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Within the Feynman—Vernon path integral formalism and in the Markovian limit,
we consider the time evolution of a collective subsystem coupled to a “bath” of
intrinsic degrees of freedom. We show that dissipation leads to major qualitative
and quantitative modifications of the time evolution of the density matrix of the
collective subsystem. In either the spatial, momentum or energy representation the
density distribution acquires very long tails, and in particular tunneling is greatly
enhanced.

1 Introduction

Even though the accumulated knowledge, from both theoretical and experi-
mental sides, about Large Amplitude Collective Motion (LACM) is impressive,
one would not be completely off the mark by saying that we are still quite a
distance away from understanding it. We definitely lack an ab nitio approach.
Phenomenological models abound, but whether there is a link to the under-
lining microscopic description is yet an unsolved mystery. LACM is in some
generic way slow, however this is not always a very well defined concept and
whether the adiabatic approach is appropriate is still an open question. One
can find without effort opposite arguments on these issues in the published lit-
erature. The slowness of LACM would allow us to resort to a relatively simple
Hamiltonian description, where only quadratic terms in the collective veloc-
ity are present. There 1s no doubt however that going beyond the adiabatic
approximation is a necessity. One does not need so much to consider higher
powers in the collective velocity as to account for the relatively strong coupling
to non—collective degrees of freedom. The “irreversible” aspect of this coupling
is what is referred to routinely as dissipation.
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2 Time evolution of the density matrix
2.1 The path integral approach

The Hamiltonian governing the dynamics of a collective quantum subsystem
coupled to a complex intrinsic subsystem has the generic form

H(X, ) = Ho(X) + Hi(X, ). (1)

Here Hg(X) describes the collective degrees of freedom only and Hi(X, ),
which depends parametrically on the “shape” X, describes the internal motion.
We refer to X as “shape” variables, since often they indeed stand for actual
nuclear shapes. Henceforth we shall not display explicitly the dependence of
the Hamiltonian H; on the intrinsic variables . For reasons which we shall
not dwell upon here, H; is modelled through a parametric banded random
matrix®%®. For the sake of simplicity, we assume, though this is not necessary,
that the initial state is a product wave function

(X, z) = (X)o(x) (2)

and we also introduce the influence functional

LX(),Y(t),1) = <¢|{Taexp [% /Otdt“Hl(Y(t”))]}

?

X {Texp [_ﬁ /0 t dt’Hl(X(t’))] } 16). (3)

Here T and T, represent time ordering and anti—ordering operators respec-
tively. When evaluating £(X(¢),Y (¢),t) the ensemble average over the appro-
priate realization of the random Hamiltonian H; is implied ®. According to
Feynman and Vernon ! one obtains the following double path integral repre-
sentation for the density matrix of the “slow” subsystem

X(t):X Y(t):Y
§X, Y 1) = / dXod Yo Xo W™ (Yo) / DX(1) / DY (1)
X(O):XU Y(O):YD

<o {FIHO0) - SOOI LO YO0, @)

(t)) stands for the classical action corresponding to the Hamilto-

). In the case of an adiabatic evolution of the slow subsystem,
5

Here Sp(X
nian Ho(X
L(X(1),Y

(t),t) acquires an extremely simple form

1 gt
cxoyo0=en {5 [ G ey -naf,
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where G(X,Y) (with |[G(X,Y)] < 1 and G(X,X) = 1) is related to the corre-
lation function between matrix elements of the intrinsic Hamiltonians H,(X)
and Hy(Y), corresponding to two distinct “shapes” X and Y. The spreading
width 'V appearing here defines also the coupling strength between collective
and intrinsic subsystems®%®. The expression (5) differs qualitatively from the
widely used in literature Caldeira and Leggett’s form ?, which is quadratic in
X(t)and Y (¢). One can show now that the density matrix satisfies a Shrodinger
like equation of the form®

ihdup(X, Y, 1) = {Ho(X) — Ho(Y) + il HG(X,Y) — 1}p(X,Y,1).  (6)

This evolution equation for p(X,Y,t) describes a quantum mechanical Marko-

vian process and it also satisfies the conditions of the Lindblad’s theorem .

This last feature ensures that its solutions can be given a probabilistic inter-
pretation at any times.

2.2  Linear potential
The case when the collective variables evolve in a linear potential
Hy(X)=-—05% —FX (7)
m
is particularly instructive. We shall assume furthermore that the “effective
potential” is “translation invariant”, namely G(X,Y) = G(X —Y). In terms

of the difference and average variables s = X =Y, r = (X 4Y)/2, the evolution
equation for p(X,Y,t) becomes

(1hdy + %&&)p(r, 5,t) = {=Fs+ TG (s) — 1]}p(r, s,1). (8)

We look for a solution of the form
dk ikr
plr,s,t) = 3.7, &XP (7) d(k,s,t). (9)
The function d(s,, k) satisfies the equation
k P r!
(at + Eas) d(k,s,t) = {% + —[G(s) - 1]} d(k, s,1). (10)

For either s = 0 or k = 0, d(k,s,t) is the characteristic function * for the
spatial or momentum distribution of the slow subsystem.
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Using the method of characteristics for wave equations® Eq. (10) can be
solved through quadratures and the density matrix is thus determined to be

dr'dk , kt ik(r—1")
plrys,t) = o5 Po (s = Jexp g ———
iFst iFt’k  Tlm [* S
X exp{ T + n ﬁds [G(s')y=1]¢. (11)

where po(r,s) = p(r, s,0) is the initial density matrix. D(s,t) = d(0,s,1), see

Eqgs. (9) and (11), is the characteristic function for the momentum distribution

iFst Th

D(s,t) = /drp(r,s,t) = /drpo(r, s)exp ( - + - [G(s)— 1]) . (12)
One extremely economical and intuitive way to characterize the momentum

distribution of the collective subsystem is through its cumulants”

(e = (%)HIHD(S,t)

(13)

s=0

For the case of a Gaussian correlation function G(X) = exp[—X?/2XZ], one
gets thus explicitly

(e = (ohleo + P, (1)
1
@ = (5 hewo + - (15)

IR
G = e+ ea-n S (1) ao)
0
The meaning of the “correlation length” X is that intrinsic shapes separated
by |X — Y| > Xy are statistically uncorrelated. Notice that only the first cu-
mulant is affected by the presence of a linear potential in the expected manner,
namely a uniform acceleration of the slow subsystem. The “bath” of intrinsic
degrees of freedom affects only higher order even cumulants of the momentum
distribution and the odd cumulants of order higher than one remain unchanged.
This is due to the particular choice for the correlator G(X') we have used here,
which is an even function of its argument.
The cumulants of the spatial distribution can be obtained from the char-
acteristic function d(k,0,¢). From Eq. (11) it immediately follows that
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Tm [0

W) ds'[G(s") — 1]. (17)

The term In dy(k, 0,¢) gives the contributions to the cumulant expansion arising
from the free expansion alone of the initial wave packet, in the absence of both
the linear potential and the coupling to the internal degrees of freedom. The
linear potential leads to the expected (classical) behaviour of the center of the
wave packet (see the second term on the rhs of the above expression). The
contribution arising from dissipation alone to the even cumulants is

. (2n -1 T [ Bt 7"
(= G B () (18)

Of particular interest is the second cumulant

rlat3
2
155 — S w9 90 1
(M aes = (19)

which shows that dissipation leads to a very fast expansion of the wave packet.
This behaviour is to be contrasted with the free expansion or ballistic propa-
gation, in which case {(r?)) o< ¢? and with normal diffusion, for which {(r?)) o< ¢.
The energy tails of the energy distribution are significantly longer than in tradi-
tional phenomenological transport approaches, like Fokker—Planck or Langevin
equations. One can show that in the tails the energy distribution has the fol-
lowing behaviour

P(e) o exp(—ale|In'/? Je]), (20)

where « 1s some constant and ¢ stands for the energy of the slow subsystem
with respect to its initial value. Similarly, one can show that with logarithmic
accuracy for large values of the variable 0(r,t) = |r — Ft?/2m|/t (assuming
vanishing initial average linear momentum) the spatial distribution behaves as

p(r,0,1) o exp —Vﬁ(r,t)lnl/zﬁ(r,t) , (21)

where v is some constant. Thus the role of dissipation is undeniably not only
significant, but leads to qualitatively new features.

2.8 Quadratic potential

Another case that is susceptible to an analytical treatment is that of a quadratic
potential for the collective subsystem

(22)



Using the representation for p(r,s,t) of Eq. (9), the equation for the trans-
formed density now becomes

k rt

(at + Eas - mwzsak) d(ka Sat) — 7[G(5) - 1]d(l€, S,t). (23)

The method of characteristics® can again be used to determine its solution
(r 5,1) = dk ikr
P N 27k P h

k. .

x dp | scoswt — — sinwt, mwssin wi + k coswt (24)

mw

rt ot k
X exXp{ — dt'[G(scosw(t —t') — —sinw(t —t')) — 1] 5,
p{ 5 [ it~ 1) sinate— ) - 1
where do(s, k) = d(s, k,0). In a similar manner to the one described in the
previous subsection, one can determine various cumulants. For both spatial
and momentum distributions only even cumulants are affected by dissipation

I‘l h 2n wt
P Waiss = (2n—DN—— | — drcos™ 7 95
h X
w 0 o
(2n— N2 Th [ A\
PORI Sl Al B 5
2np! h\ X ’ (26)
I‘l h 2n wt
W g = Iy . 9n
(=" Waiss (2n 1)..hw (mon) /0 drsin”” (27)
m— M2 TH [/ A \¥
Y Twal R (28)
~ 2nn! h mw Xg ‘

There is a noticeable difference with the case of a linear potential, in that all
cumulants increase now only linearly with time. It looks as if the quadratic
potential has a “focusing” effect on the spatial distribution. It is a simpler
matter to analytically continue these expression to the case of an inverted
parabolic potential or barrier. This rather innocuous procedure, leads however
to an entirely different time dependence of the cumulants, all of them increasing
exponentially with time in this case (as cos 7 and sin 7 become cosh 7 and sinh 7
respectively).

2.4 Tunneling

Lack of space prevents us from presenting results on the influence of dissipation
on tunneling. We have analysed so far a symmetric double well potential and
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solved numerically Eq.(6) for an initial wave packet situated in one of the
wells. The tunneling time is increased by orders of magnitude in the presence
of dissipation, depending of course on the concrete values of I't and Xy in
particular.

3 Concluding remarks

The approach we have chosen, even though not entirely microscopic, incor-
porates the essential microscopic characteristics of a nucleus %% namely: an
exponentially increasing level density, GOE spectral fluctuations and loss of
correlations between intrinsic states significantly differing in macroscopic prop-
erties (e.g. shape and excitation energy). We have focused on the way energy is
transferred between the collective and the internal degrees of freedom and de-
termine the main characteristics of the collective energy flow. We have shown
that the dynamical evolution of the coupled collective and intrinsic subsystems
has a number of unexpected and new qualitative aspects. It is as a rule a non—
Gaussian process, which leads to rather long tails in excitation energy, spatial
and momentum distributions. There are significant violations of the Einstein
form of the fluctuation—dissipation theorem as well, especially for not so slow
collective motion®. The influence of dissipation on tunneling appears to be ma-
jor. Many of these features shed doubts on the applicability of a Langevin or
Fokker—Planck approach to nuclear dissipative motion, which approaches ne-
glect as well the quantum character of LACM. It is our feeling that the present
approach holds a great promise towards modelling and understanding the role
of dissipation in LACM. It is a fully quantum mechanical approach, technically
it is about as simple or as complicated as a Fokker—Planck approach. However,
there is no doubt that this approach has such a great flexibility as to incor-
porate various microscopic models, memory effects and the information which
can be extracted is in principle more detailed than in traditional phenomeno-
logical approaches. Moreover, the essentially microscopic nature of the entire
framework makes it especially appealing.
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