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We present a theory for the dynamical evolution of a quantum system coupled
to a complex many-body intrinsic system /environment. By modelling the intrin-
sic many-body system with parametric random matrices, we study the types of
effective stochastic models which emerge from random matrix theory. Using the
Feynman—Vernon path integral formalism, we derive the influence functional and
obtain either analytical or numerical solutions for the time evolution of the entire
quantum system. The form of our influence functional is qualitatively different
from the Caldeira—Leggett model, which leads to observable effects. We discuss
thoroughly the structure of the solutions for some representative cases and make
connections to well known limiting results, particularly to the Brownian motion and
the Kramers classical limit.

Quantum dissipation is a problem with such a long history and such a multitude
of results that even a cursory review will not make justice to the numerous contri-
butions of a large number of authors over several decades, see Refs. [1, 2, 3, 4, 5]
and the references therein. Here we present a short review of our continuing effort
to understand the character of energy flow between the slow degrees of freedom and
the intrinsic degrees of freedom in many-body systems. Even though the whole sys-
tem is finite and in a strict sense there is no irreversible behaviour in this case, for
all practical purposes the time evolution of the collective or slow quantum system
has the character of quantum dissipative dynamics. The central question is: can
one describe the dynamical behaviour of the simple system using for example an

equation of the form

X dU(X) dX
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as in the case of a Brownian particle. if in the absence of the interaction the Hamil-




tonian of the system is ,
P
Hy(X) = T () 2
and where v is a friction coefficient and f(X,?) is a Langevin-like force? The force
f(X, 1) can in principle depend not only on time but on position as well, and in this
way one can describe a large variety of physical situations, ranging from diffusion to
localization [5]. If one were to start from a description of the entire system (reservoir

plus simple system) with a Hamiltonian
H(X,z) = Ho(X) + Hi(X, z), (3)

where Hy(X, x,p) describes the reservoir and its interaction with our system, under
what circumstances can one derive an equation of motion like Eq.(1)? Moreover,
does the fluctuating force have Gaussian character or not?

We address this problem using a well known approach based on the double path
integral formulation of Feynman and Vernon [1]. Our original input is in the func-
tional form of the influence functional, which originates from a parametric random
matrix description of the “environment”. This has been attempted earlier in Ref.
[3]. The functional form for the influence functional we determine is qualitatively
different from the popular Caldeira—Leggett type derived by Feynman and Vernon
[1]. It comes as no surprise than that under such circumstances the dynamical evolu-
tion of a quantum dissipative system in our case has new features as well, as we shall
exemplify here. Here we restrict our attention to the Markovian limit only. In spite
of its physical limitations (high temperature limit for the intrinsic system) this limit
shows already the qualitative differences with the previously known approaches.

The basic assumption concerning the intrinsic states is that there are no gov-
erning constants of the motion, so that the dynamics is chaotic. This has been
seen to be the general situation in studies of many—body systems, from nuclei to
molecules, so it is reasonable to approach the modeling of these degrees of freedom
with random matrices, suitably tailored to the problem. We shall refer to X as
“shape” variables, since in large amplitude collective nuclear motion it represents
the collective coordinates which characterize the nuclear mean field.

The part of the total Hamiltonian Eq. (3) which depends on the intrinsic coordi-
nates Hy(X,x) is defined as a matrix, whose matrix elements depend parametrically

on the “slow” coordinate X
[Hy(X)]ij = [holij + [h1(X)];;- (4)

ho is taken to be diagonal and defines the average density of states, with (k|ho|l) =

[hol = 1.6 We refer in the main text to these eigenstates as “tvpical states” of the



intrinsic system with an energy €. One can think of hg as a Hamiltonian describing
a “bath” or a “reservoir” and of hy(X) as a Hamiltonian describing the interaction
between the “bath/reservoir” and the “slow” system. Whereas in statistical physics
the interaction between the thermostat and the system under consideration is as-
sumed to be negligible, we shall not make such an approximation here. As a matter
of fact, for the physically interesting situations we envision, this coupling term can
be large.

In Refs. [4] we discussed the reasons why one chooses this specific form of the
Hamiltonian. In the basis of the eigenstates of hg, we define hi(X) as a parameter
dependent, N x N real Gaussian random matrix, which is completely specified by

its first two moments aas follows [3]
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The overline stands for statistical averages over the ensemble of random Gaussian
matrices from the Gaussian Orthogonal Ensemble (GOE). Here G(x) = G(—x) =
G*(z) < 1, G(0) = 1, and the spreading width T'!, xy (linked with the effective

band width Ny & kop(¢)) and Xy are characteristic of the intrinsic system. Even

though it is not necessary, we shall consider a particular from for G/(x), namely
G(z) = exp(—a?/2).

For an intrinsic subsystem with a large number of degrees of freedom, the average

density of states p(e) = Tré(Hq1(X) — ¢), for each given shape X increases sharply
with energy. The overline denotes here a procedure for extracting the smooth part
of p(e) as a function of energy, which amounts essentially to an ensemble average.
For a many Fermion system, p(¢) has a roughly exponential behaviour and In p(¢) is
approximately proportional to the thermodynamic entropy of the intrinsic system,
which is an extensive quantity. Therefore is equivalent to stating that the intrinsic
subsystem has a large heat capacity and thus can play the role of a “reservoir”,
although not necessarily ideal. In principle p(¢) can be X—dependent as well, but
we shall ignore this aspect here. Without an X—dependence of the average density
of states, mechanical work cannot be performed on or by the model environment we
study here, and only heat exchange is allowed.

The quantum description of our coupled system will be treated through the path
integral construction of the density matrix. According to Feynman and Vernon

[1], one can write the following double path integral representation for the density



matrix of the entire system

X(t)=X Y()=Y
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where T and T, represent the time ordering and time anti—ordering operators re-
spectively. In this representation, we have used a particular form for the initial state
wave function U(X,x) = ¢(X)¢(x). Other choices are equally possible, such as an
initial density matrix.

In the adiabatic approximation (in this case this amounts to treating everything
to first order in the inverse temperature 3 = 1/7T) one can show that the density

matrix satisfies the following Schrodinger like equation (for similar examples see

Refs. [2])

e (XY X_YV
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with an arbitrary initial condition p(X,Y,0) = po(X,Y). It can be shown that the
classical limit of this equation is well known Kramers equation [4].

In the remaining part of this short review we will consider solutions to the evolu-
tion equations (7). For certain forms of the potential, one can readily obtain explicit
solutions to the time evolution of the density matrix, while for others we solve the
evolution equation numerically see last two Refs. [4].

Let us consider the case when there is a linear potential acting on the slow
variables 2

HO(X):—ma)Q(—FX. (8)

In the limit £ — oo the slow system reaches a steady state characterized by a time

independent momentum distribution and a time dependent spatial distribution. The

salient features of this solution can be more easily appreciated by considering various

cumulants. In particular the first and second momentum cumulants acquire the
expected thermal values:
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What is notable, however, is that the momentum distribution has higher than second

order cumulants, which increase exponentially with the order of the cumulant:
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All higher than second order cumulants vanish in the strict classical limit A — 0.
These cumulants also vanish in the limit Xq — oo, which should be interpreted as
a weak coupling limit to the thermostat. Naively, one would have expected that
the coupling to the thermostat is controlled mainly by the magnitude of I'!. As one
can easily convince oneself however, the coupling between the two systems is also
controlled by the correlation length Xy. In the limit Xy — oo there is no energy
exchange between the two subsystems, irrespective of the value of the “coupling

constant” I't. The first two spatial cumulants are:
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The particle position grows linearly with time as expected and the average position
displays diffusion consistent with Brownian motion, which can be used to define the
diffusion constant . As with the momentum distribution, the coordinate distribu-
tion in not Gaussian, and has longer tails. One can see from the expressions for the

cumulants that if the limits

h Xo

are taken, with the friction coefficient 4 remaining finite, one obtains the case of
pure classical Brownian motion. All but the first two cumulants for coordinate
and momenta vanish, and one is left with a Gaussian process. These limits can be
achieved also by keeping h finite and thus obtaining the case of a quantum Brownian
particle.

For a particle in a harmonic oscillator potential one can determine analytically
cumulants of the the momentum and spatial distributions as well. In the { — oo

limit one obtains that

() _ (M) 1 T
oM 2 28 2 (1)

as one might have expected. However, as in the case of a linear potential the

momentum and spatial distributions show the presence of significant higher then



second order cumulants. Except for a “trivial” overall factor, the shape of this
function is controlled by a single parameter, the “characteristic action” 2MwXZ,
which depends on the “roughness” of the coupling to the “reservoir”.

The tunneling through a potential having the shape of an inverted parabo-la
can be studied by performing the formal replacement w = () in the corresponding
equations of the previous section. Kramers showed that dissipation leads to a reduc-
tion of the flux through an inverted parabolic barrier, as the unperturbed attempt

frequency in the transition state theory should be replaced with the renormalized

2
Q0—>Q+:—%—|—\/Q%—I—7I§Q (15)

One basic assumption in Kramers approach was the fact that the friction coefficient

one [2].

is momentum independent. The present approach can be interpreted as a theory
with a momentum dependent friction coefficient, which in the zero velocity limit
reduces to the classical value. For finite velocities however, the effective friction
coefficient in our approach is smaller than the one for zero velocity (see the above
approximate solution for the trajectory for the case of small friction). One can thus
expect two effects: i) the effective or average attempt frequency in our approach
is in between the Kramers value and the value corresponding to no friction, i.e.
Oy < Qopp < Qo 4i) the spatial density distribution is also modified. Overall the
effect of an effective momentum dependent friction coefficient it is likely to lead
to an enhancement of the tunneling probability when compared with the classical
Kramers result. It can be shown also that all cumulants increase exponentially both
with the order and with time.

We have developed a dynamical theory of simple quantum systems coupled to
complex quantum environments, where the environment is a general “chaotic” bath
of intrinsic excitations. The model Hamiltonian we introduce for the intrinsic subsys-
tem incorporates the generic properties of finite many—body systems. This includes
an average level density of states sharply increasing with energy, the presence of
universal spectral (or random matrix) fluctuations for the intrinsic system and the
variation of these properties while changing the “shape” of the intrinsic system mod-
eled with parametric banded random matrices. In this way, the intrinsic system is
capable to easily absorb energy due to its large heat capacity. We did not yet allow
the intrinsic system to perform mechanical work, but this feature can be readily
implemented.

The evolution equation is surprisingly easy to manipulate and in many instances

one can construct full solutions by quadratures, for cases when the corresponding



path integral can be computed only by brute force. The entire treatment is per-
formed at the quantum level. We showed on the other hand that at the classical
limit, the evolution equation reduces to the Kramers form. The quantum evolution
equation we have derived for the density matrix is not more complicated than a clas-
sical Fokker—Planck equation. However, this evolution equation describes processes
which first of all are quantum in nature and moreover have manifestly non—Gaussian
features. The spatial and momentum distributions are characterized by high order
cumulants, which increase exponentially with the order. As we have discussed ear-
lier [4], this is indicative of the fact that the corresponding distributions have longer

tails than previously expected.
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