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Unitary Fermi gas in a harmonic trapUnitary Fermi gas in a harmonic trap
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What is a unitary Fermi gasWhat is a unitary Fermi gas



Bertsch ManyBertsch Many--Body X challenge, Seattle, 1999Body X challenge, Seattle, 1999

What are the ground state properties of the manyWhat are the ground state properties of the many--body system composed of body system composed of 
spin ½ fermions interacting via a zerospin ½ fermions interacting via a zero--range, infinite scatteringrange, infinite scattering--length contactlength contact
interaction. interaction. 

In 1999 it was not yet clear, either theoretically or experimentally, 
whether such fermion matter is stable or not.

- systems of bosons are unstable (Efimov effect)
- systems of  three or more fermion species are unstable (Efimov effect)

• Baker (winner of the MBX challenge)  concluded that the system is stable.
See also Heiselberg (entry to the same competition)

• Chang et al (2003) Fixed-Node Green Function Monte Carlo
and Astrakharchik et al. (2004) FN-DMC provided best the theoretical 
estimates for the ground state energy of such systems.

• Thomas’ Duke group (2002) demonstrated experimentally that such systems
are (meta)stable.  



Consider Bertsch’s MBX challenge (1999): “Find the ground 
state of infinite homogeneous neutron matter interacting with 
an infinite scattering length.” 

Carlson, Morales, Pandharipande and Ravenhall, 
PRC 68, 025802 (2003),  with Green Function Monte Carlo (GFMC) 
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normal state

Carlson, Chang, Pandharipande and Schmidt,
PRL 91, 050401 (2003), with GFMC
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This state is half the way from BCS→BEC crossover, the pairing 
correlations are in the strong coupling limit and HFB invalid again.



Solid line with open circles – Chang et al. physics/0404115
Dashed line with squares  - Astrakharchik et al. cond-mat/0406113

BEC sideBEC side BCS sideBCS side
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Green Function Monte Carlo with Fixed Nodes
S.-Y. Chang, J. Carlson, V. Pandharipande and K. Schmidt
physics/0403041
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Fixed node GFMC results, S.-Y. Chang et al. (2003)



BCS  →BEC crossover
Leggett (1980), Nozieres and Schmitt-Rink (1985), Randeria et al. (1993),…

If a<0 at T=0 a Fermi system is a BCS superfluid
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If |a|=∞ and nr0
3 1 a Fermi system is strongly coupled and its properties 

are universal. Carlson et al. PRL 91, 050401 (2003)
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Very brief/skewed summary of DFTVery brief/skewed summary of DFT



Density Functional Theory (DFT) Density Functional Theory (DFT) 
HohenbergHohenberg and Kohn, 1964and Kohn, 1964

Local Density Approximation (LDA)  Local Density Approximation (LDA)  
Kohn and Sham, 1965Kohn and Sham, 1965

)]([ rEgs ρΕ= particle density only!particle density only!
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The energy density is typically 
determined in ab initio calculations
of infinite homogeneous matter.

KohnKohn--Sham equationsSham equations



One can construct however an EDF which depends both on One can construct however an EDF which depends both on 
particle density and kinetic energy density and use it in a particle density and kinetic energy density and use it in a 
extended Kohnextended Kohn--Sham approach (perturbative result)Sham approach (perturbative result)

Notice that dependence on kinetic energy density and on the Notice that dependence on kinetic energy density and on the 
gradient of the particle density  emerges because of finite gradient of the particle density  emerges because of finite 
range effects.range effects.

Bhattacharyya and Furnstahl, nuclBhattacharyya and Furnstahl, nucl--phys/0408014phys/0408014



The singleThe single--particle spectrum of usual Kohnparticle spectrum of usual Kohn--Sham approach is unphysical, Sham approach is unphysical, 
with the exception of the Fermi level.with the exception of the Fermi level.
The singleThe single--particle spectrum of extended Kohnparticle spectrum of extended Kohn--Sham approach has physical meaning.Sham approach has physical meaning.



Extended KohnExtended Kohn--Sham equationsSham equations

Position dependent mass Position dependent mass 
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Normal Fermi systems only!



However, not everyone is normal!However, not everyone is normal!



Superconductivity and Superconductivity and superfluiditysuperfluidity in Fermi systemsin Fermi systems

• Dilute atomic Fermi gases                   Dilute atomic Fermi gases                   TTcc ≈≈ 1010--1212 –– 1010-9 eVeV

•• Liquid  Liquid  33He                                        He                                        TTcc ≈ 1010--77 eVeV

•• Metals, composite materials              Metals, composite materials              TTcc ≈ 1010--3 3 –– 1010--22 eVeV

•• Nuclei, neutron stars                          Nuclei, neutron stars                          TTcc ≈ 101055 –– 101066 eVeV

•• QCD color superconductivity              QCD color superconductivity              TTcc ≈ 10107 7 –– 10108 8 eVeV

units (1 eV ≈ 104 K)



BogoliubovBogoliubov--de Gennes equations and renormalizationde Gennes equations and renormalization
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SLDA  SLDA  -- Extension of KohnExtension of Kohn--Sham approach to Sham approach to 
superfluid Fermi systems   superfluid Fermi systems   

MeanMean--field and pairing field are both local fields!field and pairing field are both local fields!
(for sake of simplicity spin degrees of freedom are not shown)(for sake of simplicity spin degrees of freedom are not shown)

There is a little problem! The pairing field There is a little problem! The pairing field ∆∆ diverges. diverges. 
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Why would one consider a local pairing field?Why would one consider a local pairing field?

Because it makes sense physically!Because it makes sense physically!
The treatment is so much simpler!The treatment is so much simpler!
Our intuition is so much better also.Our intuition is so much better also.
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Nature of the problemNature of the problem
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PseudoPseudo--potential approach potential approach 
(appropriate for very slow particles, very transparent,(appropriate for very slow particles, very transparent,
but somewhat difficult to improve)but somewhat difficult to improve)

Lenz   (1927), Fermi  (1931), Lenz   (1927), Fermi  (1931), BlattBlatt and and WeiskopfWeiskopf (1952)(1952)
Lee, Huang and Yang  (1957)Lee, Huang and Yang  (1957)
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Position and momentum dependent running coupling constantPosition and momentum dependent running coupling constant
Observables are (obviously) independent of cutObservables are (obviously) independent of cut--off energy (when chosen properly).off energy (when chosen properly).

The SLDA (renormalized) equations



Superfluid Local Density Approximation (SLDA) Superfluid Local Density Approximation (SLDA) 
for a unitary Fermi gasfor a unitary Fermi gas



The naïve SLDA energy density functional The naïve SLDA energy density functional 
suggested by dimensional argumentssuggested by dimensional arguments
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The renormalized SLDA energy density functional  The renormalized SLDA energy density functional  
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How to determine the dimensionless parameters How to determine the dimensionless parameters α, β α, β andand γ ?γ ?
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One thus obtains:One thus obtains:
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Bonus!Bonus!

QuasiparticleQuasiparticle spectrum in homogeneous matterspectrum in homogeneous matter

solid line   solid line   -- SLDASLDA
circles       circles       -- GFMC due to Carlson and Reddy GFMC due to Carlson and Reddy 



Extra Bonus!Extra Bonus!

The normal state has been also determined in GFMCThe normal state has been also determined in GFMC
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Fermions at unitarity in a harmonic trapFermions at unitarity in a harmonic trap

GFMC calculations of Chang and BertschGFMC calculations of Chang and Bertsch



GFMC  GFMC  -- Chang and BertschChang and Bertsch
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Densities for N=8 (solid), N=14 (dashed) and N=20 (dotDensities for N=8 (solid), N=14 (dashed) and N=20 (dot--dashed)dashed)
GFMC (red),  SLDA (blue)GFMC (red),  SLDA (blue)



•• Agreement between GFMC and SLDA very good Agreement between GFMC and SLDA very good 
(a few percent accuracy)(a few percent accuracy)

Why not better?Why not better?
A better agreement would have really signaled big troubles!A better agreement would have really signaled big troubles!

•• Energy density functional is not unique, Energy density functional is not unique, 
in spite of the strong restrictions imposed by unitarity in spite of the strong restrictions imposed by unitarity 

•• SelfSelf--interaction correction neglectedinteraction correction neglected
smallest systems affected the mostsmallest systems affected the most

•• Absence of polarization effects Absence of polarization effects 
spherical symmetry imposed, odd systems mostly affectedspherical symmetry imposed, odd systems mostly affected

•• Spin number densities not included Spin number densities not included 
extension from SLDA to SLSD(A) neededextension from SLDA to SLSD(A) needed
ab initioab initio results for asymmetric system neededresults for asymmetric system needed

•• Gradient corrections not included Gradient corrections not included 


