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Outline:Outline:

•• Very brief/skewed summary of DFTVery brief/skewed summary of DFT

•• BogoliubovBogoliubov--de Gennes equations, renormalizationde Gennes equations, renormalization

•• Superfluid Local Density Approximation (SLDA) Superfluid Local Density Approximation (SLDA) 
for a unitary Fermi gasfor a unitary Fermi gas

•• Fermions at unitarity in a harmonic trapFermions at unitarity in a harmonic trap



Density Functional Theory (DFT) Density Functional Theory (DFT) 
HohenbergHohenberg and Kohn, 1964and Kohn, 1964

Local Density Approximation (LDA)  Local Density Approximation (LDA)  
Kohn and Sham, 1965Kohn and Sham, 1965

)]([ rEgs ρΕ= particle density only!particle density only!
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The energy density is typically 
determined in ab initio calculations
of infinite homogeneous matter.

KohnKohn--Sham equationsSham equations



Extended KohnExtended Kohn--Sham equationsSham equations

Position dependent mass Position dependent mass 
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Normal Fermi systems only!



However, not everyone is normal!However, not everyone is normal!



Superconductivity and Superconductivity and superfluiditysuperfluidity in Fermi systemsin Fermi systems

• Dilute atomic Fermi gases                   Dilute atomic Fermi gases                   TTcc ≈≈ 1010--1212 –– 1010--99 eVeV

•• Liquid  Liquid  33He                                             He                                             TTcc ≈≈ 1010--77 eVeV

•• Metals, composite materials               Metals, composite materials               TTcc ≈≈ 1010--3 3 –– 1010--22 eVeV

•• Nuclei, neutron stars                           Nuclei, neutron stars                           TTcc ≈≈ 101055 –– 101066 eVeV

•• QCD color superconductivity             QCD color superconductivity             TTcc ≈≈ 10107 7 –– 10108 8 eVeV

units (1 units (1 eVeV ≈≈ 101044 K)K)
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SLDA  SLDA  -- Extension of KohnExtension of Kohn--Sham approach to Sham approach to 
superfluid Fermi systems   superfluid Fermi systems   

MeanMean--field and pairing field are both local fields!field and pairing field are both local fields!
(for sake of simplicity spin degrees of freedom are not shown)(for sake of simplicity spin degrees of freedom are not shown)

There is a little problem! The pairing field There is a little problem! The pairing field ∆∆ diverges. diverges. 
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Why would one consider a local pairing field?Why would one consider a local pairing field?

Because it makes sense physically!Because it makes sense physically!
The treatment is so much simpler!The treatment is so much simpler!
Our intuition is so much better also.Our intuition is so much better also.
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Nature of the problemNature of the problem
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It is easier to show how this singularity appears 
in infinite homogeneous matter.
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PseudoPseudo--potential approach potential approach 
(appropriate for very slow particles, very transparent,(appropriate for very slow particles, very transparent,
but somewhat difficult to improve)but somewhat difficult to improve)

Lenz   (1927), Fermi  (1931), Lenz   (1927), Fermi  (1931), BlattBlatt and and WeiskopfWeiskopf (1952)(1952)
Lee, Huang and Yang  (1957)Lee, Huang and Yang  (1957)
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Position and momentum dependent running coupling constantPosition and momentum dependent running coupling constant
Observables are (obviously) independent of cutObservables are (obviously) independent of cut--off energy (when chosen properly).off energy (when chosen properly).

The SLDA (renormalized) equations



The naThe naïïve SLDA energy density functional ve SLDA energy density functional 
suggested by dimensional argumentssuggested by dimensional arguments
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The renormalized SLDA energy density functional  The renormalized SLDA energy density functional  
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How to determine the dimensionless parameters How to determine the dimensionless parameters α, β α, β andand γ ?γ ?
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One thus obtains:One thus obtains:

5
0.42(2)

3   1 .14

    0 .504(24) 0.553

1
0.0906    0 .42(2)

s
F

F

F

E
N

ξ
ε α

η β
ε
µς γε

⎧ ⎧= =⎪ ⎪ =⎪ ⎪∆⎪ ⎪= = ⇒ = −⎨ ⎨
⎪ ⎪
⎪ ⎪ = −= =⎪ ⎪⎩⎩



solid/dotted blue line        solid/dotted blue line        -- SLDA, homogeneous GFMC due to Carlson et al SLDA, homogeneous GFMC due to Carlson et al 
red circles                          red circles                          -- GFMC due to Carlson and Reddy GFMC due to Carlson and Reddy 
dashed blue line                dashed blue line                -- SLDA, homogeneous MC due to SLDA, homogeneous MC due to JuilletJuillet
black dashedblack dashed--dotted line dotted line –– meanfield at unitaritymeanfield at unitarity

QuasiparticleQuasiparticle spectrum in homogeneous matterspectrum in homogeneous matterBonus!Bonus!

One more universal parameter characterizing the unitary 
Fermi gas and its excitation spectrum: effective mass



Extra Bonus!Extra Bonus!

The normal state has been also determined in GFMCThe normal state has been also determined in GFMC
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Fermions at unitarity in a harmonic trapFermions at unitarity in a harmonic trap

GFMC     GFMC     -- Chang and Bertsch,  arXiv:physics/0703190Chang and Bertsch,  arXiv:physics/0703190
FNFN--DMC DMC -- von von StecherStecher, Greene and , Greene and BlumeBlume, arXiv:0705.0671, arXiv:0705.0671



Fermions at unitarity in a harmonic trapFermions at unitarity in a harmonic trap

GFMC     GFMC     -- Chang and Bertsch,  arXiv:physics/0703190Chang and Bertsch,  arXiv:physics/0703190
FNFN--DMC DMC -- von von StecherStecher, Greene and , Greene and BlumeBlume, arXiv:0705.0671, arXiv:0705.0671
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Densities for N=8 (solid), N=14 (dashed) and N=20 (dotDensities for N=8 (solid), N=14 (dashed) and N=20 (dot--dashed)dashed)
GFMC (red),  SLDA (blue)GFMC (red),  SLDA (blue)



•• Agreement between GFMC/FNAgreement between GFMC/FN--DMC  and SLDA extremely good, DMC  and SLDA extremely good, 
a few percent (at most) accuracya few percent (at most) accuracy

Why not better?Why not better?
A better agreement would have really signaled big troubles!A better agreement would have really signaled big troubles!

•• Energy density functional is not unique, Energy density functional is not unique, 
in spite of the strong restrictions imposed by unitarity in spite of the strong restrictions imposed by unitarity 

•• SelfSelf--interaction correction neglectedinteraction correction neglected
smallest systems affected the mostsmallest systems affected the most

•• Absence of polarization effects Absence of polarization effects 
spherical symmetry imposed, odd systems mostly affectedspherical symmetry imposed, odd systems mostly affected

•• Spin number densities not included Spin number densities not included 
extension from SLDA to SLSD(A) neededextension from SLDA to SLSD(A) needed
ab initioab initio results for asymmetric system neededresults for asymmetric system needed

•• Gradient corrections not included Gradient corrections not included 



OutlookOutlook

Extension away from unitarity Extension away from unitarity -- trivialtrivial

Extension to excited states Extension to excited states -- easyeasy

Extension to time dependent problems Extension to time dependent problems -- easyeasy

Extension to finite temperatures Extension to finite temperatures -- easy, but one more parameter easy, but one more parameter 
is needed, the pairing gap dependence as a function of Tis needed, the pairing gap dependence as a function of T

Extension to asymmetric systems straightforward (at unitarityExtension to asymmetric systems straightforward (at unitarity
quite a bit is already know about the equation of state) quite a bit is already know about the equation of state) 


