of letters, numbers, hyphens, periods, or
underscores. However, keep the element names short and descriptive just like you have
been doing with variable names.

If you follow theses rules your XML document is characterized as being “well
formed”. This simply means that there are no syntax violations with the document.
There is another way to characterized XML documents. This is knows as “valid”. We

03/10/02 Draft

Burrows & Langford – Chapter 9 page 10
Learning Programming Using Visual Basic .NET

will discuss valid documents later but for the time being understand that a document may
be well formed but not valid.
Namespaces. What if you receive an XML document from a furniture supplier that has a
<table> tag and you also get a different XML document from a tax advisor that also has a
<table> tag? In the first document, <table> referred to a piece of furniture (like a table
and chairs) while in the second document, <table> referred to a row/column oriented
display of information (like the itemize deductions table). How can you resolve the duel
meaning for the same element tag? You might be able to resolve the meaning by looking
at the content of the two tags but this could be difficult or perhaps not possible. XML has
a solution for this type of situation. The solution is to use something called a namespace
(www.w3.org/TR/REC-xml-names/). A namespace simply defines a point of reference.
In the furniture supplier’s namespace we know what <table> means and in the tax advisor
namespace we also know what <table> means and we know the two do not mean the
same thing.

How do we use namespaces within an XML document? We simply change the
element tag by adding a prefix and a colon to the tag. Using the examples from above, we
might say <furn:table> and <tax:table> to differentiate the two types of elements. Be
aware, however, if the two tags did not appear in the same XML document then there
may not be a problem because the two documents themselves might be sufficient to
establish the context.

Namespaces serve another function in addition to differentiated two tags within the
same document. This second function allows XML parsers (a parser is a program that
processes the XML to determine its content) to understand the context of a particular tag
even if the tag itself is unambiguous in the specific document. For example, we will see
later the XML statement:

 <xsl:sort select="ProductNumber"/>
Here the namespace “xsl” stands for Extensible Stylesheet Language. When an XML
parser sees this namespace, it knows that it must perform the “sort” function as defined
within XSL.

How do we establish namespaces for our documents? To define a namespace, you
add an xmlns (xml namespace) declaration as an attribute within any element. All
descendents of the element may then use the namespace. If you want the namespace
available within the entire XML tree, you could place the xmlns declaration as an
attribute of the root node. The declaration has the following syntax:

 xmlns:name = “uri”
where you make up the name. The “uri” (Uniform Resource Identifier) is a unique
identifier and is often, but not necessarily, a url (Uniform Resource Locator). We
will say more about the uri later.

Figure 9.94 provides an example of creating a namespace definition and then using
it later as part of a tag in the definition of a node.

4 This is taken from an example by Alexander Falk that comes with XML Spy v4.0 (Altova, Inc.).

03/10/02 Draft

Burrows & Langford – Chapter 9 page 11
Learning Programming Using Visual Basic .NET

Figure 9.9 XML with a namespace definition

In this example the root node is the <purchaseOrder>. An attribute has been added
to the definition of this node (xmlns:ipo=”http://www.altova.com/IPO”). The name “ipo”
could be any name. Note that the name is added to both the root node’s starting and
ending tags (ipo:purchaseOrder) as well as the comment node’s starting and ending tags
(ipo:comment).

The uri in the example (that is actually a URL) is ”http://www.altova.com/IPO”. If
you were to go to this site with a browser you would get an error because there is no
HTML content there. The sole purpose of this uri is to be sure it is unique. Since the
company Altova, Inc. owns the URL www.altova.com, it has full control of the URL and
no other firm can use this. Thus, as a mater of convenience, the uri, which must be
unique, is often created using a URL.

Sometimes the uri is not constructed using a URL but in this case there is usually an
international standards organization that guarantees the uniqueness of the uri. In addition,
when a URL is used as the uri, some organizations put content at the URL that
documents the namespace. We should add that “uniqueness” is only necessary within a
document, that is, two different and unrelated entities may by chance choose the same
uri. As long as the two uris do not appear in the same document there will be no problem.
Document Prolog. The document prolog indicates that the document is XML as well
as other things such as document type, entity definitions and other processing
instructions. Here we cover the just the XML declaration and not entity definitions or
other processing instructions.

The first line in any XML document indicates that the document is XML and
declares the version of XML being used. An example is:
 <?xml version="1.0"?>

There are additional attributes available besides the version attribute. These include
how the document is encoded (the character set used) as well as an indication of other
files that this document needs to be loaded for it to operate correctly. Note the special
starting and ending tags for this entry (<? and ?>). These tags are used to define a

03/10/02 Draft

Burrows & Langford – Chapter 9 page 12
Learning Programming Using Visual Basic .NET

processing instruction (sometimes referred to as PI), that is, information used by the
XML parser and not part of the actual data content.
XML Schemas

Suppose two business partners decide to exchange data using XML documents.
How do they communicate what is legal in the documents and how can they verify that a
document they receive from the other follows the rules? Imagine if there were no rules,
then each partner would be free make up tags that the other partner would not expect or
not even understand. In addition, the two partners would also be free to use different tags
for the same content. One might use <po> for purchase order and the other might use
<purchOrder> for the same thing. You can imagine how difficult communication would
be without an agreed upon set of rules for valid XML documents.

XML has two ways of defining the rules for valid XML documents: Document
Type Definitions (DTD) and XML Schemas (www.w3c.org/XML/Schema). The DTD
was the original tool used for this purpose. However, it is rapidly being replaced with the
newer, and by most accounts much better, XML Schema. We will not cover the DTD and
focus instead on the XML Schema because it is considered better and because it is the
standard used by Microsoft in Visual Basic .NET.

Consider the XML we saw earlier in Figure 9.6 (reproduced in Figure 9.10).

Figure 9.10 The XML from Figure 9.6

An XML Schema would define what was legal as far as elements and tags are
concerned as well as what the content would consist of. Figure 9.11 shows an XML
Schema that would support the XML document in Figure 9.10.

03/10/02 Draft

Burrows & Langford – Chapter 9 page 13
Learning Programming Using Visual Basic .NET

Figure 9.11 XML Schema definition

This discussion is not intended to provide the degree of detail so that you can
become an expert at creating XML Schemas. In the next Section 9.2 we discuss some
tools available within Visual Basic .NET that help you build a Schema without having to
know all the syntax rules. In fact, the schema code shown in Figure 9.11 was created with
one such tool. However, it would be helpful here to talk about the schema code in Figure
9.11 to enhance your understanding.

First note that an XML Schema is in fact just an XML document (as you can see
this in the document prolog in the first line of the schema). This means that you already
know the basic syntax rules associated with writing the schema. The second through
eighth line is the root element that defines the schema <xs:schema …>. In addition to
defining the root node, this statement also defines the id, targetNamespace,
attributeFormDefault and elementFormDefault attributes. Finally, it defines four
namespaces including the namespace “xs” that qualifies the remaining tags in the
definition. Do not worry about all this detail at this time. In fact, this element definition,
as generated by Visual Basic .NET, is actually more complex than it need be. Often,
when a tool creates code, it produces a very general version that is more verbose than
well-designed custom code would be.

The schema then defines an element named ProductList as a complex type. A
complex type is one that consists of additional elements. The ProductList element is
made up of an unbounded number of elements that are chosen from the list of Product
elements. Again this “choice” element is really not necessary when you are selecting

03/10/02 Draft

Burrows & Langford – Chapter 9 page 14
Learning Programming Using Visual Basic .NET

from a choice of one element, but for a general solution, the choice element is provided.
The Product element is defined as a complex type that consists of a sequence of elements
named ProductNumber, Description, and Price. These final three elements store content
of type string, string, and float respectively.

This is not the only way to write the schema. That is, there are generally several
ways to write a schema for the same XML document. There are additional tags that can
be used within the schema definition. We will see some additional tags in Section 9.2
when we develop some XML and XML Schemas.

Once an XML Schema has been developed for an XML document, that document
can be validated against the schema. That is, the XML document is compared to the rules
defined in the schema and if any rule is broken, then the XML document will be
considered as invalid. Note that it can still be well-formed, that is, it does not violate any
of the syntax rules outlined earlier in this section, but still be invalid. Well-formed refers
to basic syntax rules while valid refers to a well-formed document following some set
of additional rules controlling how the elements are arranged within the document.

Finally, a number of industry and standards groups are developing XML schemas
that define documents specific to their industry or specialized needs. For example,
ebXML (electronic business XML – www.ebxml.org) provides a set of schemas for
various transactions and other common documents that are used in electronic business.
Another example is XBRL (Extensible Business Reporting Language –
www.xbrl.org). Through the adoption of these open standards, business partners can
exchange documents via XML with the assurance that others will be able to understand
and process them.
Styling XML

In Figure 9.7 we saw two different renderings of the same XML document. This
was done with the help of Extensible Stylesheet Language Transforms (XSLT –
www.w3.org/Style/XSL). XSLT provides a means of transforming one XML document
into a second XML document. Figure 9.12 shows how this transformation process works.

XML
Document

XSLT
Instructions

XSLT
Processor

New XML
Document

XML
Document

XSLT
Instructions

XSLT
Processor

New XML
Document

Figure 9.12 Overview of the XSLT Transformation process
As you can see in Figure 9.12, an XML document and XSLT instructions are

processed by an XSLT processor to create a new XML document. In our case, the new

03/10/02 Draft

Burrows & Langford – Chapter 9 page 15
Learning Programming Using Visual Basic .NET

XML document was also an HTML document. Note that HTML is legal XML as long as
it follows the rules we defined earlier. This is a common transformation process by which
we can transform an XML document into any valid XML document. Other documents
that are valid XML include the Wireless Markup Language (WML) and HTML Basic
that support wireless devices. XSLT processors are available in a variety of software
products. For example, Internet Explorer includes an XSLT processor that can transform
and render XML documents into HTML for display. Visual Basic .NET includes classes
and methods that also have the ability to process XML using an XSLT processor. There
are also a number of XSLT processors available for free as both open source and
freeware products. We will be using Internet Explorer and Visual Basic .NET for our
processing of XML and XSLT.

We must repeat again the caution that XSLT, like the XML Schema, is very
complex and our coverage here is just an overview to show you some examples and
provide you with a high-level awareness of the technology and its applications. XSLT
provides the means to take the original XML document (remember it is a tree structure),
and select the entire tree or any sub trees (called pruning ☺) and format or rearrange the
nodes of the new tree into a new XML document.

Figure 9.13 shows our original XML and the Internet Explorer rendered version of
the transformed XML (transformed into HTML using an XSLT document).

<combine into one figure>

03/10/02 Draft

Burrows & Langford – Chapter 9 page 16
Learning Programming Using Visual Basic .NET

Figure 9.13 An XML document and its rendered transformation show in Internet

Explorer
Note that in the second line of the XML document you see the statement:
 <?xml-stylesheet type="text/xsl" href="prodDesc.xslt"?>

This statement is a directive telling the browser that a stylesheet has been defined for it
and that stylesheet is found in a file named prodDesc.xslt. Figures 9.14a and 9.14b show
the contents of the XSLT document stored in the prodDesc.xslt file.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>

<!-- Template #1 -->
<xsl:template match="ProductList">
 <html>
 <body>
 <div style="font-family:Tahoma,Arial,sans-serif;
 font-size:20pt; color:red;
 text-align:center; letter-spacing:8px;
 font-weight:bold">
 Another List of Products
 </div>
 <hr />
 <table width="100%" cellpadding="5" border="0"
 style="font-family:Tahoma,Arial,sans-serif;
 font-size:16pt; color:black;
 text-align:center">
 <tr>
 <td>Description</td>
 <td>Price</td>
 <td>Product Number</td>

03/10/02 Draft

Burrows & Langford – Chapter 9 page 17
Learning Programming Using Visual Basic .NET

 </tr>
 <xsl:for-each select="Product">
 <xsl:sort select="Description"/>
 <tr>
 <xsl:apply-templates select="Description" />
 <xsl:apply-templates select="Price" />
 <xsl:apply-templates select="ProductNumber" />
 </tr>
 </xsl:for-each>
 </table>
 <div style="font-family:Arial,sans-serif;
 font-size:8pt; margin-left:10px">
 </div>
 </body>
 </html>
</xsl:template>

<!-- Template #2 -->
<xsl:template match="Description">
 <td style="font-family:Comic Sans MS, Arial,sans-serif;
 color:darkblue; font-size:16pt;
 font-weight:bold">
 <xsl:value-of select="."/>
 </td>
</xsl:template>

<!-- Template #3 -->
<xsl:template match="ProductNumber">
 <td style="font-family:Tahoma,Arial,sans-serif;
 font-size:10pt">
 <xsl:value-of select="."/>
 </td>
</xsl:template>

<!-- Template #4 -->
<xsl:template match="Price">
 <td style="font-family:Tahoma,Arial,sans-serif;
 font-size:10pt">
 $<xsl:value-of select="."/>
 </td>
</xsl:template>

</xsl:stylesheet>

03/10/02 Draft

Burrows & Langford – Chapter 9 page 18
Learning Programming Using Visual Basic .NET

Figure 9.14a First part of the XSLT document used to transform the XML into

HTML
Figure 9.14b Remainder of the XSLT document used to transform the XML into

HTML
Let’s look at the XSLT to try and see what is going one. First note that the prolog

(first line of code) defines this as an XML document so just like XML Schemas, XSLT
documents are also XML. The second line defines the stylesheet element. This includes
the definition of the appropriate namespace (xsl) plus setting the version attribute value.
Line 3 defines the output element that is used by the XSLT processor to determine what
type of output to generate. In this case, the method attribute indicates that XML will be
the output type.

The sixth line, <xsl:template match="ProductList">, starts the definition of a
template element. Templates are the primary method used by XSLT to define how the
transformation should look. You may have used “templates” for drawing. Drawing
templates define the basic shape of an object and you use the template with a pen or
pencil to draw the object on paper. XSLT templates work in a similar way – they
define the basic shape of the resulting document and what “parts” of the original
XML tree to include in this new document.

To understand the XSLT, we need to review the tree structure of the original XML
document. Figure 9.15 shows this tree.

ProductList

Product

Description PriceProductNumber

Product

Description PriceProductNumber Description PriceProductNumber

Product

Description PriceProductNumber

Product

Description PriceProductNumber Description PriceProductNumber

Figure 9.15 The tree representation of the original XML document

Now look at the XSLT in Figure 9.14 and you will see four templates
(xsl:template). Each of these templates has a “match” attribute. The first template
matches ”ProductList”, the second matches “Description”, the third “ProductNumber”,
and the fourth “Price”. The first template, the one that matches “ProductList”, is a
template that applies to the entire tree (because it matches the root). The other three
templates each apply to one specific leaf node.

The template that applies to the entire tree should be considered the “master”
template in that it controls the overall structure of the new XML document (tree). You
may recognize that the first few lines within the first template contain HTML. This
HTML will be part of the new tree (remember that HTML that follows our XML rules is
also XML). The first XSLT code within the first template is shown in Figure 9.16.

 <xsl:for-each select="Product">
 <xsl:sort select="Description"/>
 <tr>

03/10/02 Draft

Burrows & Langford – Chapter 9 page 19
Learning Programming Using Visual Basic .NET

 <xsl:apply-templates select="Description" />
 <xsl:apply-templates select="Price" />
 <xsl:apply-templates select="ProductNumber" />
 </tr>
 </xsl:for-each>

Figure 9.16 The XSLT code within the first template.

The first statement (xsl:for-each) is very much like a Visual Basic .NET “For
Each…Next Structure” loop. In the case of XSLT, we are building a loop that will
repeated for each Product node in the XML document. Our document has three product
nodes (Product numbers 12345, 54321, and 22334) so the loop will iterate 3 times, once
for each product node. The next statement (xsl:sort) does exactly what it says, it sorts the
nodes in the resulting tree in order by their Description field. You then see the HTML
definition of a table row “<tr> … </tr>. This means that the three xsl:apply-templates
instructions will generate content that will be within an HTML table row. The three
xsl:apply-templates statements, each with different select attribute values, will search for
a corresponding template and apply it to generate content.

The first xsl:apply-templates statement selects the Description node. The template
for that node is shown in Figure 9.17.

<!-- Template #2 -->
<xsl:template match="Description">
 <td style="font-family:Comic Sans MS, Arial,sans-serif;
 color:darkblue; font-size:16pt;
 font-weight:bold">
 <xsl:value-of select="."/>
 </td>
</xsl:template>

Figure 9.17 Template for the Description node in the XML tree

Here we see that an HTML table column definition is being created <td> … </td>.
Within this table definition, the xsl statement:

 <xsl:value-of select="."/>
is found (enclosed in the HTML bold tag (…)). The select=“.” attribute means
to select the content at the current node. Since the current node is the Description node,
the content is whatever is stored at this leaf node, e.g., “Ball Point Pen”.

The order of the xsl:apply-templates in the loop determines the order in which the
columns within each row of the table will be filled (Description first, then Price, and
finally the ProductNumber).

Of course, XML trees can be much more complex than our example, so XSLT has
many additional capabilities than we see here. We encourage you to research this
important topic in more depth but hope that at this point the general ideas associated with
transforming one XML document into another XML document are clear.
Exercise 9.1. Can an XML document be valid but not be well formed? Explain.

03/10/02 Draft

Burrows & Langford – Chapter 9 page 20
Learning Programming Using Visual Basic .NET

03/10/02 Draft

Exercise 9.2. Write an XML document that describes the books in a library. When
describing a book, include just three or four elements. For your example, put information
for three books.
Exercise 9.3. Given the following XML document, construct a tree that represents the
underlying structure.

<?xml version="1.0"?>
<StudentList>
 <Student>
 <StNo>1111</StNo>
 <Name>Skippy</Name>
 <Class>1</Class>
 </Student>
 <Student>
 <StNo>2222</StNo>
 <Name>Karen</Name>
 <Class>2</Class>
 </Student>
 <Student>
 <StNo>3333</StNo>
 <Name>Joe</Name>
 <Class>3</Class>
 </Student>

 </StudentList>
Exercise 9.4. Why would you use an XML Schema and why would you use an XSLT
document?
Exercise 9.5. Assume you have information on a student that includes a student number,
name, address, and courses taken. The address is made up of street address, city, state,
and zip. Information on a course includes course number, description, credit hours and
grade received.

Given this information, create a tree that correctly models this data and write a short
XML document that is consistent with the tree. Populate the XML document with
information on two students who each have taken at least 3 courses.

