
density functional approach found solitons with clear filling in the wake
of shock waves41. The strong increase of the soliton period is reminiscent
of the situation for dark-bright solitons in weakly interacting BECs,
where a distinguishable atomic species or another spin state resides
inside the soliton notch14,42,43. For fermions, mean-field theory in the
strongly interacting regime attributes a substantial part of the soliton
filling to Andreev bound states19,26–28. These are also predicted to carry
the dominant fraction of the superfluid flow across the soliton, which
can be regarded, in its rest frame, as a Josephson junction of vanishing
barrier height29. It will be an interesting topic for future experiments to
determine the contribution of Andreev states to the soliton filling.

Temperature dependence
To demonstrate that the slow soliton oscillations are a truly quantum
effect and not due to the finite temperature of our gas, we investigated
the soliton motion as a function of temperature for the unitary Fermi
gas at the Feshbach resonance (Figs 4 and 5). A measure of tempera-
ture is provided by the thermal fraction, the number of uncondensed
molecules observed after the rapid ramp. The soliton period is found
to be insensitive to changes in temperature within the measurement
uncertainty (Fig. 5a).

The stability of solitons is, however, strongly affected by thermal
effects. At low temperatures, the soliton oscillation occurs essentially
without energy loss, demonstrating dissipationless flow (Fig. 4a). For
increasing temperature, we observe anti-damping of soliton oscilla-
tions (Fig. 4b). This is characteristic of a particle with negative mass
that can lower its energy by accelerating. To our knowledge, such anti-
damping of solitons has not been directly observed previously in a
quantum gas experiment. The energy loss is likely to be due to colli-
sions with thermally induced phonons10, and we indeed observe a
strong decrease in the anti-damping time constant as the temperature
is raised (Fig. 5b). At even higher temperatures, the soliton’s position
becomes less reproducible (Fig. 4c) and its lifetime is strongly reduced
(Fig. 5c). Concurrently, we observe increased axial fluctuations in the
superfluid (see Fig. 4d–f), some of which appear to have comparable
contrast to the imprinted soliton. These additional solitons might be

‘thermal solitons’, predicted to occur even in equilibrium in weakly
interacting Bose condensates44. Similar to vortex–anti-vortex pairs in
two dimensions, soliton–anti-soliton pairs can be expected to spon-
taneously break in one dimension and proliferate.

We note that on resonance, the fastest solitons we observe move
at the exceedingly slow speed of 0.50 mm s21 or 5% of the (indepen-
dently measured) speed of sound on resonance. Their sudden dis-
appearance, observed for example in Fig. 4c, can thus not be related to
motion close to the Landau critical speed. Instead, their decay might
be tied to inelastic collisions with thermal solitons, as soliton collisions
have been found to become increasingly inelastic towards the BCS
side in theoretical simulations28. Another possibility for their decay at
such low speeds is that the soliton’s energy dispersion has a minimum
at an unexpectedly small fraction of the critical velocity28. One might
expect fermion pairs to break at finite temperatures and fill in the soli-
ton, in addition to quantum fluctuations. However, even for the highest
thermal fraction where solitons have been observed, the actual tem-
perature is determined to be below T 5 0.10EF/kB (kB is the Boltzmann
constant), while the bulk pairing gap is about D0 5 0.4EF (ref. 45). Pair
breaking should thus still be exponentially suppressed, explaining the
insensitivity of the soliton period to the thermal fraction.

Conclusion and outlook
We have created and observed long-lived solitons in a strongly inter-
acting fermionic superfluid. Their period of oscillation and thus their
relative effective mass increases markedly as the interactions are tuned
from the BEC limit of tightly bound molecules towards the BCS limit
of long-range Cooper pairs. This signals strong, beyond mean-field,
effects, which are likely to be due to uncondensed fermion pairs filling
the soliton, in addition to purely fermionic Andreev bound states. Our
study provides an important quantitative benchmark for theories
of non-equilibrium dynamics of strongly interacting Fermi gases.
An exciting prospect is to directly detect the Andreev bound states
spectroscopically19,46. Although they are not topologically protected,
their lifetime should equal that of the soliton—many seconds or 100,000
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Figure 4 | Soliton motion in the unitary Fermi gas at various temperatures.
a–c, Soliton trajectories for increasing temperature, with thermal fractions
a, 7(2)%, b, 9(2)% and c, 15(3)%. The error bars indicate the standard deviation of
typically five repetitions and the solid lines are fits to the data to the anti-damped
sinusoidal function f(t) / exp(t/ts) sin(2pt/Ts 1 w). Whereas the period is found
to be independent of temperature within our uncertainty, the anti-damping time
decreases from ts/Ts 5 5(2) for the coldest clouds (a) to ts/Ts 5 1.3(5) for the
hottest ones (c). d–f, Representative optical densities (left) and residuals (right) of
the superfluid after the rapid ramp. Whereas at low temperatures, the soliton is
the only significant density variation, at higher temperatures transverse stripes
appear that we tentatively interpret as thermal solitons.
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Figure 5 | Effect of finite temperature on soliton motion. a, The soliton
period is found to be insensitive to temperature. b, The 1/e anti-damping time
and c, the soliton lifetime, are found to be strongly dependent on the thermal
fraction. The soliton lifetime is defined as the time when the probability of
observing a soliton decreased to 50%. The dashed lines are guides to the eye.
The horizontal error bars indicate the standard deviation of the thermal
fraction within a data set. The vertical error bars in a represent the typical
spread over five measurements, those in b result from the contribution of the
fitting error on ts and the error on Ts, and those in c reflect the time difference
between having 90% and 10% survival probability.
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