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Abstract

A new systematic shift of the single-particle spectra of nuclei under the Coulomb
interaction is considered. This shift results from the interplay between the Coulomb
and strong interactions, which is greatly enhanced in the nuclear surface region. This
shift affects the position of the calculated proton drip line decreasing the maximal Z
of a nucleus near the drip line by several units. The same mechanism is responsible
for significant corrections to the mass difference of the mirror nuclei and to the
effective proton mass.
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The main contribution of the Coulomb interaction in nuclei is given by the Hartree,
which is proportional to Z?. Here Z is the number of protons of a nucleus. However,
there exists a number of more subtle contributions to the Coulomb energy related to the
interplay between the Coulomb interaction and nuclear forces. To illustrate it one can
use the well known Nolen—Schiffer anomaly in the binding energy differences of mirror
nuclei, which attracted so much interest during the last 3 decades [1]. Recently it was
shown that there is a new many-body mechanism, which leads to an enhancement of
the contribution of the Coulomb interaction in the nuclear surface region and which thus
leads to a binding energy term with a Z?/*~dependence [2]. The main goal of this Letter
is to study the impact of this mechanism on the location of the proton drip line, the
single—particle proton excitations and the proton effective mass.

Within the density functional approach the ground state energy E of nucleus is given
by

5 = Folpy(r), pu(r)] + Felpp(r), pu(r)]. (1)

Here Fj is the main part of the functional, which is related to isospin symmetry conserving
forces, and thus symmetric under the interchange p,(r) ¢ p,(r). F.is due to the Coulomb
interaction and also other isospin symmetry breaking forces. We shall focus here on
Coulomb interaction and leave for a future analysis other easy to include terms, such as
the contribution due to the proton—neutron mass difference and the contribution of the
charge symmetry breaking (CSB) forces [3]. The densities,

pp(r) = Zl:nélsbé(r)lz; pn(r) = Zl:nil¢i(r)|2, (2)



are the single particles proton and neutron densities, where n;,qbé and n! ¢l stand for
the corresponding occupation number probabilities and the single—particle wave functions.
The popular Skyrme functional [4] can be considered as a possible realization of Fy, while
F. is usually taken as
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Here the first term on r.h.s is the Hartree term, the second is the Fock term which in the
Slater approximation becomes

|I'1 —I'2| 2

(frac37r / ,03/4

Xg(rl,rz,w) is the linear response function of the non—interacting protons, moving in
a self-consistent field. However Eq. (2) is incorrect since it omits the contribution
Feo[py(r)] due to the the interplay between the Coulomb interaction and the effective
strong nucleon—nucleon interaction, which we shall denote Ry, (r1,r2). In the first order
in the Coulomb interaction, the Coulomb correlation energy F<" is given by [2]
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where x,p(r1, T2, w) is the linear proton—proton response function. The main contribution
to F"" is due to virtual isoscalar surface collective excitations. In homogeneous nuclear
matter the Coulomb correlation energy given by Eq. (4) is rather small and there is no
enhancement. However, for semi-infinite matter or finite nuclei one can show that the
contribution to F" arising from the surface region dominates over the corresponding
surface contribution F, given by Eq. (3) alone. One can thus conclude that F" has a
surface character mainly [2].

Let us turn now to the calculations of the proton single—particle energy shifts 5 , due
to the presence of the Coulomb correlation energy terms in the nuclear energy functlonal.

Using Landau equation [5]
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and Eqs. (4,5) one can show that the proton single-particle energy shift Ael is given by
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Here the variational derivative 5)(2/571; has the simple functional form

=[G (rira, 0+ ) + G (e, —w + 5| S () (r2), ()

with G?(ry,re,w) being the Green function of Z noninteracting protons moving in the
nuclear mean field potential. 5pr/5n; can be obtained by solving the matrix equation
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with Y, being given by
e
The effective interaction is chosen of the separable form
dVi(ry) dV,,(r
R(I'l, r2)lm = A il(r 1) d7(“ 2)5(Q1 — Qz), (10)

where Vj(r) is the proton (neutron) single—particle potential. A is determined from the
condition that the dipole linear response has a pole at w = 0. This type of residual
interaction has been widely studied [4, 8] and leads to a satisfactory description of nuclear
collective modes. The calculated Aas; are of the order (0.2—0.3)MeV in both medium and
heavy nuclei region, which is thus of the same magnitude as the Nolen—Schiffer anomaly.
It is useful to check these results using simple approximations. The Coulomb correlation
energy, given by Eq. (4), can be expressed within the local density approximation as a
local density functional

F ] = [ pple)ec(p(r)dr, (11)

Here e, is the Coulomb correlation energy per proton. The single—particle shift Aasé is

then given by
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In Ref. [2] we have shown that he correlation energy e, has a very prominent positive
peak in the surface region. For simple numerical estimates of Ae,,, when the single particle
energy ¢, is close to the Fermi level, one can parametrize the Coulomb correlation energy
per proton simply by e.(r) = =B adF(r)/dr, and use also p,(r) = poF'(r), with po = 0.08

fm ™2 the proton number density in the central part of nucleus, and F' a Fermi function

1
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F(r) (13)
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Here R is the nuclear radius, the diffuseness a is chosen to be 0.6 fm, and the coefficient
0~ 3MeV. After a few simple manipulations of the Fermi integrals one gets for middle

and heavy nuclei
Ba

AN &= (0.3 —0.4)MeV. (14)

Since corrections of the order of 3(a/R)?* were dropped, Eq. (14) slightly overestimates
the magnitude of the shift. A systematic upward shift of this magnitude of the last oc-
cupied proton level in a nucleus near the proton drip line equivalent to a shift of the
calculated proton drip line in the direction of decreasing Z by a few units of charge,
see Ref. [9]. One can see from Eq. (14) that the contribution of the Coulomb correla-
tion energy essentially compensates the corresponding contribution arising from the Fock
term. A simple approximation scheme can in principle be adopted by dropping both the
Fock term and F", taking into account only the Hartree term. Such a procedure was
postulated in Refs. [6, 7] where on overall high accuracy fit to nuclear masses and radii
was sought. Such a simple approach however has little theoretical underpinning so far,
since the Coulomb correlation energy has mostly a surface character, while the Coulomb
exchange contribution has a predominantly volume origin.

Let us consider now the variation of the proton effective mass AM due to the Coulomb
interaction. We shall derive the corresponding formula for the of the case of homogeneous
nuclear matter, but specialize the final analysis in the nuclear surface region, within the
framework of the local density approximation. In homogeneous nuclear matter the single—
particle energy depends on momentum p, and as it follows from Eq. (5) the effective mass
is given by [5]

1 1 dey(p)
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Here pr is the Fermi momentum. To get the variation AM of the effective mass M™ one
can use Eq. (15), replacing €,(p) by the shift of the single particle energy defined by the
Coulomb interaction. As a result, one gets [10]

AM e d / dxo(q,1w) 1 dqdw
M+*(M*+AM) — ppdp dn, (1 — R(q,1w)xo(q,iw))? (27)3
Here M™ is the proton effective mass in the absence of the Coulomb interaction. We shall

consider the variation AM when system under consideration is located in the vicinity of
the point where its bulk incompressibility tends to zero. This resembles the conditions

(16)
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occurring around the nuclear surface [2]. One obtains then that
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Upon substituting Eq. (17) into Eq. (16) one arrives at the following result

1 1 2 1 d
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In Eq. (18) we have adopted the shorthand notation ¢(x) = pry/2(1 — x). At the point the
incompressibility vanishes the denominator (1 — Rxo) vanishes as well when @ = 1 (¢ = 0)
and the integral (18) diverges and thus the effective mass vanishes M* + AM — 0. NB,
such a divergence appears only because of the presence of a surface in the naive local
density approximation [2]. This result indicates that the Coulomb correlation energy
in a self sustaining nuclear system affects the proton effective mass M* in a nontrivial
manner. In finite nuclei this divergence, which is related to the variation of the density at
the surface, is smoothed out [2]. The net result is that the proton effective mass becomes
smaller then the neutron effective mass and smaller than the effective mass evaluated in
the absence of the Coulomb correlation energy. The relevance of such an effect on the
properties of a high accuracy nuclear density functional was discussed in Ref. [7]. Here
we give a theoretical ground for the origin of this effect.

In summary, we have considered the calculations of the single particle spectra in nuclei
and the shift of the single particle levels under the influence of the Coulomb correlation
energy. A major part of the Nolen—Schiffer anomaly is removed by this shift. At the
same time the calculated drip line is moved in the direction of decreasing Z. We have also
shown that the Coulomb correlation energy should be taken into account when computing
correction to the effective proton mass. We did not include in our analysis however the
CSB forces, which we left to a future analysis. They can lead to both volume and surface
energy terms in the nuclear density functional.
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