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We describe the fissioning dynamics of 240Pu from a configuration in the proximity of the outer fission
barrier to full scission and the formation of the fragments within an implementation of density functional
theory extended to superfluid systems and real-time dynamics. The fission fragments emerge with
properties similar to those determined experimentally, while the fission dynamics appears to be quite
complex, with many excited shape and pairing modes. The evolution is found to be much slower than
previously expected, and the ultimate role of the collective inertia is found to be negligible in this fully
nonadiabatic treatment of nuclear dynamics, where all collective degrees of freedom (CDOF) are included
(unlike adiabatic treatments with a small number of CDOF).
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Nuclear fission has almost reached the venerable age of
80 years [1,2], and it still lacks an understanding in terms of
a fully quantum microscopic approach. This is in sharp
contrast to the theory of superconductivity, another remark-
able quantum many-body phenomenon, which required
less than half a century from its discovery in 1911 [3] until
the unraveling of its microscopic mechanism in 1957 [4].
Bohr [5–8] realized that the impinging low-energy neutrons
on uranium targets leading to the nuclear fission proceed
through the formation of a very complex quantum state, the
compound nucleus, which has a very long lifetime. In a
compound state the initial simple wave function of the
impinging neutron is fragmented into a wave function of
the nucleonþ nucleus system with approximately one
million components, as level density suggests [9]. In this
respect this is similar to a particle in a box with a very small
opening, consistent with the long lifetime of a compound
nucleus state. Eventually, because of the interplay of the
Coulomb repulsion between the protons and the nuclear
surface tension, the nuclear shape evolves like a liquid
charged drop and the compound nucleus reaches the
scission configuration, leading predominantly to two
emerging daughter nuclei. It was a great surprise when,
in the 1960s, it was realized that the independent particle
model proved to play a major role in the fission dynamics.
At that time it became clear that the independent particle
motion of nucleons and shell effects play a remarkable role
and lead to a very complex structure of the fission barrier
[10,11] and to a potential energy surface much more
complicated than that suggested by a liquid drop model
considered until then. On its way to the scission configu-
ration a nucleus has to overcome not one, but two—the
double-humped fission barrier—and sometimes even three
potential barriers [10,11]. As in low-energy neutron
induced fission, the excitation energy of the mother nucleus

is relatively small, the compound nucleus has a very slow
shape evolution, and it was reasonable to assume that the
shape evolution is either damped or overdamped. Since the
presence of shape isomers has been unequivocally dem-
onstrated, experimentally and theoretically, the dominant
phenomenological approach to fission dynamics based on
compound nucleus ideas, liquid drop, shell corrections, and
the role of fluctuations described within Langevin and
statistical approaches [12–21] has been born.
It became clear over the years that the fermion pairing

and superfluidity play a critical role in nuclear fission,
though in a vastly different manner than in the case of
superconductivity [22,23]. Pairing correlations (either
vibrations or rotations) are ubiquitous in nuclei [24], and
they are expected to play a leading role in the nuclear shape
dynamics [22,23,25,26]. The shape evolution of nuclei
appears somewhat surprising at first sight since, typically, a
nucleus is stiffer for small deformations and rather soft for
large deformations. Hill and Wheeler [7] had the first
insight into the origin of this aspect of nuclear large
amplitude collective motion: the jumping from one diabatic
potential energy surface to another and the role of Landau-
Zener transitions. The most efficient microscopic mecha-
nism for shape changes is related to the pairing interaction.
The difficulty of making a nucleus fission in the absence of
superfluidity was illustrated within an imaginary time-
dependent Hartree-Fock approach treatment (an instanton,
in quantum field theory parlance) of the fission of 32S into
two 16O nuclei [27]. The initial and final states have an
obvious axial symmetry, with occupied single-particle m-
quantum states �1=25;�3=22;�5=21 and �1=26;�3=22

for protons and neutrons, respectively, in the mother and
daughter nuclei, where the superscript indicates the number
of particles with the corresponding m-quantum number. In
the absence of short-range pairing interactions, particularly
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effective at connecting time-reversed nucleon pair states
ðm;−mÞ with ðm0;−m0Þ, and particularly the transition
ð5=2;−5=2Þ → ð1=2;−1=2Þ in 32S, fission is possible only
if an axially broken symmetry intermediate state is allowed.
Since the late 1970s [26]—and particularly during the

last decade—an alternative approach in the theoretical
treatment of fission dynamics started gaining ground with
the implementation of the philosophy of the density func-
tional theory (DFT) [28–36] and its various modifications
[37–49]. DFT is viewed as an alternative to solving the
Schrödinger equation, in which the role of the many-body
wave function is replaced by the one-body density matrix.
DFT, however, does not provide a constructive recipe for
determining the underlying functional. Application to
nuclear physics requires a generalization of the most
successful DFT implementation: the Kohn-Sham local
density approximation (LDA) [29] to fermionic superfluid
and time-dependent phenomena—the superfluid LDA
(SLDA) and its time-dependent (TD) extension, a formal-
ism based on local mean-field and pairing potentials.
DFT is formulated by construction to appear as the
Hartree-Fock or Hartree-Fock-Bogoliubov approximation
(sometimes referred to—improperly, in our opinion—as
HF or HFB), but it is, in principle, though not in practice,
exact. With the use of quantumMonte Carlo results for cold
atoms and phenomenological input for nuclear systems,
(TD)SLDA has been validated against a wide range of
experimental results [50–65].
The structure of the nuclear energy density functional

(NEDF) is still largely based on phenomenology [66], and
our approach here is based on the popular Skyrme para-
metrization SLy4 [67] and the SLDA treatment of the
pairing correlations [53]. The numerical aspects of our
approach have been described in great detail in
Refs. [58,65,68,69] and the results presented below have
been obtained by solving the TDSLDA equations for a
240Pu nucleus in a simulation box 22.52 × 40 fm3, with a
lattice constant corresponding to a relatively high momen-
tum cutoff pc ≈ 500 MeV=c, and with no spatial restric-
tions. The time step used was 0.119 fm=c for up to 120 000
time steps, using ≈1760 graphics processing units (GPUs),
for a total wall time of 550 min. The TDSLDA equations,
which amounted to ≈ 56 000 complex coupled nonlinear
TD 3D partial differential equations, were solved using a
highly efficient parallelized GPU code [62,63,65] on
Titan [70].
A 239Pu nucleus bombarded with low-energy neutrons

needs a very long time to evolve from its initial ground
state shape until it reaches the outer fission barrier. In a
constrained self-consistent calculation, we bring the nucleus
to a shape and an energy in the immediate proximity of the
outer fission barrier (at zero temperature). Starting from this
configuration, we follow the nuclear dynamics within the
TDSLDA approach until the two fragments are clearly
separated; see Fig. 1. A summary of our results is presented

in Table I and is complemented by movies of the real-time
simulations [76]. The main difference between the various
simulations is in the character of the pairing correlations.
Over theyears several distinct parametrizationsof thepairing
coupling constant(s) have been suggested [77], basically
variousmixtures of the so-called volumeand surface pairing,
as compelling ab initio information is still lacking. The
isospin symmetric density-dependent pairing coupling con-
stant is geffðrÞ ¼ gf1 − η½ρðrÞ=ρ0�g; where ρðrÞ and ρ0 are
the total and saturation nuclear densities. The extensive
phenomenological information gathered so far for ground
states of nuclei fails to point to a well-defined value of the
parameter η [53,77]. The dynamics, as we demonstrate,
depends strongly and nonmonotonically on the parameter η.
Fission dynamics requires a very efficientmechanism for the
shape evolution, which is directly linked to transitions of the
type ðm;−mÞ → ðm0;−m0Þ, forwhich thepairing interaction
is particularly effective [22,23,25]. The frozen occupation
probabilities approximation [41,42] used in the past and a
naive TDHF treatment [43] fail in this respect, as they do not
allow the needed transitions, from levels with highm values
in the mother nucleus to levels with low m values in the
daughter nuclei, to take place [25], and a nucleus very
often fails to fission or requires an inordinate amount of push

FIG. 1. The left column shows the neutron (proton) densities in
the top (bottom) half of each frame. In the right column the
pairing field for the neutron (proton) systems are displayed in the
top (bottom) of each frame. The time difference between frames
is Δt ¼ 1600 fm=c. The range of values is (0, 0.1) and
ð0; 0.07Þ fm−3 for ρn;pðrÞ and (0, 0.9) and (0, 0.7) MeV for
Δn;pðrÞ, respectively, with color bars on the left (right) for
densities (pairing gaps), and with upper (lower) ones for neutrons
(protons). These frames are equally spaced in time for the case of
the simulation S1; see Table I.
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[37,40–42]. In some cases the axial symmetry beyond the
outer barrier could be broken (see, e.g., Ref. [39]), and a
suitable valley exists in the potential energy surface and
fission can proceed. The approximate treatment of the
pairing correlations within the TDBCS approximation
[18,39] violates the continuity equation [78]. There is no
question that a smooth transfer of the nuclearmatter from the
waist of the mother nucleus, which allows the nucleus to
elongate and eventually to lead to the neck formation, is
expected for any approach to fission dynamics. The
TDSLDA is, so far, the only theoretical framework with a
NEDF that satisfies all expected symmetries and theoretical
constraints. At the same time, in SLDA solutions all
symmetries can be broken, a situation similar to ferromag-
nets described by the Heisenberg Hamiltonian. In TDSLDA
the evolution is, by default, smooth, and various contribu-
tions to the energy (often referred to in the literature as
collective potential and kinetic energies) are always con-
tinuous as a function of the nuclear shape, unlike traditional
approaches [46,49]. TDSLDA eschews the need to evaluate
the inertia tensor, to introduce or guess the collective
coordinates, or to invoke the adiabaticity of the evolution.
The pairing field often reaches very small values, a situation
also encountered in the study of the Higgs pairing mode
[79,80] in other systems [57,81–84], when the pairing field
can attain even exponentially small values for longperiodsof
time, only to revive again. As in the case of density
oscillations [64,65] (studied within the random phase
amplitude limit), TDSLDA correctly describes the pairing
vibrations in the case of a vanishing static pairing.
In all of the simulations performed by us so far, the heavy

fragment has emerged basically spherical and with rather
small excitation energy, while the light fragment is highly
deformed and also has a higher excitation energy.
Consequently, the excitation energy of the fragments does
not follow from thermal equilibrium, as often has been
assumed in the past in phenomenological studies (see the
discussion in Refs. [85–87]), or as a Langevin approach
(which implies thermal equilibrium throughout the entire
system) might suggest. The heavy fragment has neutron
and proton numbers very close to magic numbers and,
naturally, a very weak pairing field as well. The large

deformation energy of the light fragment is eventually
converted into a significant amount of internal excitation
energy, which is released by neutron emission and gamma
rays. The fact that the excitation energy of the heavy
fragment is significantly smaller than the excitation energy
of the light fragment correlates with the fact that the heavy
fragment emerges as an almost magic nucleus with strong
shell effects [85–87]. We did not observe any significant
neutron emission at scission, a conclusion confirmed by the
density profiles and the current flow we observe; see the
Supplemental Material for movies [76]. The total kinetic
energy (TKE) of the fission fragments is determined
predominantly by the elongation of the fission system at
scission [88]. In order to extract the TKE and the fragment
excitation energies, we have assumed that, after scission,
the internal excitation energies do not change. When
compared to the existing evaluated experimental data
[71] in the case of 239Puðn; fÞ, the systematics, which
follow the trend TKE ¼ 177.80 − 0.3489En ≈ 177.3 for
S1–S3 (in MeV), we note that our estimated TKEs slightly
overestimate the observed values by, at most, ≈3%; see
Table I. This is indicative of the fact that, in our simulations,
the system scissions a bit too early. The fission fragment
mass and charge can be extracted from the data [72] (which
have a resolution of about four to five mass units); see
Table I. The evaluated average number of emitted neutrons
[71] in this case is close to 3 (see Ref. [89]), which is higher
than the values we estimate; see Table I. If the system
would scission at a larger elongation, the light fragment
would emerge with more excitation energy and the number
of emitted neutrons would be larger.
Apart from the fact that a heavy nucleus fissions without

any restrictions on the nuclear shape, TDSLDA supplies an
additional big surprise. The time it takes a nucleus to
descend from the saddle to the scission configuration is
very long. A hydrodynamic approach [66] and the
Langevin dynamics with various types of viscosities
[12,26], along with approximate TD mean-field treatments
lead to time scales of about 1000 fm=c or less. TDSLDA
however, which incorporates naturally one-body dissipa-
tion, both wall and window mechanisms [90,91], points to
time scales an order of magnitude larger than predicted in

TABLE I. The simulation number, the pairing parameter η, the excitation energy (E�) of 240
94 Pu146 and of the fission fragments

[E�
H;L ¼ EH;LðtSSÞ − EgsðNH;L; ZH;LÞ], the equivalent neutron incident energy (En), the scaled initial mass moments q20ð0Þ and q30ð0Þ,

the “saddle-to-scission” time tSS, TKE evaluated as in Ref. [71], TKE, atomic (Asyst
L ), neutron (Nsyst

L ), and proton (Zsyst
L ) extracted from

data [72] using Wahl’s charge systematics [73] and the corresponding numbers obtained in simulations, and the number of postscission
neutrons for the heavy and light fragments ðνH;LÞ, estimated using a Hauser-Feshbach approach and experimental neutron separation
energies [8,74,75]. Units are in MeV, fm2, fm3, fm=c as appropriate.

S no. η E� En qzz qzzz tSS TKEsyst TKE Asyst
L AL Nsyst

L NL Zsyst
L ZL E�

H E�
L νH νL

S1 0.75 8.05 1.52 1.78 −0.742 14 419 177.27 182 100.55 104.0 61.10 62.8 39.45 41.2 5.26 17.78 0 1.9
S2 0.5 7.91 1.38 1.78 −0.737 4360 177.32 183 100.56 106.3 60.78 64.0 39.78 42.3 9.94 11.57 1 1
S3 0 8.08 1.55 1.78 −0.737 14 010 177.26 180 100.55 105.5 60.69 63.6 39.81 41.9 3.35 29.73 0 2.9
S4 0 6.17 −0.36 2.05 −0.956 12 751 177.92 181 103.9 62.6 41.3 7.85 9.59 1 1
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the literature. The nuclear system superficially behaves like

an extremely viscous system, but the collective motion, at
the same time, is not overdamped. There is a significant
amount of collective flow, which is not dissipated and
transformed into heat. The slide of the nucleus down from
the saddle to the scission is not a monotonic one, but it is
accompanied by a significant amount of collective shape
and pairing field excitations in “transverse directions”; see
Fig. 2. The long saddle-to-scission time tSS can be
attributed in part to the weak proton pairing gap in the
starting configuration. In cases where the system starts
initially with a relatively weak pairing proton gap, during
the slide the proton pairing gap shows large temporal and
spatial fluctuations [76]. In contradistinction to the
TDHFþ BCS approximation, spatial fluctuations are
absent, the phase of the pairing field can be eliminated
by a trivial gauge transformation, and fission does not
happen without a boost from configurations near the outer
saddle [39,40]. These large pairing gap fluctuations facili-
tate the shape evolution and the formation of the neck and
the eventual scission of the nucleus. The two-body dis-
sipation effects might affect these conclusions. A similar
increase of the evolution time was demonstrated by
Caldeira and Leggett [92,93], when coupling a simple
quantum system with a “thermal bath”; see also
Refs. [94,95] and the “bearing balls” video (the Drude
model for electrons) [76]. Phenomenologically [14,15], the
fission fragment distribution is reconstructed from (over-)
damped dynamics and thus on very long time scales, which,
superficially, is in agreement with a time averaging of our
microscopic dynamics and with the apparent significantly

reduced role of collective inertia in the dynamics in a
reduced collective space.
We have explored only axial symmetric configurations

with broken left-right or parity symmetry (qzzz ≠ 0). Most
authors agree that axial symmetry is hardly ever broken
beyond the outer saddle. The system has spontaneously
chosen such an initial deformation after we have imposed a
slight pinch slightly off the middle of the mother nucleus.
There is collective matter flow from one side to the other of
the nucleus before scission, and the system dynamically
determines its final fragment sizes; see the movie in the
Supplemental Material [76]. This is indicative of the char-
acter of the potential energy surface,which shows softness in
this collective variable, which was observed in previous
studies [44–47]. The axial symmetry can be broken either
spontaneously initially (not observed by us) or by quantum
fluctuations (not studied here) during the evolution.
The quality of the agreement with experimental observa-

tions surprised us in its accuracy since we have made no
effort to reproduce anymeasured data.We havemerely used
a rather randomly chosen NEDF, with rather decent proper-
ties, but far from perfect. However, since thisNEDF encodes
gross nuclear properties reasonably well, it does not come as
a great surprise that gross properties of nuclear fission
emerge so close to what one might have hoped for.
Clearly, the details of the energy density functional at large
deformations and the details of the pairing interaction will
have to be pinpointedwith greater accuracy. Induced nuclear
fission presents us with a unique opportunity, in this respect,
as in the study of the ground and weakly excited states, and
even in the case of spontaneous fission [46], one can explore
only rather small nuclear deformations. The nature of the
dynamics of a fissioning nucleus appears to be quite
surprising—the overall rolling down the hill is much slower
than was ever expected—but not because of a particularly
large viscosity. Rather, a large number of collective degrees
of freedom (CDOF) are excited, both shape and pairing
modes, which is clearly demonstrated by the real-time
movies in theSupplementalMaterial [76]. The strong energy
exchange between a large number of CDOF appears to be at
the root of the slowness of this unexpected dynamics. There
are experimental indications that fission times can be
extremely long [96–98].
Even though, in this first studyof itskind,wedidnotobtain

perfect agreement with the experiment, our results clearly
demonstrate that rather complex calculations of the real-time
fission dynamics without any restrictions are feasible, and
further improvements in the quality of the NEDF—and
especially in its dynamicproperties—can lead toa theoretical
microscopic framework with great predictive power where
experiments are not feasible, particularly in astrophysical
environments. Extension of the present approach to two-
body observables (fission fragment mass, charge, angular
momenta, and excitation energy distribution widths) are
rather straightforward to implement [99–101], and more
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FIG. 2. The time dependence of spatially averaged jΔn;pðr; tÞj
for S2 (mixed pairing) and S3 (volume pairing) in the upper panel
and, in the lower panel, the scaled mass moments
q20ðtÞ ¼

R
d3ð3z2 − r2Þ=A5=3ρðr; tÞ, q30ðtÞ ¼

R
d3zð5z2 − 3r2Þ

ρðr; tÞ=A2, q40ðtÞ ¼
R
d3ð35z4 − 30z2r2 þ 3r4Þρðr; tÞ=A7=3, with

solid, dotted, and dashed lines, respectively, for S1 (red) and S3
(blue) ½fmL�; see Table I.
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detailed information could eventually be inferred by intro-
ducing the stochasticity of the mean field [102,103].
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