
inertial mass of the soliton M*, this force causes an acceleration
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z z. Because we observe oscillations, M* must be negative

as well, implying that the soliton is an effective particle that decreases
its kinetic energy as it speeds up. One obtains a direct relation26

between the relative effective mass M*/M and the normalized soliton
period Ts/Tz:
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The observed soliton period of oscillation Ts is about one order of
magnitude longer than the trapping period Tz for single atoms. This
directly indicates an extreme enhancement of the relative effective
mass. In general, the difference between the effective mass M* and
the bare mass M of the soliton arises from the phase slip Dw across the
soliton, which implies a superfluid counterflow26. For the soliton to
move, an entire sheet of atoms thus has to flow past it. The difference
M 2 M* is the mass of that sheet, given by the mass density multiplied
by the entire soliton volume. In contrast, the soliton’s bare mass M is
only due to the mass deficit of jNsj atoms and can become much
smaller in magnitude than M* when the soliton is filled. For weakly
interacting BECs, where solitons are devoid of particles, the effective
mass is still of the same order of the bare mass, (M*/M)BEC 5 2. This
leads to an oscillation period that is only
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p

times longer than Tz
(refs 20, 35), as has been observed in experiments14,17. In the BCS limit,
where only a minute fraction D0/EF of the gas contributes to Cooper
pairing, jNsj / D0/EF / exp[2p/(2kFjaj)] and thus the soliton’s rela-
tive effective mass can be expected to become exponentially large.

Indeed, as shown in Fig. 2, we find that the soliton period, and hence
the relative effective mass, increases dramatically as the interactions
are tuned from the limit of Bose–Einstein condensation (Fig. 2a)
towards the BCS limit. At 700 G, where 1/kFa 5 2.6(2), the system repre-
sents a strongly interacting Bose gas of molecules7. The soliton period
is Ts 5 4.4(5)Tz, already three times longer than in the case of a weakly
interacting BEC. At the Feshbach resonance (Fig. 2d), we measure a
soliton period of Ts 5 14(2)Tz, corresponding to a relative effective
mass of M*/M 5 200(50). This is more than 50 times larger than the

result of mean-field BdG theory in three dimensions26,36 that predicts
M*/M 5 3. Note that the superfluid is fully three-dimensional: on
resonance, the chemical potential m < 35BvH, where vH is the radial
trapping frequency. Still, for very elongated traps, one expects to reach a
universal quasi-one-dimensional regime where the tight radial confine-
ment is irrelevant for propagation along the long axis37. This prompted
us to study the dependence of the soliton period on the aspect ratio of
our trap.

Figure 3 summarizes our measurements for the soliton period and
the relative effective mass as a function of the interaction parameter
1/kFa throughout the BEC–BCS crossover, for aspect ratios l 5 3.3,
6.2 and 15. The strong increase of M*/M towards the BCS regime is
observed for all trap geometries. The normalized soliton period Ts/Tz
appears to converge to a limiting value for the most elongated trap: the
normalized period changes by only 15% as the aspect ratio is increased
by more than a factor of two from 6.2 to 15. This indicates that the
soliton dynamics approach a universal quasi-one-dimensional limit.
Even in a much less elongated trap with l 5 3.3(1), the soliton period
is only slightly increased by about 30% compared to l 5 6.2, accom-
panied by an increased susceptibility of the soliton towards bending or
‘snaking’10,13,15 (for examples, see Supplementary Information).

We attribute the large relative effective mass M*/M in the strongly
interacting regime to the filling of the soliton with uncondensed fer-
mion pairs resulting from strong quantum fluctuations. Similar filling
with uncondensed particles has been predicted for solitons in strongly
interacting Bose condensates10,22–25,33. A substantial filling of the soli-
ton will reduce the number jNsj of atoms missing inside the soliton,
therefore considerably weaken the restoring harmonic force from the
trap and strongly increase M*/M. At the Feshbach resonance, our in
situ density profiles provide a lower bound on the soliton filling of
90%, compared to the expected 20% from mean-field theory (see
Supplementary Information). Mean-field theory for the BEC–BCS
crossover heavily underestimates the role of quantum fluctuations
already on the BEC side, where it predicts a fraction of uncondensed
bosons that scales as na3 instead of the correct

ffiffiffiffiffiffiffi
na3
p

scaling7. Our
experiment thus directly reveals the importance of beyond mean-field
effects for the dynamics of strongly interacting fermionic superfluids.
Significant soliton filling was found theoretically in a strongly inter-
acting relativistic superfluid using methods from string theory38–40.
For the resonantly interacting Fermi gas, a theoretical study based on a
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Figure 2 | Soliton oscillations in the BEC–BCS crossover. Shown are soliton
oscillations in a trapped fermionic superfluid for various magnetic fields B
around the Feshbach resonance. a–d, The soliton period is observed to
markedly increase as the system is tuned from the BEC regime (a) to the
Feshbach resonance (d). The measured period (Ts/Tz), magnetic field (B in G)
and interaction parameter at the cloud centre 1/kFa were respectively: a, 4.4(5),
700, 2.6(2); b, 7.5(9), 760, 1.4(1); c, 12(2), 815, 0.30(2); d, 14(2), 832, 0. The
initial atom number per spin state (N0), its decay rate (t in s) and Thomas-
Fermi radius after time of flight (RTF in mm) range respectively from: 1.1 3 105,
1.2(2), 135 at B 5 700 G to 2.3 3 105, 12(1) and 200 on resonance. The aspect
ratio is l 5 6.2(7). Note that at B 5 700 G, the superfluid is short lived due to
enhanced three-body loss. At 760 G (b), the soliton survived for more than 6 s,
comparable to the lifetime of the superfluid at that field.
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Figure 3 | Soliton period and effective mass versus interaction strength in
the BEC–BCS crossover. The normalized soliton period Ts/Tz is shown as a
function of the interaction parameter 1/kFa in the cloud centre, for three
different trap aspect ratios: l 5 15(1) (black circles), 6.2(7) (red diamonds) and
3.3(1) (orange squares). The error bars correspond to the typical spread over
five measurements, and the solid lines are guides to the eye. The soliton period
strongly increases from the BEC regime towards the Feshbach resonance
(vertical dotted line), where Ts/Tz 5 12(2) for l 5 15(1), and to the BCS side.
This directly reflects an extreme enhancement of the relative effective mass
M!=M~T2

s

$
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z , which we attribute to strong quantum fluctuations and filling
of Andreev bound states. The result for a weakly interacting BEC, Ts=Tz~

ffiffiffi
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p

,
is shown as the dashed line. The star marks the mean-field prediction26 at
unitarity M!=M~T2
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