|_ocal Density Functional Theory for Superfluid Fermionic Systems

The Unitary Fermi Gas



Unitary Fermi gas in a harmonic trap
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What Is a unitary Fermi gas



Bertsch Many-Body X challenge, Seattle, 1999

What are the ground state properties of the many-body system composed of
spin Y2 fermions interacting via a zero-range, infinite scattering-length contact
interaction.

In 1999 it was not yet clear, either theoretically or experimentally,
whether such fermion matter is stable or not.

- systems of bosons are unstable (Efimov effect)
- systems of three or more fermion species are unstable (Efimov effect)

« Baker (winner of the MBX challenge) concluded that the system is stable.
See also Heiselberg (entry to the same competition)

* Chang et al (2003) Fixed-Node Green Function Monte Carlo
and Astrakharchik et al. (2004) FN-DMC provided best the theoretical
estimates for the ground state energy of such systems.

« Thomas’ Duke group (2002) demonstrated experimentally that such systems
are (meta)stable.




Consider Bertsch’s MBX challenge (1999): “Find the ground
state of infinite homogeneous neutron matter interacting with

an infinite scattering length. rn—>0 << A, << |al>w

» Carlson, Morales, Pandharipande and Ravenhall,
PRC 68, 025802 (2003), with Green Function Monte Carlo (GFMC)

normal state

» Carlson, Chang, Pandharipande and Schmidt,
PRL 91, 050401 (2003), with GFMC

superfluid state

This state is half the way from BCS—BEC crossover, the pairing
correlations are in the strong coupling limit and HFB invalid again.



BEC side BCS side

Solid line with open circles — Chang et al. physics/0404115
Dashed line with squares - Astrakharchik et al. cond-mat/0406113
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Pairing gap (A)

Result for akr = —o0

Green Function Monte Carlo with Fixed Nodes
S.-Y. Chang, J. Carlson, V. Pandharipande and K. Schmidt
physics/0403041



Fixed node GFMC results, S.-Y. Chang et al. (2003)



BCS —BEC crossover
Leggett (1980), Nozieres and Schmitt-Rink (1985), Randeria ef al. (1993),...
If a<0 at T=0 a Fermi system is a BCS superfluid

If |a|=c0 and nr,*<1 a Fermi system is strongly coupled and its properties
are universal. Carlson ef a/. PRL 91, 050401 (2003)
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If a>0 (a>r,) and na*<1 the system is a dilute BEC of tightly bound dimers

s

and na’<<1, where n, = = and a,, =0.6a >0



Very brief/skewed summary of DFT



Density Functional Theory (DFT)
Hohenberg and Kohn, 1964

E, =K 0l(A)]] <€————nparticle density only!

: : i The energy density is typically
Local Density Approximation (LDA) determined in ab initio calculations

Kohn and Sham, 1965 of infinite homogeneous matter.
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One can construct however an EDF which depends both on
particle density and kinetic energy density and use It in a
extended Kohn-Sham approach (perturbative result)
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Notice that dependence on Kinetic energy density and on the
gradient of the particle density emerges because of finite
range effects.

Bhattacharyya and Furnstahl, nucl-phys/0408014
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The single-particle spectrum of extended Kohn-Sham approach has physical meaning.

TABLE [: Energies per particle, averages of the local Fermi momentum kp, and rms radii for
sample parameters and particle numbers for a dilute Fermi gas in a harmonic trap. See the text
for a description of units. The scattering length is fixed at a;, = 0.16 and the effective range is set
to ¢ = 2a4/3 when a, # 0. Results with the DFT functional including 7 are marked “r-NNLO.”
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Extended Kohn-Sham equations

Position dependent mass
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Normal Fermi systems only!



However, not everyone Is normal!



Superconductivity and superfluidity in Fermi systems

Dilute atomic Fermi gases
Liquid 3He

Metals, composite materials
Nuclei, neutron stars

QCD color superconductivity
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Bogoliubov-de Gennes equations and renormalization



SLDA - Extension of Kohn-Sham approach to
superfluid Fermi systems

E, = [d’re(p(F).t(7).v(F))
p(F) =2 |v,(F)[, (7)) =2 |Vv, ()

v(F) =D u, (F)v,(7)
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Mean-field and pairing field are both local fields!
(for sake of simplicity spin degrees of freedom are not shown)

There is a little problem! The pairing field A diverges.




Why would one consider a local pairing field?
v'Because it makes sense physically!

v'The treatment is so much simpler!
v Our intuition is so much better also.

/-

radius of interaction inter-particle separation

coherence length
size of the Cooper pair



Nature of the problem

at small separations

It is easier to show how this singularity appears
in infinite homogeneous matter.

v (F)=v, exp(ik -7), u,(%)=u, exp(ik -7,)
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Pseudo-potential approach

(appropriate for very slow particles, very transparent,
but somewhat difficult to improve)

Lenz (1927), Fermi (1931), Blatt and Weiskopf (1952)
Lee, Huang and Yang (1957)
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The SLDA (renormalized) equations
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Position and momentum dependent running coupling constant

Observables are (obviously) independent of cut-off energy (when chosen properly).



Superfluid Local Density Approximation (SLDA)
for a unitary Fermi gas



The naive SLDA energy density functional
suggested by dimensional arguments
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The renormalized SLDA energy density functional




How to determine the dimensionless parameters o, (3 and ~ ?
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One thus obtains:




Bonus!

Quasiparticle spectrum in homogeneous matter

solid line - SLDA
circles - GFMC due to Carlson and Reddy



Extra Bonus!

The normal state has been also determined in GFMC

SLDA functional predicts

v =a+ B =0.59




Fermions at unitarity in a harmonic trap

GFMC calculations of Chang and Bertsch



GFMC - Chang and Bertsch




TABLE I: Table 1. The energies E (N ) calculated within the
GFMC [15] and SLDA. When two nmumbers are present the

first was calculated as the expectation value of the Hamilto-
nian/functional, while the second is the value obtained using

the virial theorem [20].
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Densities for N=8 (solid), N=14 (dashed) and N=20 (dot-dashed)
GFMC (red), SLDA (blue)



* Agreement between GFMC and SLDA very good
(a few percent accuracy)

Why not better?
A better agreement would have really signaled big troubles!

» Energy density functional is not unique,
In spite of the strong restrictions imposed by unitarity

Self-interaction correction neglected
smallest systems affected the most

Absence of polarization effects
spherical symmetry imposed, odd systems mostly affected

Spin number densities not included
extension from SLDA to SLSD(A) needed
ab initio results for asymmetric system needed

Gradient corrections not included



