
4

0.0

0.5

1.0
n
/
n

1

0 1 2 3 4 5 6 7 8

k r

0.0

0.5

�
/
�

1

SLDA
ETF

Figure 2. Structure of a single static vortex in the slda [53]
(solid blue curve), and in the matching etf (dashed black
curve). We compare only with parameter set II from [53]
which has unit inverse effective mass ↵ = m/m⇤ = 1 and
parameters tuned so that ⇠ = 0.44 while the energy of the
normal state is ⇠

N

= 0.54 (this gives a somewhat low pairing
gap � ⇡ 0.3718E

F

). We do not consider the ↵ 6= 1 vortex for
parameter set I in [53] which is missing the corrections that
restore Galilean invariance [30].

thought of as “normal” fermionic modes occupying the
vortex core where the superfluid condensate vanishes),
while the etf by construction has zero-density wherever
the condensate  = 0 vanishes.

This core occupation also appears in solitons, giv-
ing rise to a change in the oscillation period for soli-
tons in a quasi-1d harmonic trap from T ⇡

p
2T

z

[54–
58] in the bosonic systems (reproduced by the etf

model) to T ⇡
p

3T

z

in the fermionic dfts (bdg [59]
and slda [60]). Thus, bosonic and fermionic simula-
tions are qualitatively, but not quantitatively, similar
when describing these types of dynamics. Note that
recent experiment [10] suggest that solitons in the ufg

might have a significantly longer period T ⇡ 10T

z

, but
this has been resolved by identifying the observations
with vortex rings [15].

Related to the deficiency in properly describing the
core density, we note that unitary evolution of the etf

implies that

@

@t

Z
d3~x  †(~x, t) (~x, t) = 0. (9)

This means that, not only is the total particle number
conserved (which is physical), but the integrated “gap”
is also conserved @

t

R
d3~x |�|2 = 0. In fermionic systems,

pair-breaking excitations will reduce the gap, resulting
in a mixture of superfluid and normal fluid; in highly
excited systems the superfluid may vanish completely.
The etf on the other hand does not admit this behaviour,
and even highly excited systems will still have a rapidly
fluctuating but non-zero order parameter. The degree to
which the integrated gap is conserved during the evolu-
tion of a fermionic system provides a useful measure of

how successfully the etf can model the corresponding
evolution. (We shall explore this further in Fig. 8.)

Despite the fact that the resulting etf contains only a
single parameter (compared with the three independent
parameters of the slda), it still qualitatively reproduces
many response properties. This qualitative agreement
is a somewhat fortuitous consequence of the best-fit pa-
rameter values. From the point-of-view of the etf, the
ufg contains two independent length scales: the inter-
particle spacing set by the density, and the coherence
length set by the gap. This is demonstrated by the failure
of the etf to capture the core structure of a vortex. Thus,
while the present concordance of the slda and etf is
fortuitous, it may turn out that the slda requires further
gradient corrections [43] (a result that is still awaiting
further ab initio confirmation). If this correction turns
out to be significant, then one might have to introduce
gradient corrections in a more complicated form (com-
pared to the simple Weizsäcker term) that does not spoil
vortex structure and collision dynamics. Such correc-
tions will be non-universal (i.e. must have a different
form for small densities than for large densities) and
probably most conveniently accounted for in two-fluid
model with an additional “normal” component that can
populate the vortex core. The approximation to the bdg

discussed in [61] may shed some light on the nature of
these types of corrections.

IV. LINEAR RESPONSE

We now consider dynamical systems. For small fluctu-
ations one can simply compare the linear response of
the etf with that of the Fermi systems. We compute the
response of the system to an external time-dependent
perturbation in the limit of small �:

V

R

(x, t) = �Re
⇥
e

i(qx+!t)
⇤
,

⇢

R

(x, t) = ⇢

0

+ �Re
⇥
�

n

e

i(qx+!t)
⇤
+ O(�2).

The magnitude of the resulting response |�
n

| is shown
in Fig. 3 for the bdg and slda and compared with
the response for the corresponding etf model tuned to
match the value of ⇠.

The response at low frequencies is dominated by the
pole associated with the superfluid phonon. This may
be computed analytically for homogeneous matter in
the etf:

!phonon =

s✓
 
hq

2

4m

◆
2

+
2q

2

3m

⇠E

F

= c

s

q + O(q3), (10)

where c

s

=
p
⇠/3v

F

is the sound speed and v

F

=  
hk

F

/m

is the Fermi velocity. At small momenta, the f-sum
rule [62] ensures that the residue of the pole in the
bosonic and fermionic theories at low q is equal to
-⇡⇢

0

q

2 
h

2

/(2m!).


