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Within the Feynman�Vernon path integral formalism and in the Markovian limit�

we consider the time evolution of a collective subsystem coupled to a �bath� of

intrinsic degrees of freedom� We show that dissipation leads to major qualitative

and quantitative modi�cations of the time evolution of the density matrix of the

collective subsystem� In either the spatial� momentumor energy representation the

density distribution acquires very long tails� and in particular tunneling is greatly

enhanced�

� Introduction

Even though the accumulated knowledge� from both theoretical and experi�
mental sides� about Large Amplitude Collective Motion �LACM� is impressive�
one would not be completely o� the mark by saying that we are still quite a
distance away from understanding it� We de�nitely lack an ab initio approach�
Phenomenological models abound� but whether there is a link to the under�
lining microscopic description is yet an unsolved mystery� LACM is in some
generic way slow� however this is not always a very well de�ned concept and
whether the adiabatic approach is appropriate is still an open question� One
can �nd without e�ort opposite arguments on these issues in the published lit�
erature� The slowness of LACM would allow us to resort to a relatively simple
Hamiltonian description� where only quadratic terms in the collective veloc�
ity are present� There is no doubt however that going beyond the adiabatic
approximation is a necessity� One does not need so much to consider higher
powers in the collective velocity as to account for the relatively strong coupling
to non�collective degrees of freedom� The �irreversible	 aspect of this coupling
is what is referred to routinely as dissipation�






� Time evolution of the density matrix

��� The path integral approach

The Hamiltonian governing the dynamics of a collective quantum subsystem
coupled to a complex intrinsic subsystem has the generic form

H�X�x� � H��X� �H��X�x�� �
�

Here H��X� describes the collective degrees of freedom only and H��X�x��
which depends parametrically on the �shape	 X� describes the internal motion�
We refer to X as �shape	 variables� since often they indeed stand for actual
nuclear shapes� Henceforth we shall not display explicitly the dependence of
the Hamiltonian H� on the intrinsic variables x� For reasons which we shall
not dwell upon here� H� is modelled through a parametric banded random
matrix������ For the sake of simplicity� we assume� though this is not necessary�
that the initial state is a product wave function


�X�x� � ��X���x� ���

and we also introduce the in�uence functional

L�X�t�� Y �t�� t� � h�j
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Here T and Ta represent time ordering and anti�ordering operators respec�
tively� When evaluating L�X�t�� Y �t�� t� the ensemble average over the appro�
priate realization of the random Hamiltonian H� is implied �� According to
Feynman and Vernon � one obtains the following double path integral repre�
sentation for the density matrix of the �slow	 subsystem

��X�Y� t� �

Z
dX�dY���X���

��Y��

Z X�t��X

X����X�

DX�t�

Z Y �t��Y

Y ����Y�

DY �t�

� exp

�
i

�h
�S��X�t�� � S��Y �t���

�
L�X�t�� Y �t�� t�� ���

Here S��X�t�� stands for the classical action corresponding to the Hamilto�
nian H��X�� In the case of an adiabatic evolution of the slow subsystem�
L�X�t�� Y �t�� t� acquires an extremely simple form �
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where G�X�Y � �with jG�X�Y �j � 
 and G�X�X� � 
� is related to the corre�
lation function between matrix elements of the intrinsic Hamiltonians H��X�
and H��Y �� corresponding to two distinct �shapes	 X and Y � The spreading
width �� appearing here de�nes also the coupling strength between collective
and intrinsic subsystems������ The expression ��� di�ers qualitatively from the
widely used in literature Caldeira and Leggett�s form �� which is quadratic in
X�t� and Y �t�� One can show now that the density matrix satis�es a Shr�odinger
like equation of the form �

i�h�t��X�Y� t� � fH��X� �H��Y � � i���G�X�Y �� 
�g��X�Y� t�� ���

This evolution equation for ��X�Y� t� describes a quantum mechanical Marko�
vian process and it also satis�es the conditions of the Lindblad�s theorem 	�
This last feature ensures that its solutions can be given a probabilistic inter�
pretation at any times�

��� Linear potential

The case when the collective variables evolve in a linear potential

H��X� � �
�h�

�m
��X � FX ���

is particularly instructive� We shall assume furthermore that the �e�ective
potential	 is �translation invariant	� namely G�X�Y � � G�X � Y �� In terms
of the di�erence and average variables s � X�Y� r � �X�Y ���� the evolution
equation for ��X�Y� t� becomes
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We look for a solution of the form
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For either s � � or k � �� d�k� s� t� is the characteristic function 
 for the
spatial or momentum distribution of the slow subsystem�

�



Using the method of characteristics for wave equations � Eq� �
�� can be
solved through quadratures and the density matrix is thus determined to be
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where ���r� s� � ��r� s� �� is the initial density matrix� D�s� t� � d��� s� t�� see
Eqs� ��� and �

�� is the characteristic function for the momentumdistribution
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One extremely economical and intuitive way to characterize the momentum
distribution of the collective subsystem is through its cumulants
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For the case of a Gaussian correlation function G�X� � exp��X���X�
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gets thus explicitly
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The meaning of the �correlation length	 X� is that intrinsic shapes separated
by jX � Y j � X� are statistically uncorrelated� Notice that only the �rst cu�
mulant is a�ected by the presence of a linear potential in the expected manner�
namely a uniform acceleration of the slow subsystem� The �bath	 of intrinsic
degrees of freedom a�ects only higher order even cumulants of the momentum
distribution and the odd cumulants of order higher than one remain unchanged�
This is due to the particular choice for the correlator G�X� we have used here�
which is an even function of its argument�

The cumulants of the spatial distribution can be obtained from the char�
acteristic function d�k� �� t�� From Eq� �

� it immediately follows that
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The term ln d��k� �� t� gives the contributions to the cumulant expansion arising
from the free expansion alone of the initial wave packet� in the absence of both
the linear potential and the coupling to the internal degrees of freedom� The
linear potential leads to the expected �classical� behaviour of the center of the
wave packet �see the second term on the rhs of the above expression�� The
contribution arising from dissipation alone to the even cumulants is
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Of particular interest is the second cumulant
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which shows that dissipation leads to a very fast expansion of the wave packet�
This behaviour is to be contrasted with the free expansion or ballistic propa�
gation� in which case hhr�ii � t� and with normal di�usion� for which hhr�ii � t�
The energy tails of the energy distribution are signi�cantly longer than in tradi�
tional phenomenological transport approaches� like Fokker�Planck or Langevin
equations� One can show that in the tails the energy distribution has the fol�
lowing behaviour

P �	� � exp��
j	j ln��� j	j�� ����

where 
 is some constant and 	 stands for the energy of the slow subsystem
with respect to its initial value� Similarly� one can show that with logarithmic
accuracy for large values of the variable ��r� t� � jr � Ft���mj�t �assuming
vanishing initial average linear momentum� the spatial distribution behaves as

��r� �� t� � exp
h
����r� t�ln�����r� t�

i
� ��
�

where � is some constant� Thus the role of dissipation is undeniably not only
signi�cant� but leads to qualitatively new features�

��� Quadratic potential

Another case that is susceptible to an analytical treatment is that of a quadratic
potential for the collective subsystem
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Using the representation for ��r� s� t� of Eq� ���� the equation for the trans�
formed density now becomes�
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The method of characteristics � can again be used to determine its solution
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where d��s� k� � d�s� k� ��� In a similar manner to the one described in the
previous subsection� one can determine various cumulants� For both spatial
and momentum distributions only even cumulants are a�ected by dissipation
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There is a noticeable di�erence with the case of a linear potential� in that all
cumulants increase now only linearly with time� It looks as if the quadratic
potential has a �focusing	 e�ect on the spatial distribution� It is a simpler
matter to analytically continue these expression to the case of an inverted
parabolic potential or barrier� This rather innocuous procedure� leads however
to an entirely di�erent time dependence of the cumulants� all of them increasing
exponentially with time in this case �as cos � and sin � become cosh � and sinh �
respectively��

��� Tunneling

Lack of space prevents us from presenting results on the in�uence of dissipation
on tunneling� We have analysed so far a symmetric double well potential and

�



solved numerically Eq���� for an initial wave packet situated in one of the
wells� The tunneling time is increased by orders of magnitude in the presence
of dissipation� depending of course on the concrete values of �� and X� in
particular�

� Concluding remarks

The approach we have chosen� even though not entirely microscopic� incor�
porates the essential microscopic characteristics of a nucleus ������ namely� an
exponentially increasing level density� GOE spectral �uctuations and loss of
correlations between intrinsic states signi�cantly di�ering in macroscopic prop�
erties �e�g� shape and excitation energy�� We have focused on the way energy is
transferred between the collective and the internal degrees of freedom and de�
termine the main characteristics of the collective energy �ow� We have shown
that the dynamical evolution of the coupled collective and intrinsic subsystems
has a number of unexpected and new qualitative aspects� It is as a rule a non�
Gaussian process� which leads to rather long tails in excitation energy� spatial
and momentum distributions� There are signi�cant violations of the Einstein
form of the �uctuation�dissipation theorem as well� especially for not so slow
collective motion�� The in�uence of dissipation on tunneling appears to be ma�
jor� Many of these features shed doubts on the applicability of a Langevin or
Fokker�Planck approach to nuclear dissipative motion� which approaches ne�
glect as well the quantum character of LACM� It is our feeling that the present
approach holds a great promise towards modelling and understanding the role
of dissipation in LACM� It is a fully quantummechanical approach� technically
it is about as simple or as complicated as a Fokker�Planck approach� However�
there is no doubt that this approach has such a great �exibility as to incor�
porate various microscopic models� memory e�ects and the information which
can be extracted is in principle more detailed than in traditional phenomeno�
logical approaches� Moreover� the essentially microscopic nature of the entire
framework makes it especially appealing�
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