Induced fission of ²⁴⁰Pu within a real-time microscopic approach

Aurel Bulgac University of Washington

Collaborators: Piotr Magierski Kenneth J. Roche Ionel Stetcu (Warsaw UT and UoW) (PNNL and UoW) (Theory Division, LANL)

Slides (pptx) with movies will be available for download from http://www.faculty.washington.edu/bulgac/Pu240/

Main Theoretical Tool

DFT has been developed and used mainly to describe normal (non-superfluid) electron systems – <u>50 years old theory</u>: Kohn and Hohenberg, 1964 and Kohn and Sham, 1965

THEOREM: There exist an universal density functional of particle density.

A new local extension of DFT to superfluid systems and time-dependent phenomena was developed:

Review: A. Bulgac, *Time-Dependent Density Functional Theory and Real-Time Dynamics of Fermi Superfluids*, Ann. Rev. Nucl. Part. Sci. 63, 97 (2013)

Formalism for Time-Dependent Phenomena

"The time-dependent density functional theory is viewed in general as a reformulation of the exact quantum mechanical time evolution of a many-body system when only one-body properties are considered."

A.K. Rajagopal and J. Callaway, Phys. Rev. B <u>7</u>, 1912 (1973) V. Peuckert, J. Phys. C <u>11</u>, 4945 (1978) E. Runge and E.K.U. Gross, Phys. Rev. Lett. <u>52</u>, 997 (1984)

http://www.tddft.org

 $\begin{aligned} \mathbf{Time-Dependent Superfluid Local Density Approximation (TDSLDA)} \\ E(t) &= \int d^3r \left[\mathcal{E}(n(\vec{r},t),\tau(\vec{r},t),\nu(\vec{r},t),\vec{j}(\vec{r},t)) + V_{ext}(\vec{r},t)n(\vec{r},t) + ... \right] \\ &\int \left[h(\vec{r},t) + V_{ext}(\vec{r},t) - \mu \right] u_i(\vec{r},t) + \left[\Delta(\vec{r},t) + \Delta_{ext}(\vec{r},t) \right] v_i(\vec{r},t) = i\hbar \frac{\partial u_i(\vec{r},t)}{\partial t} \\ &\int \left[\Delta^*(\vec{r},t) + \Delta^*_{ext}(\vec{r},t) \right] u_i(\vec{r},t) - \left[h(\vec{r},t) + V_{ext}(\vec{r},t) - \mu \right] v_i(\vec{r},t) = i\hbar \frac{\partial v_i(\vec{r},t)}{\partial t} \end{aligned} \end{aligned}$

For time-dependent phenomena one has to add currents. Galilean invariance determines the dependence on currents.

The ingredients of the SLDA for nuclei

Energy Density (ED) describing the normal system

ED contribution due to superfluid correlations

$$E_{gs} = \int d^3r \left\{ \varepsilon_N^{\bullet}[\rho_n(\vec{r}), \rho_p(\vec{r})] + \varepsilon_S^{\bullet}[\rho_n(\vec{r}), \rho_p(\vec{r}), \nu_n(\vec{r}), \nu_p(\vec{r})] \right\}$$

$$\left\{ \varepsilon_N[\rho_n(\vec{r}), \rho_p(\vec{r})] = \varepsilon_N[\rho_p(\vec{r}), \rho_n(\vec{r})]$$

$$\varepsilon_S[\rho_n(\vec{r}), \rho_p(\vec{r}), \nu_n(\vec{r}), \nu_p(\vec{r})] = \varepsilon_S[\rho_p(\vec{r}), \rho_n(\vec{r}), \nu_p(\vec{r}), \nu_n(\vec{r})]$$

Isospin symmetry constraints (Coulomb energy and other relatively small terms not shown here.)

$$\mathcal{E}_{S}\left[\rho_{n},\rho_{p},v_{p},v_{n}\right] = g(\rho_{p},\rho_{n})[|v_{p}|^{2} + |v_{n}|^{2}]$$

$$+ f(\rho_{p},\rho_{n})[|v_{p}|^{2} - |v_{n}|^{2}] \frac{\rho_{p} - \rho_{n}}{\rho_{p} + \rho_{n}}$$
where $g(\rho_{p},\rho_{n}) = g(\rho_{n},\rho_{p})$
and $f(\rho_{p},\rho_{n}) = f(\rho_{n},\rho_{p})$

TDSLDA equations

$$i\hbar\frac{\partial}{\partial t} \begin{pmatrix} \mathbf{u}_{n\uparrow}(\vec{r},t) \\ \mathbf{u}_{n\downarrow}(\vec{r},t) \\ \mathbf{v}_{n\uparrow}(\vec{r},t) \\ \mathbf{v}_{n\downarrow}(\vec{r},t) \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{h}}_{\uparrow\uparrow}(\vec{r},t) - \mu & \hat{\mathbf{h}}_{\uparrow\downarrow}(\vec{r},t) & 0 & \Delta(\vec{r},t) \\ \hat{\mathbf{h}}_{\downarrow\uparrow}(\vec{r},t) & \hat{\mathbf{h}}_{\downarrow\downarrow}(\vec{r},t) - \mu & -\Delta(\vec{r},t) & 0 \\ 0 & -\Delta^{*}(\vec{r},t) & -\hat{\mathbf{h}}_{\uparrow\uparrow}^{*}(\vec{r},t) + \mu & -\hat{\mathbf{h}}_{\uparrow\downarrow}^{*}(\vec{r},t) \\ \Delta^{*}(\vec{r},t) & 0 & -\hat{\mathbf{h}}_{\downarrow\uparrow}^{*}(\vec{r},t) & -\hat{\mathbf{h}}_{\downarrow\downarrow}^{*}(\vec{r},t) + \mu \end{pmatrix} \begin{pmatrix} \mathbf{u}_{n\uparrow}(\vec{r},t) \\ \mathbf{u}_{n\downarrow}(\vec{r},t) \\ \mathbf{v}_{n\uparrow}(\vec{r},t) \\ \mathbf{v}_{n\downarrow}(\vec{r},t) \end{pmatrix}$$

• The system is placed on a large 3D spatial lattice (adequate representation of continuum)

- Derivatives are computed with FFTW (this insures machine accuracy) and is very fast
- Fully self-consistent treatment with fundamental symmetries respected (isospin, gauge, Galilean, rotation, translation, parity)
- Adams-Bashforth-Milne fifth order predictor-corrector-modifier integrator Effectively a sixth order method
- No symmetry restrictions
- Number of PDEs is of the order of the number of spatial lattice points – from 10,000s to 1-2,000,000

$$\propto 4 \left(\frac{2p_c L}{2\pi\hbar}\right)^3 = 4N_x N_y N_z$$

- SLDA/TDSLDA (DFT) is formally by construction like meanfield HFB/BdG
- The code was implemented on Jaguar, Titan, Franklin, Hopper, Edison, Hyak, Athena
- Initially Fortran 90, 95, 2003 ..., presently C, CUDA, and obviously MPI, threads, etc.
- For more details abou the method see INT talk on October 7, 2013: <u>http://faculty.washington.edu/bulgac/talks.html#most_recent</u> (pdf and pptx version with movies)

64³

262144

56 TB

20s

Over 1 million time-dependent 3D nonlinear complex coupled PDEs

0.48s

16384

25

0.80s

9.1s

Stetcu, et al., Phys. Rev. C <u>84</u>, 051309(R) (2011)

Giant Dipole Resonance deformed and superfluid nuclei

Osmium is triaxial, and both protons and neutrons are superfluid.

Pairing field profiles (in units of eF)

Aproximately 1270 fermions on a 48x48x128 spatial lattice, ≈ 260,000 complex PDEs, ≈ 309,000 time-steps, 2048 GPUs on Titan, 27.25 hours of wall time (initial code) Wlazłowski et al, Phys. Rev. Lett. 112, 025301 (2014), Phys. Rev. A 91, 031602(R) (2015)

EDF: SLy4 Pairing coupling: Simulation box: Momentum cutoff: 0.119 fm/c Time-step: Number of time steps: ≈120,000 Number of PDEs: ≈ 56,000 Number of GPUs: ≈ 1750 Wall time: OLCF Titan - Cray XK7

 $g_{\rm eff}(\vec{r}) = g\left(1 - \eta \frac{\rho(\vec{r})}{\rho_0}\right)$ 40×22.5^2 fm³ $p_c = \frac{\hbar\pi}{\Lambda r} = 500 \text{ fm/c}$ ≈ 550 minutes

Fission of ²⁴⁰Pu at excitation energy $E_x = 8.05$; 7.91; 8.08 MeV

Time= 0.000000 fm/c

TABLE I: The simulation number, the pairing parameter η , see Eq. (1), the excitation energy (E^*) of the mother ${}^{240}_{94}$ Pu₁₃₆ and of the daughter nuclei $(E^*_{H,L})$, the equivalent neutron incident energy (E_n) , the starting initial quadrupole moment, the "saddle-to-scission" time, the total kinetic energy (TKE), atomic $(A_{H,L})$, neutron $(N_{H,L})$ and proton $(Z_{H,L})$ numbers of the heavy and light fragments, and the number of neutrons (ν) , estimated using a Hauser-Feshbach approach and experimental neutron separation energies [8, 68, 69]. Units are MeV, fm² and fm/c where appropriate.

S#	η	E^*	E_n	Q_{zz}	S-S time	TKE	A_H	A_L	N_H	N_L	Z_H	Z_L	E_H^*	E_L^*	ν_H	$ u_L $
S 1	0.75	8.05	1.52	16,500	$14,\!419$	182	136.0	104.0	83.2	62.8	52.8	41.2	5.26	17.78	0	1.9
S2	0.5	7.91	1.38	16,500	4,360	183	133.7	106.3	82.0	64.0	51.7	42.3	9.94	11.57	1	1
S3	0	8.08	1.55	16,500	14,010	180	134.5	105.5	82.4	63.6	52.1	41.9	3.35	29.73	0	2.9
S4	0	6.17	-0.36	19,000	12,751	181	136.1	103.9	83.4	62.6	52.7	41.3	7.85	9.59	1	1

TKE = 1	77.80 -	$0.3489E_{n}$	[in MeV],
---------	---------	---------------	-----------

Nuclear data evaluation, Madland (2006)

Fission of ²⁴⁰Pu at excitation energy $E_x = 8.05$; 7.91; 8.08 MeV

Time= 0.000000 fm/c

Fission of ²⁴⁰Pu at excitation energy $E_x = 8.05$; 7.91; 8.08 MeV

Time= 0.000000 fm/c

Fission of ²⁴⁰Pu at excitation energy $E_x = 6.17$ MeV

Time= 0.000000 fm/c

Fission of ²⁴⁰Pu at excitation energy $E_x = 8.08$ MeV

Time= 0.000000 fm/c

Papers we have published so far on SLDA and TDSLDA (stars indicate papers with significant nuclear physics content):

Phys. Rev. A 91, 031602(R) (2015) * Phys. Rev. Lett. 114, 012701 (2015) Phys. Rev. Lett. 112, 025301 (2014) * arXiv:1305.6891 * Phys. Rev. Lett. 110, 241102 (2013) * Phys. Rev. C 87 051301(R) (2013) * Ann. Rev. Nucl. Part. Phys. 63, 97 (2013) * Phys. Rev. C 84, 051309(R) (2011) Phys. Rev. Lett. 108, 150401 (2012) Science, 332, 1288 (2011) J. Phys. G: Nucl. Phys. 37, 064006 (2010) Phys. Rev. Lett. 102, 085302 (2009) Phys. Rev. Lett. 101. 215301 (2008) * J.Phys. Conf. Ser. 125, 012064 (2008) arXiv:1008.3933 chapter 9 in Lect. Notes Phys. vol. 836 Phys. Rev. A 76, 040502(R) (2007) * Int. J. Mod. Phys. E 13, 147 (2004) Phys. Rev. Lett. 91, 190404 (2003) * Phys. Rev. Lett. 90, 222501 (2003) * Phys. Rev. Lett. 90, 161101 (2003) * Phys. Rev. C 65,051305(R) (2002) * Phys. Rev. Lett. 88, 042504 (2002) Plus a few other chapters in various books.