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We present a theory for the dynamical evolution of a quantum system coupled
to a complex many	body intrinsic system�environment� By modelling the intrin�
sic many	body system with parametric random matrices� we study the types of
e�ective stochastic models which emerge from random matrix theory� Using the
Feynman	Vernon path integral formalism� we derive the in�uence functional and
obtain either analytical or numerical solutions for the time evolution of the entire
quantum system� The form of our in�uence functional is qualitatively di�erent
from the Caldeira	Leggett model� which leads to observable e�ects� We discuss
thoroughly the structure of the solutions for some representative cases and make
connections to well known limiting results� particularly to the Brownian motion and
the Kramers classical limit�

Quantum dissipation is a problem with such a long history and such a multitude

of results that even a cursory review will not make justice to the numerous contri�

butions of a large number of authors over several decades� see Refs� ��� �� �� �� ��

and the references therein� Here we present a short review of our continuing e�ort

to understand the character of energy �ow between the slow degrees of freedom and

the intrinsic degrees of freedom in many	body systems� Even though the whole sys�

tem is �nite and in a strict sense there is no irreversible behaviour in this case� for

all practical purposes the time evolution of the collective or slow quantum system

has the character of quantum dissipative dynamics� The central question is� can

one describe the dynamical behaviour of the simple system using for example an

equation of the form

M
d�X

dt�
� �

dU�X�

dX
�M�

dX

dt
� f�X� t� ���

as in the case of a Brownian particle� if in the absence of the interaction the Hamil�



tonian of the system is

H��X� �
P �

�M
� U�X� ���

and where � is a friction coe�cient and f�X� t� is a Langevin	like force� The force

f�X� t� can in principle depend not only on time but on position as well� and in this

way one can describe a large variety of physical situations� ranging from di�usion to

localization ���� If one were to start from a description of the entire system �reservoir

plus simple system� with a Hamiltonian

H�X�x� � H��X� �H��X�x�� ���

where H��X�x� p� describes the reservoir and its interaction with our system� under

what circumstances can one derive an equation of motion like Eq����� Moreover�

does the �uctuating force have Gaussian character or not�

We address this problem using a well known approach based on the double path

integral formulation of Feynman and Vernon ���� Our original input is in the func�

tional form of the in�uence functional� which originates from a parametric random

matrix description of the �environment�� This has been attempted earlier in Ref�

���� The functional form for the in�uence functional we determine is qualitatively

di�erent from the popular Caldeira	Leggett type derived by Feynman and Vernon

���� It comes as no surprise than that under such circumstances the dynamical evolu�

tion of a quantum dissipative system in our case has new features as well� as we shall

exemplify here� Here we restrict our attention to the Markovian limit only� In spite

of its physical limitations �high temperature limit for the intrinsic system� this limit

shows already the qualitative di�erences with the previously known approaches�

The basic assumption concerning the intrinsic states is that there are no gov�

erning constants of the motion� so that the dynamics is chaotic� This has been

seen to be the general situation in studies of many	body systems� from nuclei to

molecules� so it is reasonable to approach the modeling of these degrees of freedom

with random matrices� suitably tailored to the problem� We shall refer to X as

�shape� variables� since in large amplitude collective nuclear motion it represents

the collective coordinates which characterize the nuclear mean �eld�

The part of the total Hamiltonian Eq� ��� which depends on the intrinsic coordi�

nates H��X�x� is de�ned as a matrix� whose matrix elements depend parametrically

on the �slow� coordinate X

�H��X��ij � �h��ij � �h��X��ij� ���

h� is taken to be diagonal and de�nes the average density of states� with hkjh�jli �

�h��kl � �k�kl� We refer in the main text to these eigenstates as �typical states� of the



intrinsic system with an energy �� One can think of h� as a Hamiltonian describing

a �bath� or a �reservoir� and of h��X� as a Hamiltonian describing the interaction

between the �bath�reservoir� and the �slow� system� Whereas in statistical physics

the interaction between the thermostat and the system under consideration is as�

sumed to be negligible� we shall not make such an approximation here� As a matter

of fact� for the physically interesting situations we envision� this coupling term can

be large�

In Refs� ��� we discussed the reasons why one chooses this speci�c form of the

Hamiltonian� In the basis of the eigenstates of h�� we de�ne h��X� as a parameter

dependent� N � N real Gaussian random matrix� which is completely speci�ed by

its �rst two moments aas follows ���

�h��X��kl � �� ���

�h��X��ij�h��Y ��kl �
��ik�jl � �il�jk���
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The overline stands for statistical averages over the ensemble of random Gaussian

matrices from the Gaussian Orthogonal Ensemble �GOE�� Here G�x� � G��x� �

G��x� � �� G��� � �� and the spreading width ��� �� �linked with the e�ective

band width N� � ������� and X� are characteristic of the intrinsic system� Even

though it is not necessary� we shall consider a particular from for G�x�� namely

G�x� � exp��x�����

For an intrinsic subsystem with a large number of degrees of freedom� the average

density of states ���� � Tr��H��X�� ��� for each given shape X increases sharply

with energy� The overline denotes here a procedure for extracting the smooth part

of ���� as a function of energy� which amounts essentially to an ensemble average�

For a many Fermion system� ���� has a roughly exponential behaviour and ln ���� is

approximately proportional to the thermodynamic entropy of the intrinsic system�

which is an extensive quantity� Therefore is equivalent to stating that the intrinsic

subsystem has a large heat capacity and thus can play the role of a �reservoir��

although not necessarily ideal� In principle ���� can be X	dependent as well� but

we shall ignore this aspect here� Without an X	dependence of the average density

of states� mechanical work cannot be performed on or by the model environment we

study here� and only heat exchange is allowed�

The quantum description of our coupled system will be treated through the path

integral construction of the density matrix� According to Feynman and Vernon

���� one can write the following double path integral representation for the density



matrix of the entire system

R�X�x� Y� y� t� �
Z
dX�dY�	�X��	

��Y��
Z X�t��X

X����X�

DX�t�
Z Y �t��Y

Y ����Y�

DY �t�

� exp
�
i

 h
�S��X�t��� S��Y �t���

�

hxjTexp
�
�
i

 h

Z t

�
dt�H��X�t���

�
j
ih
jTa exp

�
i

 h

Z t

�
dt��H��Y �t����

�
jyi� ���

where T and Ta represent the time ordering and time anti	ordering operators re�

spectively� In this representation� we have used a particular form for the initial state

wave function !�X�x� � 	�X�
�x�� Other choices are equally possible� such as an

initial density matrix�

In the adiabatic approximation �in this case this amounts to treating everything

to �rst order in the inverse temperature � � ��T � one can show that the density

matrix satis�es the following Schr"odinger like equation �for similar examples see

Refs� ����
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with an arbitrary initial condition ��X�Y� �� � ���X�Y �� It can be shown that the

classical limit of this equation is well known Kramers equation ����

In the remaining part of this short review we will consider solutions to the evolu�

tion equations �#�� For certain forms of the potential� one can readily obtain explicit

solutions to the time evolution of the density matrix� while for others we solve the

evolution equation numerically see last two Refs� ����

Let us consider the case when there is a linear potential acting on the slow

variables

H��X� � �
 h�

�M
��X � FX� ���

In the limit t�� the slow system reaches a steady state characterized by a time

independent momentumdistribution and a time dependent spatial distribution� The

salient features of this solution can be more easily appreciated by considering various

cumulants� In particular the �rst and second momentum cumulants acquire the

expected thermal values�

hhpii �
�MFX�

�

��� h
�

F

�
� hhp�ii �

M

�
� MT� ���



What is notable� however� is that the momentumdistribution has higher than second

order cumulants� which increase exponentially with the order of the cumulant�

hhp�nii����n��
��n� ��$$

n

MX�
�

 h��



 h

X�

��n

� ����

hhp�n��ii � ����n����n� ��$$
F

�



 h

X�

��n��

�����

All higher than second order cumulants vanish in the strict classical limit  h � ��

These cumulants also vanish in the limit X� � �� which should be interpreted as

a weak coupling limit to the thermostat� Naively� one would have expected that

the coupling to the thermostat is controlled mainly by the magnitude of ��� As one

can easily convince oneself however� the coupling between the two systems is also

controlled by the correlation length X�� In the limit X� � � there is no energy

exchange between the two subsystems� irrespective of the value of the �coupling

constant� ��� The �rst two spatial cumulants are�

hhrii �
�FX�

�

��� h
t
F t

M�
�
h� piit

M
� hhr�ii �

�X�
�

���� h
t � �Dt� ����

The particle position grows linearly with time as expected and the average position

displays di�usion consistent with Brownian motion� which can be used to de�ne the

di�usion constant D� As with the momentum distribution� the coordinate distribu�

tion in not Gaussian� and has longer tails� One can see from the expressions for the

cumulants that if the limits

 h

X�
� ��

X�

��
� � ����

are taken� with the friction coe�cient � remaining �nite� one obtains the case of

pure classical Brownian motion� All but the �rst two cumulants for coordinate

and momenta vanish� and one is left with a Gaussian process� These limits can be

achieved also by keeping  h �nite and thus obtaining the case of a quantum Brownian

particle�

For a particle in a harmonic oscillator potential one can determine analytically

cumulants of the the momentum and spatial distributions as well� In the t � �

limit one obtains that

hhp�ii

�M
�
hhM
�r�ii

�
�

�

��
�

T

�
� ����

as one might have expected� However� as in the case of a linear potential the

momentum and spatial distributions show the presence of signi�cant higher then



second order cumulants� Except for a �trivial� overall factor� the shape of this

function is controlled by a single parameter� the �characteristic action� �M
X�
� �

which depends on the �roughness� of the coupling to the �reservoir��

The tunneling through a potential having the shape of an inverted parabo�la

can be studied by performing the formal replacement 
 � i%� in the corresponding

equations of the previous section� Kramers showed that dissipation leads to a reduc�

tion of the �ux through an inverted parabolic barrier� as the unperturbed attempt

frequency in the transition state theory should be replaced with the renormalized

one ����

%� � %� � �
�

�
�

s
%�
� �

��

�
� % ����

One basic assumption in Kramers approach was the fact that the friction coe�cient

is momentum independent� The present approach can be interpreted as a theory

with a momentum dependent friction coe�cient� which in the zero velocity limit

reduces to the classical value� For �nite velocities however� the e�ective friction

coe�cient in our approach is smaller than the one for zero velocity �see the above

approximate solution for the trajectory for the case of small friction�� One can thus

expect two e�ects� i� the e�ective or average attempt frequency in our approach

is in between the Kramers value and the value corresponding to no friction� i�e�

%� � %eff � %�& ii� the spatial density distribution is also modi�ed� Overall the

e�ect of an e�ective momentum dependent friction coe�cient it is likely to lead

to an enhancement of the tunneling probability when compared with the classical

Kramers result� It can be shown also that all cumulants increase exponentially both

with the order and with time�

We have developed a dynamical theory of simple quantum systems coupled to

complex quantum environments� where the environment is a general �chaotic� bath

of intrinsic excitations� The model Hamiltonian we introduce for the intrinsic subsys�

tem incorporates the generic properties of �nite many	body systems� This includes

an average level density of states sharply increasing with energy� the presence of

universal spectral �or random matrix� �uctuations for the intrinsic system and the

variation of these properties while changing the �shape� of the intrinsic systemmod�

eled with parametric banded random matrices� In this way� the intrinsic system is

capable to easily absorb energy due to its large heat capacity� We did not yet allow

the intrinsic system to perform mechanical work� but this feature can be readily

implemented�

The evolution equation is surprisingly easy to manipulate and in many instances

one can construct full solutions by quadratures� for cases when the corresponding



path integral can be computed only by brute force� The entire treatment is per�

formed at the quantum level� We showed on the other hand that at the classical

limit� the evolution equation reduces to the Kramers form� The quantum evolution

equation we have derived for the density matrix is not more complicated than a clas�

sical Fokker	Planck equation� However� this evolution equation describes processes

which �rst of all are quantum in nature and moreover have manifestly non	Gaussian

features� The spatial and momentum distributions are characterized by high order

cumulants� which increase exponentially with the order� As we have discussed ear�

lier ���� this is indicative of the fact that the corresponding distributions have longer

tails than previously expected�
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