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Exotic stochastic processes are shown to emerge in the
quantum evolution of complex systems� Using in�uence func	
tion techniques� we consider the dynamics of a system coupled
to a chaotic subsystem described through random matrix the	
ory� We 
nd that the reduced density matrix can display dy	
namics given by L�evy stable laws� The classical limit of these
dynamics can be related to fractional kinetic equations� In
particular we derive a fractional extension of Kramers equa	
tion�
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Whether one studies deterministic Hamiltonian or dis�
sipative systems� one �nds that transport in chaotic sys�
tems often resembles some type of stochastic process�
The dynamics of such systems leads to a rich spectrum of
behaviors� from enhanced di�usion such as tracer di�u�
sion in �ows and turbulent di�usion in the atmosphere�
to dispersive di�usion ���� Much e�ort has been spent
in recent years to understand such classical stochastic
processes in chaotic systems� leading to the development
of approaches ranging from fractional kinetic equations
�	
��� L�evy �ights �
� to random walks in random envi�
ronments �
��� and stochastic webs ���� One of the com�
mon features to all of these is the use of L�evy stable
laws ���� It was shown by L�evy ���� in studies of exten�
sion of the central limit theorem� that a continuous class
of non�gaussian processes satisfy the same fundamental
equation that gives rise to the theory of gaussian pro�
cesses� namely the Chapman�Kolmogorov equation for
the conditional probability P �q� q�� t��

P �q � q�� t� �

Z
dq�P �q� q�� t� t��P �q�� q�� t��� ���

�Translational invariance assumed for simplicity�� The
standard solution� P �q � q�� t� � exp���q � q�����Dt��
gives rise to the gaussian processes and the usual form
of the Fokker�Planck equation� The general solutions of
L�evy provide a way to generalize Brownian motion�

The non�gaussian processes which satisfy ��� are called
L�evy stable laws� and have the form�

P �q� t� � LA��q� �
�

	�

Z
exp fikq �Ajkj�g dk �	�

where � � � � 	� with � � 	 corresponding to Gaus�
sian processes� The L�evy stable laws satisfy the scaling

relation�

LA��q� � A����L�
��qA����� ���

where forA � � we drop the superscript� L�
��x� � L��x��

For � � 	� these distributions are characterized by in��
nite second moments� Never�the�less� these non�gaussian
processes can be related to anomalous transport in a va�
riety of physical systems ���� On the other hand� chaotic
systems are known to undergo anomalous di�usion and
transport� We have recently shown that turbulent dif�
fusion can arise in complex quantum systems� Here we
�nd that the general form of such quantum chaotic back�
grounds can give rise to quantum evolution characterized
by L�evy stable laws� Further� we can now connect� in the
semi�classical limit� such processes to fractional kinetic
theory� which was initially introduced as a phenomeno�
logical approach to classical anomalous di�usion�

We would like to study the problem of a particle cou�
pled to a chaotic environment� quantum mechanically�
It has been realized in recent years that the quantum
counterpart of chaos is random matrix theory� For sys�
tems with time�reversal symmetry� the random matrices
are real�symmetric� In this letter we will examine the
class of quantum dynamic processes which can be real�
ized through the interaction of a particle with a random
matrix background� In contrast to the Caldeira�Leggett
approach ����� we assume from the outset that the back�
ground is chaotic� and not necessarily thermal� We de�
note the coordinates of the background by �x� p� and that
of the test particle by �X�P �� The Hamiltonian for the
background plus interaction is taken to have the following
form�

Hb � h��x� p� � h��X�x� p�� ���

In the basis of �many�body� eigenstates of h�� h� j ni �
�n j ni �n � �� ���� N �� we de�ne the matrix of Hb as

�Hb�ij � �i�ij � �h��X��ij � �
�

The average level density is ���� � �� exp�	��� For a
background with constant average level density� 	 � ��
while for a general many body system� 	 
 �� The
chaotic properties of the interaction of the background
with the particle are incorporated into the correlation
function �second cumulant��

h�h��X��ij �h��Y ��kli � Gij�X�Y ��ijkl� ���

�



Here �ijkl � ��ik�jl��il�jk�� and all other cumulants van�
ish� In our analysis� the integration over the chaotic part�
given by h��X�� is de�ned through a gaussian measure
for parametric random matrices� which can be de�ned as

P �h��X��dh� � Dh��ij�X� exp

�
��

	

Z
dXdY ���

Tr
�
h��X�G���X�Y ��h��Y �

��
�

In that case� if we assume a translationally invariant
measure� G���X�Y � � G���X � Y �� then the only non�
vanishing cumulant is the second moment given in Eq�
���� The character of the interaction of the background
with the test particle is incorporated into the correlation
function G�X � Y �� We use the form ��	�����

Gij�X� �
��

	�
p
���i����j �

exp

�
� ��i � �j�

�

	���

�
G

�
X

X�

�
�

���

This describes a parametric� banded� random matrix
where the strength of matrix elements decreases with in�
creasing level density� Here G�x� � G��x� � G��x� � ��
G��� � �� and the spreading width ��� �� �linked with
the e�ective band width N� � ������� and correlation
length X� are characteristic of the background�

In order for the measure ��� to be positive de�nite� it
has been shown that G must be a positive de�nite func�
tion� and consequently� can decorrelate no faster than
Gaussian �����

G�X� � �� jXj� � � � � � � � ��� 	�� ���

For � 
 	� the argument in the exponent can change
sign� and the measure ��� becomes unbounded ����� As
the position X of the slow particle changes� the energy
levels En of �h��X��ij change� Using the above measure�
the average �uctuations are

h��En�X���i �
�N

��
�X� � D��X

�� ����

The energy�spacing �uctuations have a behavior which is
similar to a L�evy process� except on short distance scales�
characterized by the di�usion constant D�� The charac�
ter of these �uctuations in the eigenvalues En� indicated
by �� will be seen to be related L�evy stable laws which
describe the time evolution of the density matrix for a
particle evolving in this chaotic bath�

To develop the dynamical evolution of a free particle
evolving in the presence of a chaotic background� we take
the Hamiltonian of the form�

Hij�X�P � � �ij�
P �

	M
� U �X�� � Hb�ij�X�� ����

The correlated� random�matrix bath can be integrated
out in an in�uence functional formalism ��	�� This has

recently been done up to o�	�� ����� For our purposes�
the o�	� action is su�cient� In this case the e�ective
equation for the density matrix of the test particle has
the form�

i�h�t��X�Y� t� �

�
P �
X

	M
� P �

Y

	M
� U �X� � U �Y � ��	�

� 	���h

�X�M
G�

�
X � Y

X�

�
�PX � PY �

�i��

�
G

�
X � Y

X�

�
� �

��
��X�Y� t�

where G��X� above represents ��jXj���� Consider �rst
a test�particle interacting with a background with con�
stant average level density � U �X� � � and 	 � ��� This
evolution equation can be solved by passing to the coor�
dinates r � �X �X���	� s � X �X�� In these variables�
the density matrix has the form�

��r� s� t� �

Z
dr�

Z
dk

	��h
���r

�� s� kt

m
� exp

�
ik�r � r��

�h

�
��M

�hk

Z s

s�kt�M

ds��G�s��X��� ��

	
����

An initial wavepacket� 
��X� �
exp��X��������	�������� provides an initial density ma�

trix ���X�X
�� � ���

p
	���� exp����r� � s��������

For the di�usive dynamics of the test particle� we are
interested in the diagonal component of the density ma�
trix ��X�X� t� � ��r� s � �� t� �

��r� �� t� �

Z Z
dr�dk

	��h
�� �r���kt�M � exp

�
ik�r � r��

�h

�
Z �

�kt�M

ds�
M��

k�h





 s�X�
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Z
dk

	��h
exp

�
�k�

�
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	�h�
�

t�

�M��

�

� ��t���

��� ���h�MX���
jkj� � ik

r

�h

�
� ��
�

��X�X� t� is nothing more than the spatial probability
distribution P �X� t� for the process� We can now express
it in terms of a convolution of L�evy stable laws�

��X�X� t� �

Z
dX�La�t�� �X��Lb�t�� �X �X�� ����

where

a�t� �
��

��� ���h

�
�h

MX�

��

t��� ����

b�t� �
��

	
�

�h�

�M���
t� ����

As both functions in the integrand of Eq� ���� are pos�
itive de�nite� the spatial probability P �X� t� is also pos�
itive de�nite� Notice that the restriction of � � � � 	�

	



which came from the short
distance statistical correla�
tions and the requirement of a positive de�nite statistical
measure� is also the necessary requirement on the L�evy
stable law to keep the resulting time evolution positive
de�nite� Hence the character of the short distance �uctu�
ations is directly responsible for the long
time behavior
of the quantum system�

Consider now the short
time and long
time behavior
of the dynamics� For � � � � 	� in the limit of long times�
we expect the t��� term to dominate over t� in ��
�� so
that the density asymptotically approaches a L�evy stable
law�

��X�X� t� �� a�t�����L�
�
a�t�����X

�
� ����

while for very short times� the Gaussian process is the
dominant behavior�

��X�X� t� ��
p

	

�
L�


p
	

�
X

�
�	��

So while the general solution is convolution� one can see
that the quantum dynamics can exhibit a crossover from
Gaussian di�usion to a L�evy stable law� The scaling
properties of the stable laws do not have any contradic�
tion with quantum mechanics� the solution is only ap�
proximate� In the exact convolution� the Gaussian L�

regulates the large k� or short distance� behavior of the
distribution in the long time limit� Speci�cally� the jkj�
term dominates in the long time limit only for momenta
k � kc where kc � �a�t��b�t���������� For the special case
of � � 	� the result is Gaussian� but the dynamics can be
anomalous� For a non�zero coupling to the background�
one can have turbulent�like di�usion� where the quantum
expectation value behaves as

�
X�

� � t� ����� When the
level density of the background is not constant� 	 
 �� it
has been recently found that one can recover Brownian
di�usion ����� For general �� and 	 
 �� however� the
results are not yet known�

For the range � � � � �� the long
time behavior is
essentially gaussian� At short
times� the dynamics is
in�uenced by L�� and there is a cross�over from short
time stable law dynamics to normal Gaussian expansion
of the wavepacket� Again the shortest length scales are
regulated by the initial wavepacket�

E�orts to understand unusual stochastic behaviors of
dynamical systems has led to the development of exten�
sions of the Fokker�Planck �FP� equation �	
��� These are
phenomenological fractional kinetic equations �restricted
to one dimension� in which certain derivatives are re�
placed by derivatives of �fractional order ����� Such ap�
proaches have also found applications in a wide range of
problems from turbulence to di�usion in porous or vis�
coelastic media ��
�� We can now explore the type of
stochastic process which emerges in the classical limit of
our quantum L�evy process� and the connection to multi�
dimensional fractional kinetic theory�

A typical type of phenomenological fractional FP equa�
tion has the form

��P �Q� t�

�t�
�

��

���Q��
�A�Q�P �Q� t�� �	��

�
�

	

���

���Q���
�B�Q�P �Q� t�� �

where � � � � � in Ref� ���� � � � in Ref� ��� and
	 � � � � in Ref� �	�� Here the symbol ����x� and so
forth represent the Riemann�Liouville fractional deriva�
tive ����� except for Ref� �	�� where it represents the
Fourier transform of �k�� This equation� while formally
constructed� is phenomenological� It is de�ned to repro�
duce anomalous di�usion through scaling formulas such
as Q� � t� � where � is a function of 	� �� �� A few points
should be made here� Generally� the coe�cients A and
B are de�ned as limits whose existence is postulated but
not known� Further� either the form of the fractional
derivatives is taken to provide this scaling law� or power
law noise is chosen to obtain them� Such dynamics can
then be related to L�evy processes ���� Finally� the ex�
tension of these equations to phase space becomes tenu�
ous� since it is not clear how to include momentum� Not
only is it unclear if one should take fractional derivatives
with respect to coordinates� momenta or both� but the
existence of the corresponding coe�cients A� B���� is un�
known� Through our transport equation� we can provide
a microscopic interpretation of these coe�cients as well
as a systematic manner to construct a fractional kinetic
equation in phase space whose quantum limit results in
L�evy processes�

To obtain a classical transport equation� we construct
the Wigner transform f�Q�P� t� of the density matrix
��X�Y� t� as

f�Q�P� t� �
�

	��h

Z
dR exp

�
� iPR

�h

�
�

�
Q�

R

	
� Q� R

	
� t

�
�

�		�

Applying this to our evolution equation� taking the lead�
ing order terms in �h� we �nd

�f

�t
�

�

	i��h�

Z
dR exp

�
� iPR

�h

��
� �h�

	M
�Q�R �	��

�U
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This leads naturally to the Reisz fractional integro�
di�erential operator� This operator� applied to a function
f�P �� is de�ned as ����

���P ����f � F��jXj�Ff� �	��

�



where �P is the Laplacian �in our case with respect to
the momentumP �� and F represents a Fourier transform�
�This operator is distinct from that proposed in �	� which
did not have the absolute value� and from ��� which uses
the Riemann
Liouville form of this operator� The Reisz
operator is de�ned as a fractional integral for Re� �� and
as a fractional derivative for Re� 
� through analytic
continuation�� It is convenient to de�ne the operator
D�
P � ��i��h�����P ����� since D�

P �Pf � � ��Pf���P
and D�

P �f � � ��f��P �� Then the classical limit of our
quantum L�evy process gives rise to a fractional extension
of Kramers equation�

�f�Q�P� t�

�t
�

P

M

�f�Q�P� t�

�Q
� �U �Q�

�Q

�f�Q�P� t�

�P
�	
�

� ��

�
D���
P �Pf�Q�P� t��� 	TM

��h�
�i�h��D�

P �f�Q�P� t��

�
�

where T � ��	 is the temperature� the velocity is V �
!Q � P�M � and the generalized friction coe�cient is given

by�

�� �
	���h�

	MX�
�

� �	��

For � � 	 we recover Kramers equation ����� What we
see is that it is not the coordinates which acquire the
fractional character� as usually assumed� but the mo�
menta� Because the coupling to the background is not
momentum dependent� the correlation function G�X� re�
sults only in fractional derivatives with respect to mo�
menta� This can be traced back to the nature of the
chaotic correlations in Eq� ��	�� Further� these processes�
related to L�evy stable laws� do not require the introduc�
tion of fractional time derivatives� We note here that our
transport theory has a consistent classical limit for all of
these transport coe�cients only when they remain �nite
as �h � �� This requires in turn that the parameters of
our theory cannot remain constant as �h� �� if we are to
recover a well de�ned classical transport� Finally� we ob�
serve that this approach provides �nite coe�cients DQQ�
DPP � DQP and so forth �eg A� B����� for a fractional
kinetic equation in phase space�

We have shown that the quantum evolution of a
wavepacket in a chaotic environment can lead to reduced
density matrices which behave as L�evy stable laws� and
are regulated on short distances� The short distance en�
ergy �uctuations of the background� which are character�
ized by a parameter � � ��� 	�� are found to be precisely
related to the quantum time evolution with a L�evy stable
law of the same character �� For � � 	 one has gaussian
processes which can display normal to turbulent�like dif�
fusion or even Brownian di�usion �	 
 ��� while for � � �
one has the dynamics of the Dyson process� The general
quantum evolution of a wavepacket displays a cross�over

between Gaussian and L�evy dynamics� In passing to the
classical limit of this behavior� we �nd that the dynamical
evolution results in a fractional kinetic equation� which is
a generalization of Kramers equation� For � � 	 Kramers
theory is recovered� This approach provides a means to
develop fractional kinetic theory in more than one dimen�
sion� since the expansion coe�cients are determined from
the microscopic theory� It also provides the possibility to
explore the connections between quantum and classical
transport in chaotic systems� as well as the links between
chaos� quantum statistical �uctuations� L�evy stable laws
and classical fractional dynamics�
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