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Outline:
» \Very brief/skewed summary of DFT
» Bogoliubov-de Gennes equations, renormalization

» Superfluid Local Density Approximation (SLDA)
for a unitary Fermi gas

e Fermions at unitarity in a harmonic trap



Density Functional Theory (DFT)
Hohenberg and Kohn, 1964

Egs — E[IO(?)] s | Darticle density only!

i : i The energy density is typically
L ocal Density Approximation (LDA) determined in ab initio calculations

Kohn and Sham, 1965 of infinite homogeneous matter.
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Extended Kohn-Sham equations

Position dependent mass
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Normal Fermi systems only!



However, not everyone Is normal!



Superconductivity and superfluidity in Fermi systems

* Dilute atomic Fermi gases

o Liquid 3*He

 Metals, composite materials
 Nuclei, neutron stars

» QCD color superconductivity
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SLDA - Extension of Kohn-Sham approach to
superfluid Fermi systems
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Mean-field and pairing field are both local fields!
(for sake of simplicity spin degrees of freedom are not shown)

v, (r)

TThere s a little problem! Tfhe pairng field A diverges.




Why would one consider a local pairing field?

v'Because it makes sense physically!
v The treatment Is so much simpler!
v Our intuition is so much better also.

coherence length
size of the Cooper pair



Nature of the problem

at small separations

It is easier to show how this singularity appears
in infinite homogeneous matter.
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Pseudo-potential approach

(appropriate for very slow particles, very transparent,
but somewhat difficult to improve)

Lenz (1927), Fermi (1931), Blatt and Weiskopf (1952)
Lee, Huang and Yang (1957)
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The SLDA (renormalized) equations
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Position and momentum dependent running coupling constant
Observables are (obviously) independent of cut-off energy (when chosen properly).
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The naive SLDA energy density functional
suggested by dimensional arguments




The renormalized SLDA energy density functional
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How to determine the dimensionless parameters o, (3 and ~ ?
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One thus obtains:




solid/dotted blue line - SLDA, homogeneous GFMC due to Carlson et al
red circles - GEMC due to Carlson and Reddy
dashed blue line - SLDA, homogeneous MC due to Juillet

black dashed-dotted line — meanfield at unitarity

One more universal parameter characterizing the unitary
Fermi gas and its excitation spectrum: effective mass



Extra Bonus!

The normal state has been also determined in GFMC

SLDA functional predicts

v =a+ B =0.59




Fermions at unitarity in a harmonic trap

GFMC - Chang and Bertsch, arXiv:physics/0703190
FN-DMC - von Stecher, Greene and Blume, arXiv:0705.0671



Fermions at unitarity in a harmonic trap

GFMC - Chang and Bertsch, arXiv:physics/0703190
FN-DMC - von Stecher, Greene and Blume, arXiv:0705.0671




TABLE I: Table I. The energies E{N) calculated within
the GFMC [14], FN-DMC [15] and SLDA. When two num-
bers are present the first was caleulated as the expectation
value of the Hamiltonian/functional, while the second is the
Vi 1.111.- obtained using the wvirial theorem, namely E(N) =

mw” |r1’rT|r|r -]
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Densities for N=8 (solid), N=14 (dashed) and N=20 (dot-dashed)
GFMC (red), SLDA (blue)



* Agreement between GFMC/FN-DMC and SLDA extremely good,
a few percent (at most) accuracy

Why not better?
A better agreement would have really signaled big troubles!

* Energy density functional is not unique,
In spite of the strong restrictions imposed by unitarity

Self-interaction correction neglected
smallest systems affected the most

Absence of polarization effects
spherical symmetry imposed, odd systems mostly affected

Spin number densities not included
extension from SLDA to SLSD(A) needed
ab initio results for asymmetric system needed

Gradient corrections not included



Outlook

Extension away from unitarity - trivial
Extension to excited states - easy

Extension to time dependent problems - easy

Extension to finite temperatures - easy, but one more parameter
IS needed, the pairing gap dependence as a function of T

Extension to asymmetric systems straightforward (at unitarity
guite a bit is already know about the equation of state)



