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threshold set by the gap ~! > 2� ⇡ EF . The theory, how-
ever, has the same symmetries, and is tuned to have the
same equation of state as the full theory. The advantage
of this approach over traditional fermionic time-dependent
density functional theorys (TDDFTs) is its computational
simplicity: the bosonic approach needs only to evolve a
single wavefunction. A detailed comparison of the ETF
and SLDA is performed in [53].

In Table I we compare the oscillation periods predicted
by the ETF with the observed period from [1] on resonance
for the three aspect ratios studied in the experiment.
The observations are consistently larger than the ETF
predictions by a factor of about 1.8: this might be due
to the lack of a normal component filling the core of
the vortices in the ETF and is reminiscent of the factorp
3/2 difference in the calculated period of 1D domain

walls. This is consistent with the heuristic estimate (1b)
whereby the mass depletion MVR would be suppressed
for fermions by the presence of the normal state.

TABLE I. Dependence of the oscillation period on aspect ratio
for a vortex ring imprinted with R0 = 0.30 R? at resonance.
Note that the ETF consistently underestimates the period by
about a factor of 0.56.

Aspect Ratio ETF Period Observed Period [1]
� = 3.3 T = 9.9 Tz T = 18(2)Tz

� = 6.2 T = 8.4 Tz T = 14(2)Tz

� = 15 T = 6.7 Tz T = 12(2)Tz

To test the consistency of this suppression, we use the
ETF to model the TDSLDA simulations shown in Fig. 4.
The comparison is shown in Table II where it is seen that
the TDSLDA periods are larger than the ETF by a factor
consistent with

p
3/2 for small systems. This is expected

since these simulations are in small traps and are very
close to the limit where domain walls remain stable. The
lattice simulation 48 ⇥ 48 ⇥ 128, which involved 259 762
complex time-dependent 3D nonlinear coupled partial

differential equations, performed on Titan [29] on 2048
GPUs, is one of the largest Direct Numerical Simulations
performed so far.

TABLE II. Benchmark of the ETF periods to the SLDA periods
for sizes 24⇥ 24⇥ 96, 32⇥ 32⇥ 128, and 48⇥ 48⇥ 128.

Size TETF TSLDA TSLDA/TETF
24⇥ 24⇥ 96 1.4Tz 1.7Tz 1.2
32⇥ 32⇥ 128 1.6Tz 1.9Tz 1.2
48⇥ 48⇥ 128 1.9Tz 2.6Tz 1.4

In Table III we demonstrate how the period depends
on the initial radius of the imprinted vortex ring R0. This
parameter is not directly measured or controlled in the
experiment, so we must estimate the value R0 ⇡ 0.2R?
by the resulting amplitude of oscillation ⇠ 0.5Rz shown
in the figures of [1].

TABLE III. Imprinting the vortex with different radii, all on
resonance with 1/� = 3.3. In the tables below we show how
oscillation period changes with aspect ratio for a vortex ring
imprinted at R0 = 0.30 R? on resosnace kF a = 1 in each
scenario.

Imprint radius Period Amplitude
R0 = 0.20 R? T = 8.6 Tz ⇠ 0.45 Rz

R0 = 0.30 R? T = 9.9 Tz ⇠ 0.35 Rz

R0 = 0.40 R? T = 10.7 Tz ⇠ 0.15 Rz

R0 = 0.50 R? T = 11.0 Tz ⇠ 0.05 Rz

Finally, we comment on the observed “snake” instability
discussed in the supplementary information of [1]. Al-
though significantly more stable than domain walls, large
vortex rings can also bend and decay through the Crow
instability [54, 55] and the MIT experiment is poised right
on the edge of the regime where one can start to explore
the quantum turbulence cascade.


