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What is the unitary regime?

A gas of interacting fermions is in the unitary regime
if the average separation between particles is large
compared to their size (range of interaction), but
small compared to their scattering length.

The system is very dilute, but strongly interacting!
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Bertsch Many-Body X challenge, Seattle, 1999

What are the ground state properties of the many-body system composed of
spin ¥2 fermions interacting via a zero-range, infinite scattering-length contact
Interaction.

Why? Besides pure theoretical curiosity, this problem is relevant to neutron stars!

In 1999 it was not yet clear, either theoretically or experimentally,
whether such fermion matter is stable or not! A number of people arqued that
under such conditions fermionic matter is unstable.

- systems of bosons are unstable (Efimov effect)
- systems of three or more fermion species are unstable (Efimov effect)

- Baker (winner of the MBX challenge) concluded that the system is stable.
See also Heiselberg (entry to the same competition)

» Carlson et al (2003) Fixed-Node Green Function Monte Carlo
and Astrakharchik et al. (2004) FN-DMC provided the best theoretical
estimates for the ground state energy of such systems.

 Thomas’ Duke group (2002) demonstrated experimentally that such systems
are (meta)stable.




Superconductivity and superfluidity in Fermi systems

20 orders of magnitude over a century of (low temperature) physics

Dilute atomic Fermi gases
Liquid 3He

Metals, composite materials
Nuclei, neutron stars

* QCD color superconductivity
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Thermodynamic properties




Finite Temperatures

Grand Canonical Path-Integral Monte Carlo
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No approximations so far, except for the fact that the interaction is not well defined!




Recast the propagator at each time slice and put the system on a 3d-spatial lattice,
in a cubic box of side L=N, with periodic boundary conditions

Running coupling constant g defined by lattice




L — box size

| - lattice spacing




Momentum space
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One-body evolution
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All traces can be expressed through these single-particle density matrices




More details of the calculations:
» Typical lattice sizes used from 83 x 300 (high Ts) to 83 x 1800 (low Ts)

o Effective use of FFT(W) makes all imaginary time propagators diagonal (either in
real space or momentum space) and there is no need to store large matrices

e Update field configurations using the Metropolis importance
sampling algorithm

e Change randomly at a fraction of all space and time sites the signs the auxiliary
fields o(x,T) so as to maintain a running average of the acceptance rate between

0.4 and 0.6

* Thermalize for 50,000 — 100,000 MC steps or/and use as a start-up
field configuration a o(x,T)-field configuration from a different T

e At low temperatures use Singular Value Decomposition of the
evolution operator U({o}) to stabilize the numerics

e Use 100,000-2,000,000 o(x,T)- field configurations for calculations

e MC correlation “time” = 250 — 300 time steps at T= T_




E(T) [0.6e N], p[e]

o
o

-
(8]

-
(93]
T

—_—
=

o
©

o
3

o
W

(=]
i

Bogoliubov-Anderson phonons
contribution only

Quasi-particles contribution only
(dashed line)

L - chemical potential (circles)

Bulgac, Drut, and Magierski
PRL 96, 090404 (2006)




Measurement of the Entropy and Critical Temperature of a Strongly Interacting Fermi
Gas, Luo, Clancy, Joseph, Kinast, and Thomas, PRL 98, 080402 (2007)

(E-E(O))/E

Bulgac, Drut, and Magierski
PRL 99, 120401 (2007)




Long range order and condensate fraction
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Bulgac, Drut, and Magierski, arXiv:0803:3238




Critical temperature for superfluid to normal transition

—a— 1 - Seattle-\Warsaw
_._TE - Amherst-ETH
7o T — hard bosons

coge- T = soft bosons
BCS/BEC limits

Amherst-ETH: Burovski et al. arXiv:0805:3047
Hard and soft bosons: Pilati et al. PRL 100, 140405 (2008

Bulgac, Drut, and Magierski, arXiv:0803:3238




Critical temperature for superfluid to normal transition
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Amherst-ETH: Burovski et al. arXiv:0805:3047
Hard and soft bosons: Pilati et al. PRL 100, 140405 (2008

Bulgac, Drut, and Magierski, arXiv:0803:3238




Ground state energy

Astrakharchik et al.
=g Carlson and Gezerlis
—8—Chang et al
== This work

Bulgac, Drut, Magierski, and Wlazowski, arXiv:0801:1504
Bulgac, Drut, and Magierski, arXiv:0803:3238




Pairing Gap and Pseudo-gap




Response of the two-component Fermi gas in the unitary regime
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One-body temperature (Matsubara) Green’s function
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Bulgac, Drut, and Magierski, arXiv:0801:1504




Quasi-particle spectrum and pairing gap

=== Chang et al.
Carlson and Gezerlis
% Carlson and Reddy
| =—&=This work
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Bulgac, Drut, and Magierski, arXiv:0801:1504



Quasi-particle spectrum at unitarity

,:?,“-’:'ﬁ- T ey,

Bulgac, Drut, and Magierski, arXiv:0801:1504






Dynamical Mean-Field Theory applied to a Unitary Fermi gas
(exact in infinite number of dimensions)

4+ superfluid

" coexistence
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Superfluid to insulator phase transition in a unitary Fermi gas
Barnea, arXiv:0803:2293
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E(N)=E(N-1)+E,

Using photoemission spectroscopy to probe a strongly interacting Fermi gas
Stewart, Gaebler and Jin, arXiv:0805:0026




EOS for spin imbalanced systems

Normal phase
(unpaired spin-up fermions)

Fully symmetric phase LOFF phases

Gapless BEC superfluid
(BEC of dimers + unpaired spin-up fermions)

Son and Stephanov, PRA 74, 013614 (2006)




What we think is happening in spin imbalanced systems?

Induced P-wave superfluidity
Two new superfluid phases where before they were not expected

Fully Polarized {one species)

Fermi (Gas

BCY

1 . | i ,'-.-':"J,} A =0 I

One Bose superfluid coexisting with one P-wave Fermi superfluid

Two coexisting P-wave Fermi superfluids

Bulgac, Forbes, Schwenk, PRL 97, 020402 (2006)




Going beyond the naive BCS approximation

p—-wave gap, nbfnf =20,P=1/5
— o | | | <«

mmm Eliashiberg —{1,m)=(1,0)
= = = Eliashberg —(I,m)=(1,1)
A —{1,m)=(1,0)

== = A (] m)=(1,1)

Eliashberg approx. (red)

<€— BCS approx. (black)

Full momentum and frequency dependence of the self-consistent equations (blue

Bulgac and Yoon, unpublished (2007)




What happens at unitarity?

0.4 0.6

T = np/ng

Predicted quantum first phase order transition, subsequently observed
in MIT experiment, Shin et al. arXiv:0709:3027

Red points with error bars — subsequent DMC calculations for normal state
due to Lobo et al, PRL 97, 200403 (2006)

Bulgac and Forbes, PRA 75, 031605(R) (2007)



A refined EOS for spin unbalanced systems

Red line: Larkin-Ovchinnikov phase

Black line:  normal part of the energy density

Blue points: DMC calculations for normal state, Lobo et al, PRL 97, 200403 (2006)
Gray crosses: experimental EOS due to Shin, arXiv :0801:1523

Bulgac and Forbes, arXiv:0804:3364



How this new refined EOS for spin imbalanced systems
was obtained?

Through the use of the (A)SLDA , which is an extension of the

Kohn-Sham LDA to superfluid systems




How to construct and validate an ab initio Energy Density
Functional (EDF)?

 Given a many body Hamiltonian determine the properties of
the infinite homogeneous system as a function of density

(] Extract the EDF

d Add gradient corrections, if needed or known how (?)

(d Determine in an ab initio calculation the properties of a
select number of wisely selected finite systems

d Apply the energy density functional to inhomogeneous systems
and compare with the ab initio calculation, and if lucky declare
Victory!




The SLDA energy density functional at unitarity

for equal numbers of spin-up and spin-down fermions
Only this combination is cutoff independent

S u (F)V.(F)

2
2\2/3 2/3 (= A(T)
7 )""n (T) ‘ ‘ +V_(7) + small correction
2 Byn’*(F)

A(T) = =g, (7)v,(T)

a can take any positive value,
but the best results are obtained when « is fixed by the gp-spectrum




Fermions at unitarity in a harmonic trap
Total energies E(N)

N
GFMC - Chang and Bertsch, Phys. Rev. A 76, 021603(R) (2007)
FN-DMC - von Stecher, Greene and Blume, PRL 99, 233201 (2007)
PRA 76, 053613 (2007)

Bulgac, PRA 76, 040502(R) (2007)




Fermions at unitarity in a harmonic trap
Pairing gaps

& SLDA
A GEMC
— 85— FN-DMC

E(N+1)-2E(N)+E(N -1)
2
GFMC - Chang and Bertsch, Phys. Rev. A 76, 021603(R) (2007)
FN-DMC - von Stecher, Greene and Blume, PRL 99, 233201 (2007)
PRA 76, 053613 (2007)

. forodd N

Bulgac, PRA 76, 040502(R) (2007)




1.1

Quasiparticle spectrum in homogeneous matter

solid/dotted blue line - SLDA, homogeneous GFMC due to Carlson et al
red circles - GFMC due to Carlson and Reddy
dashed blue line - SLDA, homogeneous MC due to Juillet

black dashed-dotted line — meanfield at unitarity

Two more universal parameter characterizing the unitary

Fermi gas and its excitation spectrum:

effective mass, meanfield potential

Bulgac, PRA 76, 040502(R) (2007)




Asymmetric SLDA (ASLDA)
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Bulgac and Forbes, arXiv:0804:3364




Unitary Fermi Supersolid: the Larkin-Ovchinnikov phase




TD ASLDA

Bulgac, Roche, Yoon

0 (un(r,t)j_{ h(F,t)+V. (T, 1) A(F,t)+&ext(F,t)j(un(ﬁt)j
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Qo)=Y j d°rdtQ(F, o, t)n(F, o, t) exp(iat)

N®xN,, N, ~50..100, N, ~10"..10°
number of y_(F,o,t) ~ O(N’ x 40)

Space-time lattice, use of FFTW for spatial derivative
No matrix operations (unlike (Q)RPA)

All nuclei (odd, even, spherical, deformed)
Any quantum numbers of QRPA modes
Fully selfconsistent, no self-consistent symmetries imposed




A remarkable example of extreme
Large Amplitude Collective Motion
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Bulgac and Yoon, unpublished (2007)




A zoo of Higgs-like pairing modes
The frequency of all these modes is below the 2-qp gap

Maximum and minimum oscillation amplitudes versus frequency
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What else can we expect?




