
Burrows & Langford – Chapter 11 page 1
Learning Programming Using VISUAL BASIC .NET

CHAPTER 11
USING VISUAL BASIC .NET TO CREATE WEB APPLICATIONS

In this chapter we change our focus from building Windows Applications to
building Web Applications. That is, instead of building applications that run entirely on
the user’s computer, we look at applications where various parts of the application run on
the user’s computer (the client) as well as on other computers (servers). Visual Basic
.NET provides a powerful set of tools that support the development and testing of Web
Applications using Microsoft’s ASP.NET technology.

We begin by explaining and contrasting a number of different Web architecture
options. We break an application into its three primary functions – presentation (GUI),
processing business logic, and data management. We look at how these three functions
can be located on the client and servers and evaluate the advantages and disadvantages of
the various options.

We then turn our attention to Visual Basic .NET and how it supports the various
Web architectures. We look at creating a basic Web Application project and how to run it
using the Microsoft IIS Web Server. We look at validating data (both on the client and on
the server) using various Visual Basic .NET Validation controls.

We next focus on processing databases in the context of Web Applications where
the data are typically located on a server distinct from the client. We present the version
of the DataGrid control designed to be processed on the server and look first at a simple
example that displays data from a database. Next we see how the DataGrid control can
support field editing with changes coming from the user at the client and the database
changes being processed on the server. Lastly we look at an example that shows how
XML and XSLT can be used to transform XML into different views on the server and
then rendered for viewing on the client.

We conclude the chapter with a project that shows how two or more web pages can
communicate with each other by sharing data. We first discuss four different options for
sharing data between pages and then focus on the use of the Session object that stores
name/value pairs on the server. To demonstrate this concept, the project has the user fill
in a typical registration form, validate it for accuracy, and then move to a second form.
The second form then gets and displays the values entered by the user on the first form
demonstrating that they are able to pass data between them.
Objectives

After studying this chapter you should be able to
• Explain the various functions of a typical web application.
• Explain what is meant by the term “client/server” and how the client/server

architecture can be implemented in a number of different ways.
• Discuss the tradeoffs associated with various client/server architecture options.
• Build a Web Application using the tools available with Visual Basic .NET.
• Validate user data using the Validation controls supported by Visual Basic

.NET.
• Use the Web Form DataGrid control to display a data set and to edit and update

a database.
• Use XSLT documents to transform XML into HTML on the server to then be

displayed on the client.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 2
Learning Programming Using VISUAL BASIC .NET

11.1 An Introduction to Functional Web Architectures
A useful way to look at an application is to break it down into three primary

functions. These include presentation, business logic, and data management.
Presentation involves how the application interacts with the user. The GUI is part of
this presentation function but presentation could also include audio or video input/output
on a variety of devices such as wireless devices, e.g., PDA’s and cell phones. Business
logic involves rules that define how the application handles data and processes it.
This can include very basic rules such as restricting part numbers to numeric characters
as well as more complex rules such as determining if a customer should be given credit.
Data management deals with databases and software used to manage these
databases.

When an application is designed, the developer has a number of choices as to where
these functions should be located. For example, the applications we have seen so far in
this text have located all three functions on a single computer. This computer supported
the GUI managed by the Visual Basic .NET program, it also supported the logic or
business decisions that defined the program’s behavior, and, if a database was involved, it
was likely managed by the MSDE service. On the other hand, if you use the Internet to
buy books or other products, the browser running on your computer supports the GUI,
but most of the business logic and data manage is done on the seller’s computer. We use
the term “architecture” to describe how these three functions are allocated to various
computers.

We now turn our attention to each of these functions and investigate the advantages
and disadvantages of various architecture options. In this discussion, we will use the
terms client and server. The term client means the computer (or other intelligent
device) that the user is using. The term server refers to another computer that is
distinct from the client and may be located anywhere in the world. There may be
more than one server involved in the overall solution architecture. If there is one server
involved, this is generally referred to as two-tier architecture (the client is one tier and
the server is the second tier). If there are more than two servers involved, the term n-
tier architecture is used.
Presentation

If there are no servers involved, then the client can support the presentation function
within the same program that supports the other two functions. However, with the advent
of the browser, it is possible to support the presentation function distinct from the other
two functions. Here we focus on the client/server solution with the assumption that the
browser, running on the client computer, will be rendering HTML (or XML)1 into the
content seen by the user. We will look at two options here.
Option 1 – Pure HTML. In this option, any changes seen on the browser need to be sent
to the browser from the web server. For example, the application might use a drop-down
menu or might have font that changes color when the user places the cursor over it. If this

1 We are not limited to HTML or XML. For example, we could also use WML (Wireless Markup
Language) to render content on a cell phone. HTML will be used to represent all possible markup
languages.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 3
Learning Programming Using VISUAL BASIC .NET

is the case, then an entire new web page would need to be sent from the server to the
browser for each change seen by the user. Consider, for example, a menu on the user
interface that drops down showing 5 menus items. If the user causes the menu to drop
down, and then moves the cursor down the list of five items with each one changing
color, this would require 5 or 6 different web pages to be sent from the server when the
menu first drops down and as each item changes color.

The primary disadvantage of this option is the large amount of network traffic
(called bandwidth) associated with downloading so many pages. In fact, the time it takes
to download so many pages would result in a very unsatisfactory user experience. Thus,
this option is unacceptable.
Option 2 – Script Within the Browser. In this option, small segments of program
code called script, are embedded within the HTML code sent from the server to the
browser. The browser then executes this code when certain events are detected. For
example, if the user clicks on a menu, then a click event could be executed that drops the
menu down for the user to select a choice. With this option, a rich GUI could be
supported without having to go back to the server. The term client-side script is used to
describe script that is executed within the browser on the client machine. In contrast,
any script executed on the server is referred to as server-side script.

The most popular scripting languages are JavaScript (also called JScript2) and
VBScript (a variation of Visual Basic). Both of these languages are interpreted, not
compiled into actual machine language. The main impact of this is speed – interpreted
languages are not as fast as compiled languages. However, given the speed of today’s
typical personal computer, this is not really a very significant factor. JavaScript is a Java-
like language from a syntax perspective but it is not the same as the Java programming
language. The two main browsers, Internet Explorer and Netscape Navigator, both
support JavaScript.3 However, VBScript is only supported on the Internet Explorer. For
this reason, most client-side script is written using JavaScript.

A small script written in JavaScript is shown in Figure 11.1. This script displays an
alert box (similar to a MsgBox) that is also shown in the figure.

2 Both JavaScript and JScript implement a standard known as ECMAScript create by the European
Computer Manufacturer’s Asscoiation.
3 Early versions of both Microsoft Internet Explorer and Netscape Navigator did not support JavaScript.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 4
Learning Programming Using VISUAL BASIC .NET

Figure 11.1 JavaScript and its output

This option creates very powerful user interfaces using significantly less bandwidth
that option 1. The only disadvantage is the added complexity associated with writing and
maintaining the script in addition to the HTML. Visual Basic .NET helps alleviate this
problem by allowing the developer to add client-side script to a web application.
Business Logic

As stated previously, the term business logic is used to describe the rules and
policies associated with an application. These can range from very simple, e.g., requiring
that a field not be left blank, to complex, e.g., determining the amount of credit to be
extended based on historical payment information. In this section we provide four
different options regarding where and how the code associated with business logic should
be executed.
Option 1 – All Client. This model is similar to what we have been doing with our
Windows Applications – the application runs exclusively on the client computer. We
have seen applications that validate user input, for example, by ensuring that the data are
numeric, by verifying that data fall within certain ranges, and so on. Our applications
have also performed more complex business logic such as calculating loan payments or
retrieving data from a database based on various criteria.

An advantage of this option is its low (perhaps zero) bandwidth requirement since a
network connection is generally not needed. This means that if one computer fails, other
computer’s that also have the application installed can continue running. This option has
been available ever since the personal computer was developed. This option continues to
be used for most productivity software such as word processing and spreadsheets. Most
computer owners have software that runs on their computer regardless of whether they
are connected to a network.

While the advantage of this option is significant, for medium and large
organizations, with hundreds or thousands of desktop computer, this option can be very
difficult to use. The problems revolve around installation and maintenance. Installing
hundreds or thousands of copies of software on different computers and then keeping
each copy current with the latest version can be a monumental task. It is possible to

3/15/02 Draft

Burrows & Langford – Chapter 11 page 5
Learning Programming Using VISUAL BASIC .NET

perform “network installs”, where all the software is updated via a network, but this can
be a problem if, for example, a computer user has turned off the machine. Things get
even more complex if users are all over the world and connected via the Internet. As a
result of these difficulties, most organizations are limiting their use of this option for
processing business logic.
Option 2 – Embed Business Logic in a Web Page Using Client-Side Scripting. This
option involves using scripts (VBScript or JavaScript) that is interpreted in the browser. It
is like the second presentation option, except the script is processing business logic, not
appearance. Figure 11.2 shows an example where a user tries to submit some information
to a server and a message is displayed indicating that the missing information must be
supplied before the submission can take place.

Figure 11.2 Alert indicating that complete and valid data required for submission
The code that is executed when the user clicks on the “Submit Info” button is

shown in Figure 11.3. This code, written in JavaScript, first checks the length of the
HoldersName text box to see if it equals zero. If the length is zero, the text box has been
left blank and error text is added to the message variable. It then checks to see if the
length of the CardNumber text box is < 16. If it is, additional error text is added to
message. Finally, the CardNumber text field is tested to see if it is not a number (isNaN).
If it is not a number, then additional error text is generated. Finally, if an error was found
(the variable message not empty), an alert box is displayed.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 6
Learning Programming Using VISUAL BASIC .NET

Figure 11.3 JavaScript used to validate user input

This option clearly overcomes the installation and maintenance issues associated
with Option 1. Every time users download the page to their browser, they get a fresh
version of the HTML and its embedded scripts. If a revision is made to the page on the
server, then everyone who downloads the page after that gets the revised version. There is
some extra network overhead associated with sending the script as well as the HTML but
this is generally minimal.

The problem with this option is the user’s ability to view the script. There is no way
to prevent this with today’s technology. In the situation above, this is probably not an
issue. However, there are times when the business logic is proprietary or contains
sensitive information. In these cases, this option is not acceptable.
Option 3 – Embed a Client-side component in the Web Page. In this option, a
software component, not script, is embedded in the web page and downloaded each time
the page is accessed. Software components such as Java Applets and Microsoft ActiveX
components can be used in this scenario. Figure 11.4 shows a sample web page that
computes gross pay (hours times rate) using a Java Applet component. The component is
downloaded with the page in a form where the coded business logic is difficult or
impossible for the user to examine or copy.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 7
Learning Programming Using VISUAL BASIC .NET

Figure 11.4 A web page that computes pay via a Java Applet

Figure 11.5 shows part of the HTML code that computes the gross pay. The
<APPLET> tag near the bottom identifies a class named Applet1 that has the name
“payComp”. The computePay function uses this component’s setHours() and setRate()
methods to store values from the hours and rate text boxes. The function then uses the
Applet’s computePay() method to compute the pay and store the results in the variable
pay.

Figure 11.5 HTML code that uses the Java Applet

This option shares the advantages of Option 2 and overcomes the problem of
making the actual logic for the business rule visible to the user. However, it has it’s own
set of new problems. One problem is network bandwidth – these software components
can get rather large and take a long time to download. Another is the fact that not all
browsers support the environment to execute applets or ActiveX controls.

The second and potentially most significant problem with this approach is security.
A software component is just a small program. Many people are rightfully leery about
downloading an executable program onto their computer for fear it contains a virus, a

3/15/02 Draft

Burrows & Langford – Chapter 11 page 8
Learning Programming Using VISUAL BASIC .NET

Trojan horse, or something else that could damage the computer. To overcome this
concern, Java restricts its Applets to run only with the browser. An Applet cannot access
any resources (like file systems) that are outside the browser. While this has been fairly
effective in terms of security, it has limited what Applets can do on the client computer.
The term security sandbox is used to describe the situation where code is contained
within a specific application that limits the code’s access to the general resources of
the computer.

Instead of restricting the component to the browser, Microsoft uses the concept of a
“trusted application”. In this model, the software vendor has a third party certify
that they are legitimate. This third party’s certificate of authenticity is included with the
component when it is downloaded. The user is given the option of accepting the
component or rejecting it based on the certificate displayed. If the component is accepted
by the user, it is downloaded to the client machine and has few restrictions on what it can
do. Some users, however, do not like this approach because there have been reports of
hackers who can “fake” the certificate of a legitimate organization. The user is then
fooled into believing the component comes from a reliable source.
Option 4 – Process Business Logic on the Server. In this option, the business logic is
processed on the server, not on the client. Figure 11.6 shows the cycle involved in this
option. In this figure, step 1 shows the user requesting a web page from a web server
using an URL such as http://www.demo.com/form.html. The web server then sends the
requested page to the user’s browser (step 2). The user enters information on the page and
then presses the “Submit” button. This causes the information entered by the user to be
sent back to the server along with the name of a page to execute on the server (step 3).
The server then processes the requested page and executes any embedded script using the
information provided by the user. This process creates a new page that is then sent back
to the user (step 4). These fours steps are collectively referred to as a “round trip”
between the client and server.

Figure 11.6 Cycle involved in server-side processing

As an example, Figure 11.7 shows a page requested by the user (the result of steps 1
and 2 in Figure 11.6). The user fills enters the information in the text box (.10) and clicks
on the “Compute FV Factors” button. This causes the browser to send the value .10, as
well as the name of a new page, to the server.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 9
Learning Programming Using VISUAL BASIC .NET

Figure 11.7 The user enters the required information in the page FVFactor.htm
When the server receives the request from the browser, it gets the requested page

and processes any script associated with this page. Figure 11.8 shows this page and its
code. Within this page, the JavaScript code is highlighted in yellow. The remaining code
is HTML. The HTML, as well as the output from the script generated from the
Response.Write(“whatever”) statements, is sent back to the client (step 4).

Figure 11.8 JavaScript executed on the server.

The client’s browser then renders the HTML for presentation. Figure 11.9 shows
the results of this rendering.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 10
Learning Programming Using VISUAL BASIC .NET

Figure 11.9 Final results rendered by the browser

This option is implemented using Microsoft technology known as Active Server
Pages (ASP). The name is derived from the fact that pages on the server are not
passive, but instead include script that is executed on the server to dynamically
determine what is sent back to the user. In the Java world, this option is implemented
with Java Server Pages (JSP). From a high level, these two technologies are conceptually
very similar4. In addition, Microsoft’s ASP.NET technology (presented in the next
section) is different than the generic ASP technology just discussed.

This option includes all the advantages of Option 3 without the disadvantages of
potential large bandwidth from the component or the security issues associated with
“trusted” relationships.
Summary. For business logic, the most common model used today is a combination of
Options 2 and 4. Option 2, client-side script, is used for data validation as well as other
non-proprietary processing. Doing as much processing on the client as possible reduces
network bandwidth and also reduces processing load on the server. However, there are
times when it is not wise to expose the script to the user and this is when Option 4,
server-side script, makes sense. In addition, Option 4 is ideal for database support as we
will see next.
Data Management

Like we have seen with presentation and business logic, there are several options
available for architecting the data management activity.
Option 1 – Client-side Only. Here the database and database management system both
reside on the client. If you have MSDE installed on your computer, then you used this

4 Internally, there are a number of differences between the two technologies. These details are beyond the
scope of this text.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 11
Learning Programming Using VISUAL BASIC .NET

option with the database-related examples earlier in the text. The obvious advantage of
this approach is speed. Since the database and DBMS are on the client, there are no
network issues or issues with multiple people access the database concurrently. The
drawbacks, and they are significant, include the same installation and maintenance issues
associated with Option 1 for business logic as well as another issue; maintaining
consistent data between multiple copies of the database. For example, if the database
consists of product inventory information for an order entry system, then when an item is
sold by one person, the adjusted inventory for that item must be updated on all the other
copies of the database. If it is not updated, then the risk exists that the item could be sold
a second or third time.

Due to the difficulties of database consistency, installation, and maintenance, this
option is generally not feasible.
Option 2 – Server-side Only. In this option, the database and DBMS both reside on a
server. Note that this may or may not be the same server that hosts the web pages. The
database is accessed from code that exists on the web server. The cycle is the same as
shown in Figure 11.6, with the addition of database processing between steps 3 and 4.

Figure 11.10 shows a web page that expects that the user will enter a company
identifier and then click on the “Delete Company” button. Clicking on this button sends
the company identifier to the server as well as the name of a page on the server to process
the delete operation.

Figure 11.10 Page used to specify a company to be deleted from the database

Figure 11.11 shows the page that is executed on the server. The code is JavaScript
and is highlighted in yellow. You can probably read the code and figure out most of what
it does. It begins by creating a connection (oConn) to the database. Once this is done, it

3/15/02 Draft

Burrows & Langford – Chapter 11 page 12
Learning Programming Using VISUAL BASIC .NET

executes an SQL Select statement searching for a record in the database that matches the
company identifier sent to this page from the client browser:
 var compId = Request.Form(“txtCompId”);
The code then checks to see if the set of records matching the company identifier include
at least one record (oRs.eof checks to see if the record set called oRs is at its end of file).
If there are no records, the “Delete failed…” message is displayed.

Figure 11.11 Code that executes on the server to delete a database record

If a record was found, then an SQL Delete statement is executed again using the
company identifier in the Delete statement’s Where clause. The message “Company …
deleted” is then displayed. Figure 11.12 shows this.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 13
Learning Programming Using VISUAL BASIC .NET

Figure 11.12 Confirmation that company record was deleted.

The only drawback of this approach is the fact that to do anything with the data, a
request must be sent to the server for processing. Consider a typical web purchase search
where you might request to see all computers that are priced at $2,000 or less. Assume
there are 50 computers that meet this criterion. Typically the server would send back the
first 10 records and you would click on the “Next 10” button to see records 11 through
20. This requires another trip to the server and perhaps even a new database query.
Further, assume that from the computers that are priced at $2,000 or less, you want to see
those that have 256 MB or more of RAM. With the server-side solution, this will require
another trip to the server and another database select. The next option attempts to solve
this problem.
Option 3 – Send a Set of Records to Client for Further Processing. This option is
similar or Option 2 except that instead of formatting the HTML on the server and sending
the data back to the browser as part of the HTML, the data are sent back in a form that
can be processed directly by the browser. Thus, if the initial request was for computers
that are priced at $2,000 or less, all 50 records would be sent to the browser. These
records would be in a form that could be processed locally. If the user asked for
computers from this set of 50 that have 256 or more MB of RAM, the browser, not the
server, would process the 50 records and only display those that also met this additional
requirement.

At the time of this writing, this type of processing is only supported by the Internet
Explorer. IE can process either XML or structured data send to it from the server.
Summary

As we can see, there are many different options for processing the presentation,
business logic, and data management functions of a typical application. The choice of
options is critical in the overall success of an application. The number of choices has
increased since the advent of the Internet and browser technology.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 14
Learning Programming Using VISUAL BASIC .NET

In the next sections we introduce Microsoft’s ASP.NET technology and how it is

supported in Visual Basic .NET. As we cover various topics, we will make references
back to this architecture discussion. Hopefully that will help solidify the understanding of
these choices.
Exercise 11.1. From your experience, discuss a specific business rule that would be best
processed using client-side script.
Exercise 11.2. From your experience, discuss a specific business rule that would be best
processed using server-side script.
Exercise 11.3. Assume that a company wants to allow customers to purchase products
from them directly using a web browser. Provide a web architecture that could support
this application. Clearly state which activities should take place on the client and which
should take place on the server(s).
Exercise 11.4. Discuss how using a client/server architecture helps reduce the problems
associated with processing business logic solely on the client.
11.2 ASP.NET Web Applications

In this section and Section 11.3 we introduce some of the fundamental controls and
concepts associated with ASP.NET and Visual Basic .NET. This coverage will not be
exhaustive and instead provide a glimpse into the world of Web Applications using
ASP.NET. In order to run the examples and work on the project in this chapter, you will
need access to both Microsoft IIS 5.0 or newer as well as the MSDE or SQL Server. You
should refer to Appendix B and C for more information on these tools including
installation and configuration options. The code in this chapter uses a local version of
both IIS 5.0 (localhost) and MSDE.
Creating a Simple Web Application

To start, we need to understand the basic structure of a Web Application. Visual
Basic .NET provides a template to create a new Web Application project using the same
steps as we have already used while creating Windows Applications. We start a new
project by bringing up the New Project dialog box as shown in Figure 11.13. However,
unlike previous projects, we select the ASP.NET Web Application template. The location
box must refer to a valid directory registered in the IIS server. When the new project is
created, Visual Basic .NET automatically creates a new web directory for you. In Figure
11.13 we see the URL:
 http://localhost/Demo1
When you first start using Visual Basic .NET you will likely see the URL:
 http://localhost/WebApplication1
This second URL is referring to the default site created on the IIS server. We have
changed “WebApplication1” to “Demo1” in Figure 11.13 so that the web directory has a
more meaningful name.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 15
Learning Programming Using VISUAL BASIC .NET

Figure 11.13 Creating a new ASP.NET Web Application

After clicking on OK, a new Web Application project will be created. The actual
directory structure for this new application will be:

c:\Inetpub\wwwroot\Demo1\
The Inetpub and wwwroot folders are the standard default folders used to storing web
applications associated with the IIS server.

Figure 11.14 shows the Web Form. This is similar to the Windows Form that we
have been using in previous chapters. The difference is the underlying code is HTML.
You can see the HTML tab at the bottom of the window.

Figure 11.14 The Web Form used to create an HTML page

3/15/02 Draft

Burrows & Langford – Chapter 11 page 16
Learning Programming Using VISUAL BASIC .NET

Just like Windows Forms, you can drag and drop components from the Toolbox.

With Web Forms, some of the tabs in the Toolbox differ from those in Windows Forms.
Figure 11.15 shows a segment of the Web Forms tab. You can see many of the same
controls that exist in Windows Forms (although, as we will see, the names of many of
their properties will differ).

Figure 11.15 Some of the Web Forms tools

If we look at the Solution Explorer, we also see some differences. Figure 11.16
shows the Solution Explorer for our Web Application. Notice that the file extension for
the Web Form is “.aspx”. This extension is very important and should not be changed. It
is used by the server to indicate that the content of the files includes script that must be
executed on the server.

Figure 11.16 The Solution Explorer for a Web Application Solution

We strongly recommend that you take one additional step that will make it easier to
move your web project from one developer’s computer to another. This involves moving
the solution file (.sln) into the web folder. Visual Basic .NET initially saves the solution
file in the Documents and Settings folder on the C: drive. This works fine as long as you
do your work on the same computer. However, if you move your project to another
computer, you will need the solutions file as well as all the other files shown in Figure

3/15/02 Draft

Burrows & Langford – Chapter 11 page 17
Learning Programming Using VISUAL BASIC .NET

11.16. To move the solution file to the web folder, click the Solution entry at the top of
the Solution Explorer window (Demo1 in this example), then select “Save Demo1.sln
As…” from the File menu. Be sure you select Save As…, not just Save. In the Save
dialog box that is then shown, navigate to the web application root
(“c:\Inetpub\wwwroot\Demo1\” in this example), and save the solution file there. In this
way, you can copy the “Demo1” folder to another computer and you will have all the
files that are needed. See Appendix B for more information on moving a web application
from one computer to another for development purposes.

For this simple application, we will place Button and Label controls on the Web
Form. When the user clicks on the button, some text will be displayed in the label. Figure
11.17 shows the Web Form with the button and label. Note the little green glyphs in the
upper-left corner of each control. This indicates that the control is a Web Control.

Figure 11.17 The Web Form with a Button and a Label

We need to change value of several properties for the two controls. Table 11.1
shows the property names and their values. Note that the names of the properties differ
from the equivalent properties for Windows Forms.

Table 11.1 Property Value Settings
Type Property Setting
Button (ID)

Text
btnClickMe
Click Me

Label (ID)
Text

lblWords
“”

We next create a click event for the Button component. To do this, double-click on

the button and the code window will open. Inside the click event, we add code to set the
Text property of the label. Figure 11.18 shows the entire class definition. Notice that the
code is stored in an “aspx.vb” file. This is the Visual Basic .NET code associated with the
specific “aspx” file.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 18
Learning Programming Using VISUAL BASIC .NET

Figure 11.18 Code for the button’s click event

We can run the application one of two ways. The first way is to right-click on the
Web Form in the Solution Explorer and select “Build and Browse” from the popup menu.
This will add another tab to the designer window as shown in Figure 11.19. This figure
shows the Web Application after the user has clicked on the “Click Me” button. To stop
the application, simply right-click on the Browse tab and select Hide from the popup
menu.

Figure 11.19 The Web Application in Browse mode

3/15/02 Draft

Burrows & Langford – Chapter 11 page 19
Learning Programming Using VISUAL BASIC .NET

The other way to run the application is to click on the Start tool in the Toolbar (or

select Start from the Debug menu). This will cause Internet Explorer to be launched and
the page to be loaded.5 Figure 11.20 shows this.

Figure 11.20 Running the Web Application in a browser

When the “Click Me” button is pressed, the Web Form is sent to the server, the
click event is executed, which causes the Label’s Text property to change, and then the
updated page is sent back to the browser. When running within the browser, you can
briefly see the status bar at the bottom of the browser window flicker as it sends the page
to the server and the server sends the updated page back. Note that, unlike a Windows
Application, where a click event is processed by the computer where the application is
running, a Web Application’s code is executed on the server no matter where the server is
located. In this case the server is running locally but it makes no difference where the
server is running as long as the client browser has access to the network.

Finally, you can look at the HTML that is generated by the system by clicking on
the HTML tab. Figure 11.21 shows the HTML. You probably will not have to modify the
HTML but if you do modify it, the changes will appear on the Design window when you
click back on the Design tab. Also, if you click on a tag in the HTML, such as click on
the <form …> tag, the Properties Editor will be set to that component.

5 It may be necessary in some cases to first use the “Build and Browse” method to display the web page
before displaying it using the Internet Explorer.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 20
Learning Programming Using VISUAL BASIC .NET

Figure 11.21 Showing the HTML by selecting the HTML tag

Example 11.1 Simple Web Application
This is a very simple example that computes gross pay based on hours worked and

an hourly rate. Figure 11.22 shows the application after the user has clicked the Compute
Gross Pay button.

Figure 11.22 Example 11.1 as it runs

3/15/02 Draft

Burrows & Langford – Chapter 11 page 21
Learning Programming Using VISUAL BASIC .NET

The application at design time is shown in Figure 11.23. You can see that there are

two textboxes for user input, a label that is used to display the gross pay, and a button to
initiate the calculation. In addition, there are a number of labels used to identify the text
boxes and the result. These are placed on the Web Form design just as was done with the
Windows Form. From this perspective, the process of creating a Web Form in Visual
Basic .NET is identical to creating a Windows Form. The difference is we are using a
Web Application template and taking the controls from the Web Forms Toolbox.

Figure 11.23 Example 11.1 at design time

The code for the Button control is shown in Figure 11.24. This too is just like the
code that you would write for a Windows Form.

Figure 11.24 Code for Example 11.1

Note that the code for the button does not do any checking for valid numeric values
or for empty text boxes. If the user tries to run the application with an empty text box, the
output shown in Figure 11.25 is displayed. With your background, the error is fairly easy
to identify. However, you would never want an application to generate an error like this
for the end user who would certainly be confused. We next turn our attention to
preventing such problems.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 22
Learning Programming Using VISUAL BASIC .NET

Figure 11.25 Output generated when an empty text box is involved in the

calculation

Exercise 11.5. Modify Example 11.1 so that it also calculates and displays net pay.
Calculate net pay by applying a payroll tax of 6.5% to gross pay.
Exercise 11.6. Modify Example 11.1 so that it reports a data error if the hourly rate is
less than $6.25 (assumed to be the minimum wage). Use the lblGrossPay label for the
error message.
Validating User Input

Microsoft has provided a set of “Validator” controls for Web Forms that provide
the means for checking (validating) the contents of other controls. These controls are
described in Table 11.2.. In addition, a control named ValidationSummary is provided to
provide a summary of errors for the user.

Table 11.2 The validation controls available for Web Forms
Type of

validation
Control to use Description

Required entry RequiredFieldValidator Ensures that the user does not skip an
entry.

Comparison to a
value

CompareValidator Compares a user's entry against a
constant value, or against a property
value of another control, using a
comparison operator (less than, equal,

3/15/02 Draft

Burrows & Langford – Chapter 11 page 23
Learning Programming Using VISUAL BASIC .NET

greater than, and so on).

Range checking RangeValidator Checks that a user's entry is between
specified lower and upper boundaries.
You can check ranges within pairs of
numbers, alphabetic characters, and
dates.

Pattern matching RegularExpressionValidator Checks that the entry matches a
pattern defined by a regular
expression. This type of validation
allows you to check for predictable
sequences of characters, such as those
in social security numbers, e-mail
addresses, telephone numbers, postal
codes, and so on.

User-defined CustomValidator Checks the user's entry using
validation logic that you write
yourself. This type of validation
allows you to check for values
derived at run time.

Each input control can have zero or more validators associated with it. These

validators can perform both client-side as well as server-side validation. As was
discussed in Section 11.1, the ability of a web application to perform client-side
validation reduces network bandwidth. With the Validator controls, client-side validation
is performed by default as long as the browser hosting the application supports client-side
scripting. To turn off client-side validation, a control’s EnableClientScript property
should be set to False.

If client-side validation is enabled, then any validation errors detected on the client
prevent the web page from being sent to the server for processing. In this way, the Web
Application reduces its use of the network and server. If all validation rules are passed
with a client-side check, then the page is sent to the server for processing. Regardless of
whether client-side validation was enabled or disabled, the server performs the
validations too. This is viewed as an extra security check to be sure that the validation
rules on the client have not been compromised.

Assume we have three text boxes on a Web Form as shown in Figure 11.26. We
want to enforce the following set of rules for the three text boxes.

 1. All three fields are required – the user must supply data in these fields.
 2. Phone number must be formatted according to U.S. phone number syntax.
 3. Zip code must be formatted according to U.S. zip code syntax.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 24
Learning Programming Using VISUAL BASIC .NET

Figure 11.26 A Web Form with three textboxes

To enforce these rules, we need to add appropriate Validator controls. We first add
a RequiredFieldValidator and place it next to the textbox for the name. In design mode,
the form should look like that in Figure 11.27. After placing the Validator on the form,
we need to modify some its properties. Table 11.3 shows the properties we need to
change and their new values

Figure 11.27 Adding a RequiredFieldValidator to the Web Form

Table 11.3 New Property Values for the RequiredFieldValidator
Property Value
Text “x”
ControlToValidate txtName (the name of the text box)
ErrorMessage “Name is required”
Font
 Bold
 Name

True
Arial

3/15/02 Draft

Burrows & Langford – Chapter 11 page 25
Learning Programming Using VISUAL BASIC .NET

After changing the property values, the form should look like the one in Figure

11.28. Notice that the Text property (“x”) shows up on the form. This will be invisible on
the form unless it is determined that the field is invalid (empty). If it is empty when the
form is submitted, the “x” will appear and the form will not get submitted (due to the
client-side validation). The value of the ErrorMessage property will be used later when
we set up a ValidationSummary component.

Figure 11.28 The RequiredFieldValidator after setting some of its property values

We add two more RequiredFieldValidator controls for the phone number and zip
code textboxes and set their property values accordingly (the ControlToValidate and
ErrorMessage property values will differ).

Next we add a RegularExpressionValidator control to the form next to the phone
number textbox. A regular expression is a special string that includes a number of
characters that describe the valid syntax of another string. For example, the regular
expression “\d{5}(-\d{4})?” defines the valid syntax for a U.S. Zip Code. The first part
“d{5}” indicates that 5 digits are required. The second part “(-\d{4})” indicates that
optionally, one can add a dash followed by 4 more digits. Regular expressions can get
quite complex and are beyond the scope of this text. However, a number of predefined
expressions are available within Visual Basic .NET.

Table 11.4 shows the property values for the RegularExpressionValidator control
for the phone number textbox. A second RegularExpressionValidator control must be
added to the Zip Code textbox. The ValidationExpression for this Validator should be
“U.S. Zip Code”. When all the Validators have been added to the Web Form, it should
look like the form in Figure 11.29.

Table 11.4 New Property Values for the RegularExpressionValidator
Property Value
Text “x”
ControlToValidate txtPhone (the name of the text box)
ErrorMessage “Invalid phone number syntax”
ValidationExpression U.S. Phone Number
Font
 Bold
 Name

True
Arial

3/15/02 Draft

Burrows & Langford – Chapter 11 page 26
Learning Programming Using VISUAL BASIC .NET

Figure 11.29 All 5 Validator controls one the Web Form at design time

Figure 11.30 shows the Web Form as seen in the browser. The user has just clicked
the Submit button and “x”s can be seen next to both the Name and Zip Code textboxes.
These are a result of client-side validation finding that the required Name field is missing
and the Zip Code is syntactically invalid. Remember that since a client-side validation
detected an error, the form was not sent to the server for processing.

Figure 11.30 The Web Form as shown in the browser

One thing to note in Figure 11.30 is the fact that the symbol “x” may not be
sufficient to help the user understand the nature of the problem. To solve this, we can add
a ValidationSummary control to the form. This is shown in Figure 11.31. This control
displays the value of the ErrorMessage properties for all the errors that are detected on
the Web Form. There are two properties of this control that deserve mentioning: these are
the DisplayMode and MessageBox properties. The value of the DisplayMode property
controls how the error messages are displayed within the control. Choices include bullet

3/15/02 Draft

Burrows & Langford – Chapter 11 page 27
Learning Programming Using VISUAL BASIC .NET

list, list, and single paragraph. The MessageBox property values (True or False) control
whether a message box is displayed if client-side errors are detected.

Figure 11.31 The Web Form with a ValidationSummary control added
Figure 11.32 shows the running application with the ValidationSummary control in

place. In this figure, the user has just clicked the Submit. You can see the values of the
ErrorMessage properties are displayed in a bullet list (as well as the “x” next to the
textboxes that contain errors.)

Figure 11.32 ValidationSummary control displaying errors at run time

Example 11.2 Validating User Input
This example demonstrates a sample form that might be used by someone to enroll

in a service provided for people who are affiliated with an educational institution. The
Web Form is shown displayed in a browser in Figure 11.33.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 28
Learning Programming Using VISUAL BASIC .NET

Figure 11.33 The Web Form for Example 11.2

The validation rules for the fields are described in Table 11.5.
Table 11.5 Validation Rules for Example 11.2

Field Validation Rule
Name Required
SSN Required

Validated as SSN
eMail Required

Validated as eMail
Age Required

Integer
Valid range 0-99 inclusive

Comments None

All of the Validation controls have their Font set to “Webdings” and “Bold” and

they all have their Text property set to “r”. This creates a symbol to be displayed if a
validation error is detected. The Web Form with some errors is displayed in Figure 11.31.
You can see that in addition to the Validator controls, there is also a ValidationSummary
component that displays a summary of the errors by showing the values of their
ErrorMessage properties.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 29
Learning Programming Using VISUAL BASIC .NET

Figure 11.34 Example 11.2 with some validation errors

The SSN and eMail textboxes are validated using a RegularExpressionValidator. As
we saw earlier, this control has a property named ValidationExpression that includes
some predefined values. These predefined values include “U.S. Social Security Number
(ID Number)” and “Internet E-mail Address”. These are set for the appropriate textboxes.

The Age textbox includes two Validator controls in addition to the
RequiredFieldValidator. One is a RangeValidator and the other is a CompareValidator.
Table 11.x shows the property values that have been set for these properties.

Table 11.5 Property Values for the RangeValidator and CompareValidator Controls
for the Age textbox
Validator Property Value
RangeValidator MaximumValue

MinimumValue
Type

99
1
Integer

CompareValidator Operator
Type

DataTypeCheck
Integer

In addition to the validation process, the Enroll button should be programmed to

scan the email field and determine if it is an “.edu” type. This is a simulation of what
might be done to determine the eligibility of the applicant (people affiliated with
educational institutions). It also attempts to determine if the applicant is a student or staff

3/15/02 Draft

Burrows & Langford – Chapter 11 page 30
Learning Programming Using VISUAL BASIC .NET

member by looking at the age6. This “guess” is displayed on the Web Form after the user
presses the Enroll button. Figure 11.35 shows two screens with different values for the
Age textbox.

<combine into one figure>

6 This is not very realistic but is does provide a demonstration of working with the numeric value on the
server.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 31
Learning Programming Using VISUAL BASIC .NET

Figure 11.35 Web Form after being submitted to server

The code for the Enroll button is shown in Figure 11.36. You can see that we search
the email textbox for the string “edu”. The type and age are then compared against
parameters established by the hypothetical organization in charge of the application and
the appropriate message is placed into the label on the Web Form.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 32
Learning Programming Using VISUAL BASIC .NET

Figure 11.36 Code for the Enroll button for Example 11.2

It is important to understand exactly what’s happening in this example. When the
user clicks on the Enroll button, client-side data validation takes place. If errors are
present, they are displayed on the Web Form and the Web Form does not get sent to the
server. The user is expected to correct the errors and then click on the Enroll button
again. When the client-side validation finds no problems, the Web Form is sent to the
server. On the server, the data validation takes place again. If errors are found at the
server, the Web Form is sent back to the client with the errors displayed. If no validation
errors are found, the click event is processed. The Web Form is updated with any changes
(in our case, the label’s Text property is changed) and then sent back to the client. This is
a cooperative effort between the client and the server and demonstrates the key
architectural differences between Windows Applications (client only) and Web
Applications (client/server). Also remember that the server could be anywhere in the
world, even though we are testing the application with a server running on the same
computer as the client browser runs.

Exercise 11.7. Modify Example 11.2 so that it includes a text box to obtain the user’s zip
code. Add appropriate Validation control(s) to ensure that the field is not left blank and it
contains only numeric digits.
Exercise 11.8. Modify Example 11.2 by adding two text boxes that store the minimum
and maximum number of credits the user wants to take. Add appropriate Validation

3/15/02 Draft

Burrows & Langford – Chapter 11 page 33
Learning Programming Using VISUAL BASIC .NET

control(s) to ensure that the both values are included, that they are numeric, and that the
minimum is less than or equal to the maximum.
11.3 Using Databases with Web Applications

As we discussed in Section 11.1, with web applications the location of the database
can be either on the same computer as the web server or can be on a different computer
that is called the database server. When the web server and database server reside on the
same computer, this is referred to as two-tier architecture. If a database server is added to
the solution, the architecture is called three-tier. For the discussions in this chapter we
will be using a two-tier solution. Our IIS web server and the MSDE database server will
be on the same computer, the local computer. If we were using a different arrangement of
servers, the only difference in our solutions would be identifying the various servers
using URLs in our Connection objects (for the database server).

For database access, we will be using data adapters and data sets just as we did
earlier. We will also be using the DataGrid component. However, there are some
differences that we need to keep in mind. First, the data adapter and data set will exist in
the code running on the web server, not the client. Second, the DataGrid component we
will be using on the server-side is not the same as the DataGrid we used earlier on the
client. It is very similar but does not behave exactly the same, e.g.. it does not support
master/detail data sets we saw back in Section 8.3.

Since we have already covered the use of data adapters, data sets, and the DataGrid
component, we will present the use of the components via a set of examples.
Example 11.3 Using a DataGrid to Display Data on a Web Form

In this example we create a very simple application that displays a data set created
from the Suppliers table in the Northwind database. The output of this example is shown
in a browser in Figure 11.37.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 34
Learning Programming Using VISUAL BASIC .NET

Figure 11.37 Example 11.3 shown in the browser window

After creating a new Web Application project, an OleDbDataAdapter named
odaSuppliers is created. This data adapter is connected to the Northwind database. The
SQL Select statement used in the data adapter is:
 SELECT SupplierID, ContactName, City, Country, Phone FROM Suppliers
A DataSet named dsSuppliers is created next using the Suppliers table from the data
adapter.

After the data adapter and data set are created, a DataGrid is added from the Web
Forms tab on the Toolbox. The property settings for this DataGrid component are shown
in Table 11.6.

Table 11.6 DataGrid Property settings for Example 11.3
Property Setting
BorderColor Salmon
BorderStyle Double
BorderWidth 4
DataMember Suppliers
DataSource DsSuppliers
Font Tahoma
HeaderStyle
 BackColor
 Font
 ForeColor

Red
Tahoma
White

To fill the DataGrid component, code is added to the WebPage’s Page_Load event

(see Figure 11.38). This event is called when the page is first loaded on the server. The
two statements that are used to fill the DataGrid are:
 OdaSuppliers.Fill(DsSuppliers)
 grdSuppliers.DataBind()

Just as in Chapter 8, the Fill method fills the DataSet (DsSuppliers) with data from
the database using the SQL statement defined in the OleDbDataAdapter. The second
statement binds the data grid to the data set. By binding the data set to the DataGrid
control, the information in the data set is displayed in the DataGrid control.

Figure 11.38 The code for Example 11.3

The term PostBack is used to describe the process of the web page being sent
back to the server for processing. For example, this happened in Example 11.2 when
the “Enroll” button was clicked by the user. The property IsPostBack is a Boolean
property that is equal to True if the page is being posted back to the server. It is equal to

3/15/02 Draft

Burrows & Langford – Chapter 11 page 35
Learning Programming Using VISUAL BASIC .NET

False if the page is being created for the first time. The If statement in Figure 11.38 is
checking to see if the page is being posted back to the server. If it is, the data grid does
not have to be filled again since it is already filled. This makes the application more
efficient by not doing unnecessary refills.

Exercise 11.9. Modify Example 11.3 so that the suppliers are listed in the DataGrid in
alphabetical order based on Country and within a country based on City.
Example 11.4 Editing Data Using a DataGrid Component

The DataGrid for the Web Form includes the ability to add buttons to each record
so that one can edit data within a record. This example demonstrates how to do that.
Figure 11.39 shows the web page as it is first displayed in the browser.

Figure 11.39 The initial web page for Example 11.x

When the user clicks on one of the “Edit” buttons, the page is sent back to the
server to be updated. When the page is sent back to the client from the server, the page
looks like that shown in Figure 11.40. You can see that the Edit button has been replaced
with an Update and Cancel button. In addition, the information in each field for the
selected row has been placed in a TextBox control. If the user edits any one of the text
boxes and then clicks on the Update button, the page is sent back to the server where the
field values are used to update the both the data set and the underlying database. The
page is then sent back to the client with the DataGrid updated to reflect the edited data. In
addition, the two buttons in the row that was edited are replaced with a single Edit button.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 36
Learning Programming Using VISUAL BASIC .NET

Figure 11.40 Example 11.4 after the user has clicked on an Edit button

After creating a new Web Application project, an OleDbDataAdapter is added to
the project. It is connected to the Northwind database and defines the following SQL
select statement used to extract records from the Customers table.
 SELECT CustomerID, ContactName, Address, City, PostalCode FROM Customers
A data set is then added to the project. The data adapter is named odaCustomers and the
data set is named DsCustomers.

A DataGrid is then added to the Web Form and is named grdCustomers. Auto
Format is used to format the grid using the “Classic 2” option. Figure 11.41 shows the
values of the “Data” properties. The DataKeyField property is set equal to the
CustomerID field. This property must be set so that the appropriate row in the data set, as
well as the database, can be found for the update operation.

Figure 11.41 The data properties for the DataGrid control

Finally, we need to add the special column on the left of the DataGrid that holds the
various buttons. To do this, we modify the Columns collection property of the DataGrid.
We first select the Columns property and click on the ellipses to open the Properties
dialog box as shown in Figure 11.42. The “Columns” choice is selected in the pane on the
left of the box. In the Available columns box, we click on the + expander for the “Button
Column” choice. When this is expanded (see Figure 11.43), we select the “Edit, Update,
Cancel” option and then click on the arrow button (>) to move the selection to the
“Selected columns” box. Also the “Create columns automatically at run time” check box
at the top of the form should be selected. This action sets up the first column
automatically for us; all we need to do is program the behavior of the buttons. Notice that

3/15/02 Draft

Burrows & Langford – Chapter 11 page 37
Learning Programming Using VISUAL BASIC .NET

there are a Select and a Delete button that could also be added to the column if we wanted
that functionality.

Figure 11.42 The Properties dialog with the Columns option selected

Figure 11.43 Moving the Edit, Update, Cancel buttons from the Available to the

Selected columns boxes
We need to write code that initially fills the DataGrid with records from the data

set. The code for this located in the Page_Load event procedure as seen in Figure 11.44.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 38
Learning Programming Using VISUAL BASIC .NET

Unlike Example 11.3, where both the Fill and the DataBind methods were not executed if
the page was being posted back to the server, here the Fill method is executed each time.
Data binding must be done every time the data changes so the DataBind method will be
called from the events that actually modify the data.

Figure 11.44 Example 11.4’s Page_Load event

Next we need to write code for the three buttons. The code will be part of events
defined for the DataGrid: the CancelCommand, EditCommand, and UpdateCommand
events. The DataGrid’s CancelCommand event is shown in Figure 11.45. In this
procedure, editing is turned off by setting the index of the DataGrid’s item (row) being
edited to -1.

grdCustomers.EditItemIndex = -1
Following this, the DataGrid is bound to the data set so that it accurately reflects the
contents of the data set.

Figure 11.45 Code that is executed when the user clicks the Cancel button

The code that supports the Edit button is shown in Figure 11.46. In this code, the
parameter e contains information on which row the user clicked on. This information is
used to set the EditItemIndex property of the grid which places that row into edit mode.
Edit mode causes the Update and Cancel buttons to be displayed and also causes the cells
of the row to be displayed in text boxes. After this is done, the DataGrid is rebound to its
data source.

Figure 11.46 Code that is executed when the user clicks on the Edit button.

Finally we need to add code for that Update button. This code is more complex than
the prior two event procedures. The following pseudocode helps understand what needs
to be done.

1. Find the index of the row that was updated.
2. Get the key from the row whose index was found in step 1.
3. Get the (potentially) changed values from the text boxes in the row where the

edits took place.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 39
Learning Programming Using VISUAL BASIC .NET

4. Find the row in the data set to be updated. Since we know the value of the key

(step 3) it is used to find the row in the data set.
5. Write changes to the row in the data set.
6. Apply the same changes to row in the database. Now both the database and the

data set are updated.
7. Take the DataGrid out of edit mode and rebind it to the data source.
The Visual Basic .NET code that implements the pseudocode is shown in Figure

11.47. We will take a look at each segment of code since most of it is new.

Figure 11.47 Code that is executed when the user clicks on the Update button.

To get the value of the key field, we need to determine which row was selected for
editing and then get the key value associated with that row. The code to do this is:

 ' find the index of the row that was updated
 Dim RowIndex As Integer = e.Item.ItemIndex

3/15/02 Draft

Burrows & Langford – Chapter 11 page 40
Learning Programming Using VISUAL BASIC .NET

 ' get the key from the row
 Dim KeyValue As String = grdCustomers.DataKeys(RowIndex).ToString

We first get the index of the row selected for updating by using the parameter e (as we
did earlier). Once we have the index of the row to be updated, we access the DataKeys
property using the index value. Recall earlier we set the DataGrid’s DataKeyField
property. This is used by the DataGrid to create the DataKeys collection.

Next we need to get the changed values from the text boxes on the row to be
updated. Recall from Figure 11.40 that all the fields in the selected row were displayed as
text boxes when the user clicked on the Edit button. There is no easy way to determine
which field(s) were changed so we just assume they were all changed and process each
field. Let’s look at the code for handling the CustomerName field. The code for this is:

 Dim Name As String, Addr As String, City As String, PostZone As String
 Dim TxtBox As TextBox
 TxtBox = CType(e.Item.Cells(2).Controls(0), TextBox)
 Name = TxtBox.Text
The Dim statements define String variables for each of the fields (note that we are

not going to change the key field value (CustomerID) – this is generally not possible
without a great deal of effort). We next declare a variable (txtBox) that can reference a
TextBox. We need to get access to the specific TextBox within the row that is being
updated. To do this, we again use the parameter e. The Cells collection stores the fields
within a row. Cells(0) stores the buttons, Cells(1) stores the CustomerID, and Cells(2)
stores the ContactName. The remaining cells (3-5) store Address through PostalCode.
The Controls collection stores information about the control. Element zero (Controls(0))
stores the data associated with the DataGrid control (the TextBox in this case). The
CType() function casts the control into a TextBox type so the assignment to txtBox is
legal. Finally the Text property of the text box is accessed and stored into the String
variable Name. The code then continues with the remaining three text boxes.

Once the new values from the text boxes are stored in String variables, we need to
find the row in the data set that matches the key value and then store the values into the
data set’s variables for the specific row.

' find the row in the data set to be updated
Dim dsRow As dsCustomers.CustomersRow
dsRow = DsCustomers.Customers.FindByCustomerID(KeyValue)
' write changes to the data set row
dsRow.ContactName = Name
dsRow.Address = Addr
dsRow.City = City
dsRow.PostalCode = PostZone

To do this we declare a variable that can store a row in to data set. We then use the data
set’s FindByCustomerID method to access the row that matches the KeyValue variable.
Once this is done, the specific fields of the data set row are assigned the values stored in
the String variables (that store the values from the TextBox controls).

Finally we need to change the data in the database associated with the data set and
then take the DataGrid out of edit mode.

 ' apply changes to database

3/15/02 Draft

Burrows & Langford – Chapter 11 page 41
Learning Programming Using VISUAL BASIC .NET

 odaCustomers.Update(DsCustomers)
 ' take data grid out of edit mode and update it
 grdCustomers.EditItemIndex = -1
 grdCustomers.DataBind()

To update the database we use the data adapter’s Update method, passing it the now
updated data set. We then take the DataGrid out of Edit mode by setting its
EditItemIndex to -1. Finally we rebind the DataGrid to the data source to be sure that
updated information is displayed in the DataGrid when the Web Form is sent back to the
client.

Exercise 11.10. Using Example 11.4 as a model, create a Web Application that provides
the edit capability for the Supplier table in the Northwind database. Make the application
display the SupplierID, ContactName, and HomePhone fields. The ContactName and
HomePhone fields should be editable.
Example 11.5 Using XML and XSL with Web Form

For this final example we are going to redo Example 9.7 where we used two XSL
documents to transform an XML file with email information into a display by headers or
a display of complete email messages. This solution will actually be easier because of a
Web Form control called the XML control. In addition, we will be using an XML file on
the server directly rather than creating an XML document from a database like we did in
Example 9.7. You could do the same thing that was done in Example 9.7 if you want to
start with a database instead of XML.

Figures 11.48 and 11.49 show the two different displays for this example. Note that
a check box has been added to the form to allow the user to choose the appropriate view.
When the value of this check box is changed by the user, the page is sent to the server,
the value of the checkbox is determined, and the appropriate XSL document is used to
transform the XML. This transformed document is then sent back to the client for
viewing.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 42
Learning Programming Using VISUAL BASIC .NET

Figure 11.48 Example 11.5 with Headers View

Figure 11.49 Example 11.5 with Full View

After creating a new Web Application project, we first add an HTML table. In
addition to a Web Forms tab, the Toolbox also has an HTML tab. We use this tab to
select a Table component. This table will have 2 rows and 1 column and will be used to

3/15/02 Draft

Burrows & Langford – Chapter 11 page 43
Learning Programming Using VISUAL BASIC .NET

hold the check box and xml components. Figure 11.50 shows the Web Form in design
mode where the table can be seen.

Figure 11.50 Example 11.5 shown at design time

The HTML table initially shows 3 rows and 3 columns. If one right-clicks on a row
or column of the table, the pop-up menu that follows includes an option to delete a row or
column. This is used to reduce the table to 1 column and 2 rows. In addition, the “border”
property of the table is set to 0 so that it does not show at run time.

Using the Web Forms tab in the Toolbox, a CheckBox control is placed in the first
row of the table and an Xml control is placed in the second row. The Text property of
CheckBox is set to “Full Email View”. In addition, the AutoPostBack property is set to
True. This setting is particularly important because it causes the form to be posted back
to the server when the user clicks on the CheckBox to change its status. The properties
of the XML control are show in Figure 11.51. The two files, email.xml and
emailHeaders.xslt, are stored in the main project folder (Example1105 in this case). In
addition, this folder also holds a file named emailAll.xslt that is used to transform the xml
into full content view.

Figure 11.51 Properties of the Xml component

The Xml component does all the work. It takes the xml and xsl files and performs
and displays the resulting transformation. The only code that needs to be written for this
application is code relating to the user clicking on the check box. This code is shown in
Figure 11.52. In this event, the value of the Checked property is tested and, depending on

3/15/02 Draft

Burrows & Langford – Chapter 11 page 44
Learning Programming Using VISUAL BASIC .NET

its value, it either sets the TransformSource property to emailAll.xslt or
emailHeaders.xslt.

Figure 11.52 Code associated with the check box

Exercise 11.11. Using Example 11.5 as a model, redo Project 10 in Chapter 9 so that it is
based on a Web, rather than a Windows Application. Assume that the XML is already
created like Example 11.5 instead of generating it from a database as was done in Project
10.
11.4 Project 12: A Web Registration Form Application
Description of the Application

Note: In addition to using concepts presented earlier in this chapter, Project 12
also covers a mechanism that allows two pages to share information.

This project gathers information on a user who wants to register for the services of a
hypothetical company. The user first enters information on a registration form and
presses the Validate button. This is shown in Figure 11.53.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 45
Learning Programming Using VISUAL BASIC .NET

Figure 11.53 The initial web page for Example 12

If all the fields are valid, the Validate button is replaced with a “Next Page” button
(see Figure 11.54). Clicking on this button brings up a new web page that simply shows
the data entered on the first page. This can be seen in Figure 11.55. The intention of this
second page is to show how one page can pass information to another page.

Figure 11.54 The “Next Page” button that is displayed after the form is validated

3/15/02 Draft

Burrows & Langford – Chapter 11 page 46
Learning Programming Using VISUAL BASIC .NET

Figure 11.55 The second web page showing the information entered by the user

The data on the form should be validated using the following set of rules:
1. The Name, email, and two Password fields are required.
2. The email field must be formed correctly.
3. The two password fields must contain the same text.

Error messages should appear next to the field values where the problem is
detected. Figure 11.56 shows the web page with several user errors present.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 47
Learning Programming Using VISUAL BASIC .NET

Figure 11.56 Project 12 with data validation errors displayed

Design of the Application
Much of the design of the application has been covered in previous sections. To

verify that the two password fields are the same, a CompareValidator is used. The
ControlToCompare and ControlToValidate properties are set equal to the two password
text boxes and the Operator property is set to “Equal”.

The two web pages need to communicate with each other in order to share some
data. However, the HTTP is a stateless protocol, which means that each time a page is
requested from the server, a new connection is established. The impact of this means that
a web server does not know whether a set of requests come from a specific client. Thus, a
client that makes several requests to complete a transaction posses a problem. This
problem can be overcome in several ways. One solution is to use “cookies”. A cookie is a
small packet of information (a small file) stored on the client computer. This cookie
can store information, such as product numbers and quantities of items being purchased
by a shopper. The cookie is sent to the server with each page request and in this way the
server can be kept aware of what the user is doing. The process of accumulating
information as the user move from page to page is called session tracking.

Another method used to support session tracking is using a Session object. When a
client first accesses a page, a unique session identifier is created on the server. This is

3/15/02 Draft

Burrows & Langford – Chapter 11 page 48
Learning Programming Using VISUAL BASIC .NET

stored in the Session object and is sent back to the browser in the response. When the
browser sends another request to the server, the Session Id is also sent so the browser can
relate this new request to the prior request. The Session object can also store any
number of name-value pairs. These are used by the code running on the server to store
and retrieve information from request to request.

There are additional ways for pages to communicate including placing information
within the URL and using Hidden fields on a web page. You may have seen a URL like
the following:

http://www.google.com/search?hl=en&q=Adams+Apple&btnG=Google+Search
Everything after the “?” are name-value pairs, for example, q=Adams+Apple means the
query was to search for the words “Adams Apple”. HTML Hidden components are
simply fields placed on the form that cannot be seen by the user. However, the code can
read/write from/to these fields and thus maintain session state that way.

In this project we will be using the Session object. The main difference between
using Session objects and cookies is where the information is stored. Cookies are stored
on the client machine. They can stay there for a very short time (expire when the browser
stops) or a very long time (forever7). Since they exist on the client, they allow a user to
extend a transaction over a several-day period. In contrast, the Session object exists on
the server. It persists for a much shorter period of time (the default time is 20 minutes).
Some users do not like cookies being written to their computers and a Session object
overcomes this concern.

For this project we use the Session object. This object has two methods that we will
use; the Add and Item methods. The Add method’s syntax is Add(Name, Object) where
Name is a String used to identify the item being stored and Object is the actual item being
stored. For example:

Session.Add(“username”,”Joe”)
would store the string “Joe” into the Session object and would be identified with the
identifier “username”. To access this later, one could write:
 Dim Name As String = Session(“username”)
Here the variable Name would be set equal to “Joe”. The Session object can store an
unlimited number of name/value pairs. Each name is typically unique. For this project,
we will store the registrant’s name, email, password, favorite color, and income bracket.
This will be done as the data are validated. The session object will then be available to
the second page and will be used to display the information from the Session object.
Construction of the Application

A new Web Application project must first be created. To this is added a second
Web Form (Project → Add Web Form…). The first Web Form gathers the Registration
information and the second displays the user’s input. Figure 11.57 shows the first form at
design time. You can see the text boxes as well as the values of the ErrorMessage
properties Validator controls associated with each text box. Also note that the value of

7 Edward Rice, a Business Economics professor at the University of Washington, was fond of saying that
“forever is a very long time”! It would be more accurate to say a cookie can stay on the client machine until
the cookie file is erased (for whatever reason).

3/15/02 Draft

Burrows & Langford – Chapter 11 page 49
Learning Programming Using VISUAL BASIC .NET

the TextMode property of the password text boxes is set to “Password”. This causes the
characters typed by the user to be replaced with “dots” on the form.

Figure 11.57 Registration form at design time

The DropDownList component is populated at design time by adding color names
to its Items collection property. The RadioButtonList component is populated at design
time also using its Items collection property. The second item ($20,000 - $50,000) has its
Selected property set to True.

The component that shows “Next Page” in its Text property is a HyperLink
component. Its BorderStyle property is set to Outset and its NavigateURL property is set
to refer to the second page in the property. When the user clicks on the HyperLink
component, the server accesses the page defined by the NavigateURL property, executes
any code in that page on the server, and then sends the completed page back to the client.

The Validate button should store the values of the registrant’s name, email,
password, favorite color, and income bracket into the Session object as name/value pairs.
The choice of names is up to the developer. For example, the following line of code
might be used to store the applicant’s email address into the Session object:

 Session.Add("email", txtEmail.Text)
Similar statements are needed for the other name/value pairs.

Initially the “Next Page” button is not visible. When the validate button is clicked,
its Visible property should be set to False while the Visible property of the “Next Page”
button should be set to True.

The second form is very simple. It is shown in Figure 11.58.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 50
Learning Programming Using VISUAL BASIC .NET

Figure 11.58 The second Web Form shown at design time

The five Label components need to be populated with values from the Session
object. A good place to do this is in the form’s Page_Load event. Here the Session object
is accessed and its Item method is used to extract information store earlier by the first
WebPage. For example,

 lblEmail.Text = Session.Item("email")
extracts the value associated with the name “email” and stores this value into the Text
property of the Label named lblEmail.
Chapter Summary
1. When thinking about applications on the web, it is valuable to consider the three

primary functions of any application – presentation, business logic, and data
management – and then where these functions could be located to be most effective.

2. With web applications, presentation is almost always managed on the client using a
browser to manage the rendering of HTML into an attractive user interface. The
processing of business logic can be done on the client or on the server. Processing
simple business rules such as data validation are best done with embedded script on
the client. This is efficient and reduces the workload placed on both the network
and the server. Complex and/or proprietary business logic should typically be done
on the server. Since client-side script is viewable by the user, it should not be used
for proprietary code processing. Servers are often more powerful that a typical
client so they might also be better for complex processing activities. Data
management is typically done on a server located on a computer other than the
client. The server can reside on the same computer as the web server or a separate
machine (the database server).

3. Visual Basic .NET supports Web Application projects. The Web Form is the
primary component in this type of application. The developer builds her application
using tools from the Web Forms and HTML tabs of the Toolbox using a drag-and-
drop paradigm just like building Windows Applications.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 51
Learning Programming Using VISUAL BASIC .NET

 Although the Web Form looks like a typical Windows Application Form, it is

different because underlying it is HTML code that is created automatically by
Visual Basic .NET.

4. Web Forms include a number of Validation controls that can be added to the
project. These controls perform a number of common validation tests such as
requiring the user to complete a field, limiting the user to a certain type or range of
values, and so on. The validation is automatically carried out in the browser on the
client via script. If a problem is found, an error message is displayed and the page
does not get sent to the server. If no errors are found, the page is sent to the server
for processing. The first step on the server is a repetition of the validation rules.
This is done to ensure that the client-side checks have not been compromised.
Following this processing, any additional processing defined by the developer is
completed and the page is sent back to the client (this process is called post back).

5. The DataGrid control for the Web Form supports the display of data sets just as the
DataGrid component for Windows Applications. However, the Web Form version,
which executes on the server, supports different functionality. For example, it
allows a new column to be added at run time that supports a number of data editing
functions.

6. The XML component available for the Web Form is a component with methods that
support XML processing and display as well as transformations using XSLT
documents.

7. To maintain a session within ASP.NET, one can use cookies stored on the client, a
Session object stored on the server, hidden fields stored in web pages, or URL
encoding where name/value pairs are added to the URL as pages are posted to the
server and sent back to the client. All of these methods are available within Visual
Basic .NET. The Session object includes the Add and Item methods that are used to
add and get name/value pairs as different pages are accessed by the user during a
session.

3/15/02 Draft

Burrows & Langford – Chapter 11 page 52
Learning Programming Using VISUAL BASIC .NET

3/15/02 Draft

Key Terms
active server pages data management server
architecture n-tier architecture server-side script
bandwidth PostBack Session object
business logic presentation session tracking
client round trip trusted application
client-side script script two-tier architecture
cookie security sandbox validator controls

End-of-Chapter Problems
1. How is a web application different from a standard Windows application?
2. What is a two-tiered application? What is a three-tiered application? If the web

server and the database server are located on the same computer, how many tier
application is that considered?

3. Describe the difference between client-side and server-side execution. What are the
advantages and disadvantages of client-side execution? What are the advantages
and disadvantages of server-side execution?

4. Explain the purpose of using an applet. What are the advantages or using an applet
over client script code? What are the disadvantages? Does an applet have more
robust security settings?

5. If there is client-side validation of user data, why validate it again on the server?
6. Describe the process of PostBack. Explain the function of the AutoPostBack

property of web controls.
7. What is a security sandbox? What is a trusted application? Which method is used

by a Java applet?
8. What is the purpose of the Validator controls? Name each of the 4 primary types of

Validator controls and describe the purpose of each. Can multiple Validator
controls be used on a single TextBox control?

9. Can JavaScript code and VB Script code run on either Microsoft or Netscape
browsers?

10. Is there a limit to the number of Session variables that may be defined? Where are
Session variables stored? How long do variables defined in the Session object last?
What other method is available to store user-related variables for a longer time?

Programming Problems
<To be completed>

