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In a recent article, Yefsah et al. [Nature (London) 499, 426 (2013)] report the observation of an unusual
excitation in an elongated harmonically trapped unitary Fermi gas. After phase imprinting a domain wall,
they observe oscillations almost an order of magnitude slower than predicted by any theory of domain walls
which they interpret as a “heavy soliton” of inertial mass some 200 times larger than the free fermion mass
or 50 times larger than expected for a domain wall. We present compelling evidence that this “soliton” is
instead a quantized vortex ring, by showing that the main aspects of the experiment can be naturally
explained within the framework of time-dependent superfluid density functional theories.
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Collective modes in the form of topological and dynami-
cal defects—solitons, vortices, vortex rings, etc.—embody
the emergence of nontrivial collective dynamics from
microscopic degrees of freedom, and provide a challenge
for many-body theories from cold atoms through electronic
superconductors to nuclei and neutron stars. The unitary
Fermi gas (UFG) provides an ideal strongly interacting sys-
tem for measuring and testing collective modes where con-
trolled experiments and theoretical techniques are starting
to converge [1]. A handful of predicted collective modes
have been directly observed, including collective oscilla-
tions of harmonically trapped gases [2,3], higher-nodal col-
lective modes [4], scissor modes [2], quantized vortices and
vortex lattices [5], shock waves [6], and phonons (speed of
sound [7], critical velocity [8], and first and second sound
[4,9]). Other modes, such as the Higgs mode [10,11],
vortex rings [12], and domain walls [13–17], have been
demonstrated in simulations, but await direct observation.
In this Letter, we discuss the objects observed in [18]:
they interpret these as “heavy solitons”; we show them
to be vortex rings.
Experimental puzzle: Slowly moving “solitons.”—The

recent MIT experiment [18] measures a slowly moving sol-
iton produced by a sharp spatially delineated phase imprint
on an ultracold cloud of some 105 6Li atoms in an elongated
harmonic trap. These solitons cannot be resolved in situ,
but appear after a specific time-of-flight expansion pro-
cedure that includes a rapid ramp of the interaction strength
which is controlled through a Feshbach resonance by an
external magnetic field. In particular, they note that a cer-
tain minimum field Bmin < 700 G is required to resolve the
solitons (discussed in their Supplemental Material). From
the images, they extract the period of oscillation, and find
that it increases as the inverse trap aspect ratio 1=λ and the

magnetic field B are increased. Increasing the temperature,
they observe “antidampening” whereby the amplitude of
the oscillation increases with time. The authors interpret
these results as the observation of a heavy soliton with
a mass “more than 50 times larger than the theoretically
predicted value” and “200 times their bare mass.”
Topological objects in the BEC-BCS crossover.—

Superfluids are characterized by a complex-valued order
parameter Ψ that describes the condensate wave function
in Bose-Einstein condensates (BECs) and the Cooper pair
condensate in fermionic Bardeen-Cooper-Schrieffer (BCS)
superfluids. The superfluid ground state picks a coherence
overall phase of the complex order parameter, spontaneously
breaking the original Uð1Þ phase symmetry of the theory.
Sound waves manifest as fluctuations in this coherent phase
(phonons or Nambu-Goldstone modes). Landau’s original
argument for 4He superfluidity posits a kinematical critical
flow velocity vc below which neither pair-breaking nor
sound excitations can be generated. This argument is spoiled
by the generation of topologically stable excitations that can
nucleate at the edge of the fluid, lowering the vc. The
dynamics of these topological excitations and their inter-
actions are at the heart of quantum turbulence studies [19].
The single-valued order parameter admits several topo-

logically stable objects in three dimensions. Domain walls
separate regions of different phases while vortices corre-
spond to the phase winding around a line along which
the order parameter vanishes. In bosonic theories (BEC
limit), the number density n ∝ jΨj2 vanishes in the core
of vortices and in stationary domain walls, giving these
objects a “negative mass. For fermions, while the complex
order parameter has a similar behavior, the relationship
n ∝ jΨj2 breaks down, with the interpretation that the core
of the topological defects are filled with “normal” fluid, but
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at unitarity the number density depletion is still substantial
[12,20,21]. A manifestation of this negative mass is that the
amplitude of oscillation in a trap will increase as energy is
lost. This antidamping is seen in the experiment [18].
Domain walls (often referred to as solitons) are topologi-

cally stable in one dimension. Their thickness is set by the
coherence length lcoh and thus they have a negative effective
mass (−MDW) due to the density depletion MDW ¼ mNDW,
where NDW ∼ nπR2lcoh is the depletion for a gas cloud of
number density n in a trap of radius R. In the unitary limit,
all scales are set by the Fermi wave vector kF with n ¼
k3F=3π

2 and lcoh ∼ k−1F and thus, MDW ∼ k2FR
2m is much

larger than the mass m of a single fermion. In quantum
mechanics, the dynamics of heavy objects is generally well
approximated by classical equations of motion. For domain
walls, both kinetic and potential energies are localized on the
wall; thus, the same mass MDW enters both the kinetic and
potential terms and one expects the oscillation period T to be
comparable to the natural axial period Tz of the trapping
potential. This is confirmed in BEC experiments [22]
where T ≈

ffiffiffi
2

p
Tz and by fermionic simulations [13], where

T ≈
ffiffiffi
3

p
Tz.

In contrast, vortex rings [23], which also occur in classical
fluids [24], have very different dynamics. In infinite
media, for example, with logarithmic accuracy, large rings
(R ≫ lcoh ∼ k−1F ) have linear momentum p ∼mnκπR2,
dispersion εðpÞ, and speed v ¼ dεðpÞ=dp [25]

ε ∼
mnκ2R

2
ln

R
lcoh

; v ∼
κ

4πR
ln

R
lcoh

; (1a)

where κ is the circulation. Their speed v ∝ ln p=
ffiffiffiffi
p

p
thus

decreases as the momentum, kinetic energy, and radius
increase. Unlike for domain walls, their inertial mass
MI ¼ F=v

: ∼mnκ8π2R3= lnðR=lcohÞ, (where F ¼ p
:
is the

force), differs from the effective mass due to the density
depletion MVR ¼ mNVR ∼mn2π2Rl2coh and the period of
oscillation can receive a significant enhancement

T
Tz

∼

ffiffiffiffiffiffiffiffiffiffi
MI

MVR

s
∼

2R=lcohffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðR=lcohÞ

p : (1b)

This estimate (1b) gives only an order of magnitude esti-
mate: the dynamics of a vortex ring in a finite trap is some-
what more complicated but can be qualitatively understood.
Each element of the ring will experience an outward buoy-
ant force FB ≈ NVR∇V trap, where V trap ¼ mω2⊥ðx2 þ y2 þ
z2=λ2Þ=2 (with λ > 1). The Magnus relationship FB ¼
mnðv − vsÞ × κ will thus adjust the velocity v with two
components: one counter to vs and another that causes
the ring to expand and contract near the ends of the trap.
The velocity vs is the superflow induced by the phase wind-
ing of the rest of the vortex ring on the element, and is
parallel to the z axis of the trap. In the middle of the trap
z ≈ 0, small rings (R much less than the trap waist R⊥) will

experience little buoyant force and the motion will be domi-
nated by v ≈ vs. Larger rings, however, will have a smaller
vs and larger FB: at a critical radius Rc, the Magnus effect
will cancel vs and the ring will remain stationary. Larger
rings R > Rc will crawl backwards along the trap. Near
the ends of the trap, the buoyant force will also cause
the rings to expand at one end and contract at the other.
Thus a vortex ring may oscillate along the trap as observed
in bosons [26].
Heavy solitons are indeed vortex rings.—While a quan-

titative discussion requires a more complete analysis along
the lines of [27] or direct simulation as we shall present in a
moment, the order of magnitude of the effect can be esti-
mated from Eq. (1b) which is approximately valid for small
vortex rings near the middle of the trap z ≈ 0. For the exper-
imental parameters, small rings R ≈ 0.2R⊥ (rings with this
radius have roughly the same amplitude as the oscillations
seen in the experiment) exhibit periods an order of magni-
tude larger than Tz, naturally explaining the observations.
Furthermore, as the system is brought into the BEC regime,
the coherence length lcoh will grow significantly relative to
the fixed ring size R, so T will naturally get smaller,
approaching Tz. Finally, in the extreme BEC limit, lcoh will
approach the width of the trap, arresting the snake instabil-
ity, and reproducing the theoretical prediction T ≈

ffiffiffi
2

p
Tz

for a domain wall.
Method.—To explain more subtle features of the experi-

ment, like the observed dependence on aspect ratio, we per-
form dynamical simulations of trapped unitary fermions
using two formulations of density functional theory (DFT).
The first, an extended Thomas-Fermi (ETF) model [28], is
essentially a bosonic theory for the dimer or Cooper-pair
wave function Ψ. The dynamics are described by a non-
linear Schrödinger equation (NLSEQ) similar to the Gross-
Pitaevskii equation (GPE) for bosons

iℏ
∂Ψ
∂t ¼ − ℏ2

4m
∇2Ψþ 2

∂Ehðn; aÞ
∂n Ψþ 2VextΨ; (2)

where arguments x and t have been suppressed, n ¼ 2jΨj2
is the fermion number density, and Ehðn; aÞ is the energy-
density of the homogeneous gas with density n and (adjust-
able) scattering length a fit to the equation of state in the
BEC-BCS crossover. This simplified DFT is equivalent to
zero-temperature quantum hydrodynamics (including the
so-called quantum pressure term), and we shall use this
to model the time-of-flight expansion and imaging pro-
cedure of the experiment. While computationally attractive,
this formulation has some physical drawbacks. In particu-
lar, it models only the superfluid portion of the cloud: phys-
ics associated with the normal state is missing. As a result, a
vanishing order parameter Ψ ¼ 0 implies a vanishing den-
sity n ¼ 0. This tends to overestimate the density contrast
in the core of defects and leads to the same domain wall
motion T ≈

ffiffiffi
2

p
Tz as the harmonically trapped GPE.
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There is also no mechanism for the superfluid to transfer
energy to the normal component, which inhibits the relax-
ation of rotating systems into a regular vortex lattice, and
prevents Eq. (2) from being used to simulate the prepara-
tion of the experiment as the initial sound waves generated
by the phase imprint never dampen, and the generated
vortex rings rapidly decay.
To address these issues, we also simulate a time-dependent

extension ofDFT to superfluid systems—the time-dependent
superfluid local density approximation (TDSLDA)—where
the dynamical evolution is described by equations for the
quasiparticle wave functions (uk, vk)

iℏ
∂
∂t

�
uk
vk

�
¼

�
h Δ
Δ� −h

��
uk
vk

�
; (3a)

where h ¼ δE=δn and Δ ¼ δE=δν� (ν is the anomalous
density) [29]. This is similar in form to the Bogoliubov–
de Gennes (BdG) mean-field theory [13–16], but includes
a self-energy contribution β and effective mass parameter α
neglected in the BdG:

h ¼ δE
δn

¼ α
−ℏ2∇2

2m
þ β

ð3π2nÞ2=3
2

− jΔj2
3γn2=3

: (3b)

These additional terms allows the TDSLDA to quantita-
tively match all experimentally measured and numerically
calculated properties of homogeneous systems in finite and
infinite boxes [30]: adjusting α, β, and γ allows one to con-
sistently characterize the energy per particle, pairing gap,
and quasiparticle spectrum obtained from quantum
Monte Carlo (QMC) calculations of the homogeneous
infinite system. (Note: If α ≠ 1, one must include additional
terms to restore Galilean covariance as discussed in
[29,31]: we avoid this complication by setting α ¼ 1
instead of α ≈ 1.1 while adjusting β and γ to reproduce
the energy per particle and pairing gap.) Simulating
Eqs. (3) for three-dimensional systems represents a serious
computational challenge that effectively utilizes the largest
supercomputers available, so we use this only to verify
that stable vortex rings are generically produced from
the phase-imprint procedure, and use the ETF to illus-
trate the behavior of the experimental systems.
Results.—Following the preparation procedure outlined

in [18], we phase imprint a domain wall on harmonically
trapped clouds and follow the evolution using the
TDSLDA. (Details are presented in [31].) For sufficiently
large clouds, the domain wall quickly decays into an oscil-
lating vortex ring. Figure 1 shows the motion as the ring
initially crawls along the outside of the trap and a smaller
ring bounces back. Computational limitations restrict us to
relatively small systems and these simulations are quite
close to the onset of the snake instability. Nevertheless,
the period seen in Fig. 1 is comparable to our estimate
Eq. (1b). Finally, we note an antidamping similar to that

seen at higher temperatures in [18]. This is explained by
the small heat capacity of our simulated system: the
residual sound waves induced by the phase correspond
roughly to a finite temperature.
For larger clouds we use the ETF . As expected, the

initial preparation phase cannot be reliably reproduced:
the sound waves generated by the imprint do not dissipate,
and the resulting vortex ring decays within a few oscilla-
tions. Stable vortex rings can be produced, however, by
“cooling” an imprinted phase pattern with imaginary time
evolution. As shown in the Supplemental Material [31],
these vortex rings reproduce the qualitative behaviors
observed in the MIT experiment [18]. In particular, the
period is an order of magnitude larger than expected for
domain walls and increases by similar amounts as the
aspect ratio is reduced as shown in Table I. The period also
scales toward the domain wall results

ffiffiffi
2

p
Tz toward the
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FIG. 1 (color online). Oscillations of a vortex ring in an
elongated harmonic trap. Simulated with the TDSLDA on a 32 ×
32 × 128 lattice for a cloud with 560 particles. We evolve about
105 wave functions in real time using a symplectic split-operator
integrator that respects time-reversal invariance using hundreds of
GPUs on the Titan supercomputer [32]. More details and several
movies may be found in [31].
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BEC limit and exhibits antidamping decays in the presence
of phonon excitations. (These phonons mock up fluctua-
tions, but do not faithfully simulate a thermal ensemble.)
A quantitative comparison is marred by the lack of a normal
component occupying the core of the vortex. However,
when comparing the ETF with the TDSLDA simulations,
we find that this is fairly consistently characterized by
an overall increase in periods by a factor of about 1.8—
somewhat larger but similar to the factor of ≈

ffiffiffiffiffiffiffiffi
3=2

p
seen

when comparing the period of fermionic to bosonic domain
walls in quasi-1D environments. We are confident that
a realistic TDSLDA simulation would closely mimic the
experiment, and enforcing quantitative agreement would
help further constrain the TDSLDA functional.
The puzzle provided by the imaging procedure remains:

can a vortex ring look like a planar soliton after imaging?
The answer, yes, is demonstrated in Fig. 2 and in [31]. The
imaging procedure includes a rapid ramp of the magnetic
field to the BEC side of the crossover where the coherence
length becomes much larger, but the equation of state
becomes softer. This rapid-ramp procedure followed by
expansion produces something akin to a shock wave
[6,17] that manifests itself as a planar soliton upon imaging.
Our simulations confirm the somewhat subtle experimental
observation that sufficient ramping below Bmin < 700 G is
required to observe a signal, and explains both the thick-
ness of the soliton and the amplitude of the integrated
density fluctuations observed in the experiment [18].
A slight difference remains between the density fringe pat-
tern seen in the integrated 1D density Fig. 2 compared with
those seen in experiment [18], the latter having a minimum
in the center where the ETF has a peak. As shown in the
movies of the expansion [31], this feature results from
the motion of shock waves formed during the expansion,
the speed of which will be incorrectly predicted by the ETF.
We have shown that the puzzling report of heavy solitons

in fermionic superfluids [18], which appear to exhibit an
effective mass some 50 times larger than predicted by
the theory of dynamics of a domain wall, can be naturally
explained in terms of vortex rings. Using a 3D simulation
of the TDSLDA, we validate the picture that, in large
enough traps, imprinted domain walls generically evolve
into vortex rings through an axially symmetric “snake
instability. The estimate Eq. (1b) shows that these rings

can have large periods at unitarity, that decreases toward
the BEC regime, and explicit simulations using the ETF
verify the dependence of the period on the aspect ratio.
Finally, the ETF demonstrates that, through the expansion
and imaging process employed to resolve the objects, vor-
tex rings manifest as large planar objects with an observ-
able density contrast only if the magnetic field is ramped to
Bmin < 700 G, in quantitative agreement with the observa-
tions. We have thus verified virtually all aspects of the
experiment [18], including the elaborate imaging protocol,
thereby validating the use of the TDSLDA and ETF theo-
ries for dynamical simulations including topological
defects, and resolving the mystery of heavy solitons as
vortex rings.

We acknowledge support under U.S. Department of
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TABLE I. Dependence of the oscillation period on aspect ratio
for a vortex ring imprinted with R0 ¼ 0.30R⊥ at resonance. Note
that the ETF consistently underestimates the period by about
a factor of 0.56.

Aspect ratio ETF period Observed period [18]

λ ¼ 3.3 T ¼ 9.9Tz T ¼ 18ð2ÞTz
λ ¼ 6.2 T ¼ 8.4Tz T ¼ 14ð2ÞTz
λ ¼ 15 T ¼ 6.7Tz T ¼ 12ð2ÞTz
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FIG. 2 (color online). Demonstration of the imaging procedure.
The top plot shows a slice of the density through the upper-half
core of the trap before expansion: the vortex ring is barely visible
at z ¼ 0. Below is a slice through the upper-half core after
ramping to Bmin ¼ 580 G and letting the cloud expand as dis-
cussed [18]. The lower plot shows the integrated 2D densityR
x
⋅
nðx; y; zÞ and the integrated 1D density

R
x
⋅
y
⋅
nðx; y; zÞ (white

curve). The lower half of the image has added Gaussian noise
with a 3% density variation and is coarse grained on a 3 μm scale
to simulate the experimental imaging procedure, clearly demon-
strating that vortex rings appear as solitons. (Densities are scaled
by maximum value for better contrast.) For Bmin > 700 G , the
density contrast is reduced below the experimental signal-to-
noise ratio. See the Supplemental Material [31] for details and
for movies.
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SUPPLEMENTARY INFORMATION

The essential feature of the domain walls imprinted in
the experiment [1] is that they can decay via a “snake”
instability into vortex rings when the radial extent of
the trap becomes larger to the coherence length R �
lcoh [27, 33–35]. The formation of an axially aligned
vortex rings from a trapped domain wall is thus almost
inevitable: The center of the wall moves faster than the
edges so that the wall bows out along the axis of the
trap. If the trap is narrow, then the wall maintains
integrity (see e.g. Ref. [18]) and one will indeed observe
an oscillating domain wall, but as the trap becomes wider,
the bowing out will eventually overwhelm the domain wall,
establish a circulation, and form a vortex ring. Pinsker
et al. [36] used this idea to suggest a “piston mechanism”
for generating vortex rings, and the MIT experiment [1]
essentially reproduces this setup. One thus generically
expects a phase imprint to generate vortex rings once
the width of the trap exceeds some critical value. The
detailed structure of one such a ring from our simulations
is down in Fig. 3 shows a cross-section of the cloud.

This behaviour has been studied for bosons (see e.g. [27,
37]), where the transition from a domain wall to a vortex
ring appears to be continuous in harmonic tubes (see [27]).
Our simulations shown in Fig. 4 suggest that these results
also apply qualitatively for fermions. In particular, in
the smallest system (left panel of Fig. 4), the vortex ring
configuration exists only away from the turning points.
It collapses in on itself, re-forming as a domain wall near
the turning points and remerges as a vortex ring with an
opposite circulation. This behavior mirrors that seen in
BEC [26], but is demonstrated here for the first time in
a fermionic system. This new domain wall exhibits the
same initial instability, and a vortex ring of the opposite
circulation and similar size forms and moves back along
the trap in the opposite direction. This oscillation is at
the limit of the fermionic equivalent of the domain-wall
branch of these types of excitations [27]. Note that [27]
also discusses collisions of these excitations, which are
elastic at low energies. Reducing the width of the trap,
one will continuously approach the quasi-1D situation of
oscillating domain walls. Note that the period T ≈

√
3Tz

in this case approximately agrees with other the quasi-1D
simulations [14, 17, 18]
The motion of a vortex ring in a trapped gas will be

modified by the boundary: the outward buoyant force of
the trap, for example, will change the axial velocity of
the vortex ring according to the well established Magnus
relationship. An oscillation can occur whereby a small
vortex ring moves along the axis of a trap, primarily
according to (1a) and the longitudinal component of the
buoyant force, then returns as a larger ring crawling along
the edge of the trap (see e.g. [27, 37]). This picture follows
from arguments similar to those used to derive (1), but

0.0 0.5 1.0 1.5 2.0

n/nF

0.0 0.2 0.4 0.6 0.8

|∆|/EF

FIG. 3. (color online) The shading (color) contours show slice
through the core x = 0 the density (top) and magnitude of
the order parameter (bottom). Contours of constant phase
φ = arg∆ are shown as are streamlines and arrows parallel
to the superfluid velocity v = ∇φ. A higher resolution figure
may be found in [31]

where the superflow outside the ring no-longer extends
to infinity. As the boundary is reduced, the balance
shifts between the opposite flows inside and outside of the
ring, slowing, then ultimately reversing the velocity of the
ring. A quantitative analysis must include effects such
as the entrainment of the surrounding fluid, which can
change the effective mass, etc.; see [39] for a few idealized
examples. Thus vortex rings can naturally oscillate with
periods much larger than Tz in traps where the size of
the transverse direction R� 1/kF is large.
TDSLDA Model To demonstrate the generic gener-

ation of vortex rings, we simulate the superfluid local
density approximation (SLDA) (3) on three 3D lattices
of size 24 × 24 × 96, 32 × 32 × 128, and 48 × 48 × 128
with unit lattice spacing. We adjust the particle number
–– about 230, 560, and 1270 particles for these lattices
respectively –– so that the density in the core of the
initial cylindrical trap [31, 38] corresponds to kF = 1.
We evolve about 105 wavefunctions in real time using a
symplectic split-operator integrator that respects time-
reversal invariance using hundreds of GPUs on the Titan
supercomputer [32]. Preparing initial states in 3D has
been a major challenge for superfluid DFT like the SLDA,
but the quantum-friction algorithm introduced in [38]
easily overcomes this challenge, and we quickly cool into
the ground state of an elongated harmonic trap. As in
the experiment, we phase imprint a domain wall, but to
reduce phonon noise generated during the imprint, we
include a repulsive knife-edge potential. Although the
initial conditions have axial symmetry, the simulations
here are fully 3D so as not to bias the results.

The simulations evolve a formally infinite system of cou-
pled nonlinear time-dependent PDEs as described in detail
elsewhere [13, 29]. The TDSLDA is based on the simplest
possible energy density functional that satisfies all ex-
pected symmetries. In addition to the number density n =
2
∑
En<Ec

|vn|2, the Pauli exclusion principle is ensured by
including a kinetic density τc = 2

∑
En<Ec

|∇vn|2 in the
spirit of the original local density approximation (LDA)
introduced by Kohn and Sham [40], and superfluidity is
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FIG. 4. (color online) Oscillations of a vortex ring in a harmonic trap on a 24× 24× 96 lattice (left) and a 32× 32× 128 lattice
(right). We start with a cylindrical cloud (not shown, see Ref. [31, 38]) with central density nF = k3F /3π

2 where the Fermi
wavevector kF = 1/δx = 1. The harmonic trapping potential along z is then increased slowly while applying the quantum
cooling algorithm described in [38] to cool the system to a state with two separated clouds. These are the phase imprinted with
δφ = π and the knife edge is removed, allowing the soliton to evolve as shown. Movies, including a case for a 48× 48× 128
lattice, may be found in [31]. This ring then oscillates along the axis of the trap. In the smaller simulation, the ring does not
fully form, and it collapses in on itself, re-forming as a dark-soliton near the turning points. This behavior mirrors that seen in
BEC [26], but is demonstrated here for the first time in a fermionic system. This new domain wall exhibits the same initial
instability, and a vortex ring of the opposite circulation and similar size forms and moves back along the trap in the opposite
direction. This oscillation is at the limit of the fermionic equivalent of the domain-wall branch of these types of excitations [27].
Note that [27] also discusses collisions of these excitations, which are elastic at low energies. Reducing the width of the trap,
one will continuously approach the quasi-1D situation of oscillating domain walls. Note that the period T ≈

√
3Tz in this case

approximately agrees with other the quasi-1D simulations [14, 17, 18]
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modelled by an anomalous density νc =
∑
En<Ec

v∗nun.
Galilean covariance is restored by including the mass cur-
rent j = ~

m

∑
En<Ec

2 Im vn∇v∗n as discussed in detail
in [29, 41]:

E =
~2

m

[
α
τc
2
− (α− 1)

j2

2n
+ β

3(3π2)2/3n5/3

10
+

+
|νc|2

n1/3/γ + Λc

]
+ Vextn, (4)

(See Ref. [29] for details on how to express the regulator
Λc in terms of the energy cutoff Ec.)

The correction to the energy density (4) for α 6= 1 is

(α− 1)
~2

2m

[
τc −

j2

n

]
= (α− 1)

~2

2m

[
τc − nv2

]
, (5)

where v = j/n is the local velocity. The coefficient
(α− 1) ≈ 0.1 in from of τc has the effect of slightly soften-
ing gradients; the term proportional to j2 is dominated by
phase gradients and vanishes in the ground state where
there are no currents j = 0. Upon variation ,this cor-
rection to the energy density leads to a change in the
single-particle Hamiltonian

hvk → hvk + (α− 1)

[
− ~2

2m
∇2vk − 2i~v ·∇vk

+

(
−i~∇ · v +

mv2

2

)
vk

]
. (6)

The gradient term proportional to local velocity v = j/n
acts like a gauge potential, and will most affect mostly
the flow, barely affecting the density. The last term is
a correction to the self-energy of the particle and its
magnitude, even close to a vortex core, is very small
in the case of a unitary Fermi gas, ≈ 0.1 × 0.22εF =
0.004εF , since the maximum value of the velocity around
a quantized vortex core is v ≤ 0.2vF [20].
As with all DFTs, this can be applied to an arbitrary

external one-body potential Vext(x, t). In our first im-
plementation of the time-dependent GPU version of the
code we use a split operator method which requires less
RAM memory. For this method, gradient terms such as
in Eq. (6) are extremely expensive to compute. In our
simulations, we use a simpler parameterization with α = 1
which avoids the need for the current-dependent term on
the second line of (6). This affects the quantitative ac-
curacy of the theory only at the level of a few percent,
see also Fig. 5 and the discussion below concerning gradi-
ent corrections. The dynamical evolution is described by
equations for the quasiparticle wave functions (uk, vk)

i~
∂

∂t

(
uk
vk

)
=

(
h ∆
∆∗ −h

)(
uk
vk

)
, (7)

where the single-particle Hamiltonian h and pairing poten-
tial ∆ are obtained by taking the appropriate functional
derivatives of the energy density E . The dimensionless
constants α, β, and γ are fixed by the energy per particle,
pairing gap and quasiparticle spectrum obtained from
QMC calculations of the homogeneous infinite system.
Though Eq. (7) has a similar form as the mean-field BdG
equations, it includes a self-energy contribution, which is
dominant even at unitarity unlike BdG, and it includes
all correlations at the same level of accuracy as the QMC
results available so far.
ETF Model To demonstrate the scaling of oscillation

periods with system size, aspect ratio, etc. we simulate the
ETF model (2) in a cylindrical discrete variable represen-
tation (DVR) basis [42] with 2048 points along the z-axis
and 256 points in the radial direction, using trapping
parameters as described in [1]. We phase imprint a vortex
ring with phase φ = arg[z + i(r − R)] (r =

√
x2 + y2

and R is the vortex ring radius) and “cool” with imagi-
nary time evolution to generate vortex rings with various
amounts of background phonon excitations. These are
then evolved in real-time using the split-operator integra-
tor to determine the oscillation period, and to perform
the rapid-ramp/expansion imaging procedure. Several
sample results are shown in Fig. 7, and summarized in
the following tables.

The ETF follows from minimizing the energy-density

E =
|∇Ψ |2
4m

+ Eh(n, a) + Vextn, (8)

where n = 2|Ψ |2 is the total density and we parameterize
the equation of state of a dilute Fermi gas for positive
scattering lengths with

Eh(n, a) =
3

5
εFnξ

ξ + x

ξ + x(1 + ζ) + 3.0πξx2
− ~2

2ma2
n (9)

which depends on the magnetic field B through the two-
body scattering length a as described in [43, 44] through
the dimensionless interaction parameter x = 1/kFa. Di-
mensions are set in terms of the parameters of the free
Fermi gas n = k3F /3π

2, and εF = ~2k2F /2m. This repro-
duces the unitary equation of state with ξ = 0.370 and
ζ = 0.901 (the contact), and the factor 3.0 = 9a/5aDD
reproduces the dimer-dimer scattering length aDD ≈ 0.6a.
The ETF approach that has been used to analyze the
expansion [28] and [28, 44] breathing mode frequencies of
cold atomic gases in a trap, their surface oscillations [45],
collisions of clouds of fermions [46], vortex generation [47],
vortex pinning [48], and soliton dynamics [49]. The ETF
is equivalent to the quantum hydrodynamics approach
at zero temperature, which has been used extensively
by many authors for modelling the unitary Fermi gas
during the last decade, but ETF also includes the quan-
tum pressure term typically neglected in a hydrodynamic
approach. We point out that the ETF in Eq. (2) is mani-
festly covariant under Galilean transformations whereby
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Ψ(x, t) → e−2iφΨ(x + vt, t) where φ = mv · x + 1
2mv

2t.
The factor 2 in the exponent here corresponds with the
identification of Ψ = 〈ψaψb〉 as the dimer or di-fermion
condensate and could be absorbed into the definition of
the dimer mass mB = 2m.
Gradient corrections The SLDA (4) and ETF (8) func-

tionals naturally describe gradients through their kinetic
terms, but since they have been fit to properties of homoge-
neous system, one might reasonably wonder if any signifi-
cant gradient corrections have been overlooked. This ques-
tion was addressed in [50] by confronting high-precision
QMC calculations of harmonically trapped systems which
found that, while small gradient corrections of Weizsäcker-
type ∝ −|∇n|2/n might improve the ability of the func-
tionals to fit traps with few particles, they can be treated
as a perturbative correction to the underlying SLDA (4).
Indeed, the SLDA performs extremely well, even when ap-
plied to inhomogeneous trapped systems, where it explains
virtually all available QMC results for systems with up to
120 fermions, both in polarized and unpolarized systems,
in superfluid or normal phases, in harmonic traps, periodic
boxes, and infinite matter [29, 30, 51]. This indicates that
the kinetic energy density τc = 2

∑
En<Ec

|∇vn|2 properly
describes most of the gradient effects. Since the pairing
is strong in the unitary Fermi gas, this kinetic energy
density includes gradients up to high momenta � kF ,
much larger than the scales ∼ kF describing solitons like
domain-walls, vortices, and vortex rings. Thus, though
additional gradient corrections may affect the structure
of solitons, these effects will be subtle, and will require
high-precision QMC calculations and measurements to
validate. The omission of these higher-order corrections
in our simulations are unlikely to affect our results more
than the quoted experimental accuracy, as also illustrated
in Fig.5, for a case where density gradients are significant.
The available QMC calculations are not accurate

enough to provide a more exact value of the effective mass
of the quasi-particles. The QMC results of [52] suggest a
value of α ≈ 1.14 [29] obtained by calculating the ground
state energy difference |E(N ± 1, k)− E(N, 0)|, where N
is even and ~k is the momentum of the system with N ±1
particles. In that calculation the Bertsch parameter was
determined to be ξ = 0.42(2), thus with an error of about
10% when compared to more recent QMC results [53]
and experimental measurements ξ = 0.372 [44, 54]. One
can therefore infer that the error in the quasi-particle
dispersion is much larger as it is a difference in energies.
The QMC calculation [52] for the pairing gap quotes an
error of about 5% (∆ = 0.504(24)εF ). This agrees within
the error bars with an independent analysis of experi-
mental data of polarized system [55], which claims that
∆ = 0.45(5)εF . In an independent QMC study at finite
temperatures [56], the effective mass was found to be
consistent with the bare mass to within 10% for a large
range of temperatures. In summary, all direct information
from QMC calculations and experiments contain errors

at the level of about 10%, statistical as well systematic,
consistent with α− 1 ≤ 0.1.

0 5 10 15 20 25 30

N

0%

1%

2%

δE
/

E

FIG. 5. (color online) Relative energy change (in %) between
simulations with α = 1 and α = 1.14 that compute the energy
of N fermions (both even and odd particle numbers) in the
unitary Fermi gas trapped in an isotropic harmonic oscillator.
The parameters β and γ for the SLDA here have been adjusted
to match the values of ξ and η used in Ref. [29] for fixed
α = 1.14 and α = 1.00. This demonstrates that a 14% change
in α results in less than 2% change in energies, even in very
small systems which have relatively large gradients. The use
of the bare mass in DFT calculations is in the spirit of original
Hohenberg and Kohn and Kohn and Sham formulation, which
is widely used in electronic calculations in condensed matter
physics and chemistry.

Results The results of the expansion and imaging pro-
cess are shown in Fig. 2 and Fig. 6 (see [31] for movies).
Here it becomes clear why the experiment [1] needed
to implement an involved ramping/imaging procedure
to image the defects. The rapid ramp into the BEC
regime at low magnetic fields Bmin < 700 G causes a
rapid change in the coherence length that produces a sort
of shock-wave during the expansion. The geometry to
the expansion results in an asymmetric density depletion
that resolves into a planar looking object when imaged
with the coarse-grain resolution of the imaging system. If
the field Bmin not sufficiently small, then the shock-wave
is mild, and the resulting cloud does not have enough
contrast to register a signal. That the ETF quantitatively
reproduces the required minimum field Bmin is further
validation of the DFT and somewhat expected since the
ETF approximation should become more accurate in the
BEC regime.

The ETF certainly cannot reproduce all details of the
fermionic dynamics – in particular, one expects poor
behavior when excitations approach the pair-breaking
threshold set by the gap ~ω > 2∆ ≈ EF . The theory, how-
ever, has the same symmetries, and is tuned to have the
same equation of state as the full theory. The advantage
of this approach over traditional fermionic time-dependent
density functional theorys (TDDFTs) is its computational
simplicity: the bosonic approach needs only to evolve a
single wavefunction. A detailed comparison of the ETF
and SLDA is performed in [57].

In Table I we compared the oscillation periods predicted
by the ETF with the observed period from [1] on resonance
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FIG. 6. (color online) Additional expansion images with same
interpretation as in Fig. 2. Top: image of a small vortex ring
expanded at Bmin = 580 G. Bottom: image of same small
vortex ring expanded at Bmin = 702 G demonstrating that
Bmin < 700 G is required to achieve a resolvable image, thereby
explaining the need for the subtle time-of-flight expansion and
imaging procedure discussed in the experiment [1]. See [31]
for movies.

for the three aspect ratios studied in the experiment.
The observations are consistently larger than the ETF
predictions by a factor of about 1.8: this might be due
to the lack of a normal component filling the core of
the vortices in the ETF and is reminiscent of the factor√

3/2 difference in the calculated period of 1D domain
walls. This is consistent with the heuristic estimate (1b)
whereby the mass depletion MVR would be suppressed
for fermions by the presence of the normal state.

To test the consistency of this suppression, we use the

ETF to model the TDSLDA simulations shown in Fig. 4.
The comparison is shown in Table II where it is seen that
the TDSLDA periods are larger than the ETF by a factor
consistent with

√
3/2 for small systems. This is expected

since these simulations are in small traps and are very
close to the limit where domain walls remain stable. The
lattice simulation 48× 48× 128, which involved 259 762
complex time-dependent 3D nonlinear coupled partial
differential equations, performed on Titan [32] on 2048
GPUs, is one of the largest Direct Numerical Simulations
(DNC) performed so far.

TABLE II. Benchmark of the ETF periods to the SLDA periods
for sizes 24× 24× 96, 32× 32× 128, and 48× 48× 128.

Size TETF TSLDA TSLDA/TETF

24× 24× 96 1.4Tz 1.7Tz 1.2
32× 32× 128 1.6Tz 1.9Tz 1.2
48× 48× 128 1.9Tz 2.6Tz 1.4

In Table III we demonstrate how the period depends
on the initial radius of the imprinted vortex ring R0. This
parameter is not directly measured or controlled in the
experiment, so we must estimate the value R0 ≈ 0.2R⊥
by the resulting amplitude of oscillation ∼ 0.5Rz shown
in the figures of [1].

TABLE III. Imprinting the vortex with different radii, all on
resonance with 1/λ = 3.3. In the tables below we show how
oscillation period changes with aspect ratio for a vortex ring
imprinted at R0 = 0.30 R⊥ on resosnace kF a = ∞ in each
scenario.

Imprint radius Period Amplitude
R0 = 0.20 R⊥ T = 8.6 Tz ∼ 0.45 Rz

R0 = 0.30 R⊥ T = 9.9 Tz ∼ 0.35 Rz

R0 = 0.40 R⊥ T = 10.7 Tz ∼ 0.15 Rz

R0 = 0.50 R⊥ T = 11.0 Tz ∼ 0.05 Rz

Finally, we comment on the observed “snake” instability
discussed in the supplementary information of [1]. Al-
though significantly more stable than domain walls, large
vortex rings can also bend and decay through the Crow
instability [58, 59] and the MIT experiment is poised right
on the edge of the regime where one can start to explore
the quantum turbulence cascade.
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