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What is a unitary Fermi gasWhat is a unitary Fermi gas



Bertsch ManyBertsch Many--Body X challenge, Seattle, 1999Body X challenge, Seattle, 1999

What are the ground state properties of the manyWhat are the ground state properties of the many--body system composed of body system composed of 
spin spin ½½ fermions interacting via a zerofermions interacting via a zero--range, infinite scatteringrange, infinite scattering--length contactlength contact
interaction. interaction. 

In 1999 it was not yet clear, either theoretically or experimentally, 
whether such fermion matter is stable or not.

- systems of bosons are unstable (Efimov effect)
- systems of  three or more fermion species are unstable (Efimov effect)

• Baker (winner of the MBX challenge)  concluded that the system is stable.
See also Heiselberg (entry to the same competition)

• Chang et al (2003) Fixed-Node Green Function Monte Carlo
and Astrakharchik et al. (2004) FN-DMC provided best the theoretical 
estimates for the ground state energy of such systems.

• Thomas’ Duke group (2002) demonstrated experimentally that such systems
are (meta)stable.  



Consider Bertsch’s MBX challenge (1999): “Find the ground 
state of infinite homogeneous neutron matter interacting with 
an infinite scattering length.”

Carlson, Morales, Pandharipande and Ravenhall, 
PRC 68, 025802 (2003),  with Green Function Monte Carlo (GFMC) 
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normal state

Carlson, Chang, Pandharipande and Schmidt,
PRL 91, 050401 (2003), with GFMC
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This state is half the way from BCS→BEC crossover, the pairing 
correlations are in the strong coupling limit and HFB invalid again.



Solid line with open circles Solid line with open circles –– Chang Chang et al. et al. PRA, 70, 043602 (2004)PRA, 70, 043602 (2004)
Dashed line with squares  Dashed line with squares  -- Astrakharchik Astrakharchik et al.et al. PRL 93, 200404 (2004)PRL 93, 200404 (2004)

BEC sideBEC side BCS sideBCS side
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Green Function Monte Carlo with Fixed Nodes
Chang, Carlson, Pandharipande and Schmidt, PRL 91, 050401 (2003)
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Fixed node GFMC results, S.Fixed node GFMC results, S.--Y. Chang Y. Chang et al.et al. PRA 70, 043602 (2004)PRA 70, 043602 (2004)



BCS  →BEC crossover
Leggett (1980), Nozieres and Schmitt-Rink (1985), Randeria et al. (1993),…

If a<0 at T=0 a Fermi system is a BCS superfluid
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If |a|=∞ and nr0
3 1 a Fermi system is strongly coupled and its properties 

are universal. Carlson et al. PRL 91, 050401 (2003)
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CarlsonCarlson’’s talk at Pack Forest, WA, August, 2007s talk at Pack Forest, WA, August, 2007



Fermi gas near unitarity has a very complex phase diagram (T=0)Fermi gas near unitarity has a very complex phase diagram (T=0)

Bulgac, Forbes, Schwenk, PRL 97, 020402 (2007)Bulgac, Forbes, Schwenk, PRL 97, 020402 (2007)



Very brief/skewed summary of DFTVery brief/skewed summary of DFT



Density Functional Theory (DFT) Density Functional Theory (DFT) 
HohenbergHohenberg and Kohn, 1964and Kohn, 1964

Local Density Approximation (LDA)  Local Density Approximation (LDA)  
Kohn and Sham, 1965Kohn and Sham, 1965

[ ( )]gsE n r= Ε particle density only!particle density only!
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The energy density is typically 
determined in ab initio calculations
of infinite homogeneous matter.

KohnKohn--Sham equationsSham equations



KohnKohn--Sham theoremSham theorem
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Universal functional of densityUniversal functional of density
independent of external potentialindependent of external potential



How to construct and validate an How to construct and validate an abab initioinitio EDF?EDF?

Given a many body Hamiltonian determine the properties of Given a many body Hamiltonian determine the properties of 
the infinite homogeneous system as a function of densitythe infinite homogeneous system as a function of density

Extract the energy density functional (EDF)Extract the energy density functional (EDF)

Add gradient corrections, if needed or known how (?)Add gradient corrections, if needed or known how (?)

Determine in an Determine in an abab initioinitio calculation the properties of a calculation the properties of a 
select number of wisely selected finite systems   select number of wisely selected finite systems   

Apply the energy density functional to inhomogeneous systemsApply the energy density functional to inhomogeneous systems
and compare with the and compare with the abab initioinitio calculation, and if lucky declarecalculation, and if lucky declare
Victory! Victory! 



One can construct however an EDF which depends both on One can construct however an EDF which depends both on 
particle density and kinetic energy density and use it in a particle density and kinetic energy density and use it in a 
extended Kohnextended Kohn--Sham approach (perturbative result)Sham approach (perturbative result)

Notice that dependence on kinetic energy density and on the Notice that dependence on kinetic energy density and on the 
gradient of the particle density  emerges because of finite gradient of the particle density  emerges because of finite 
range effects.range effects.

Bhattacharyya and Furnstahl, Bhattacharyya and Furnstahl, NuclNucl. Phys. A 747, 268 (2005). Phys. A 747, 268 (2005)



The singleThe single--particle spectrum of usual Kohnparticle spectrum of usual Kohn--Sham approach is unphysical, Sham approach is unphysical, 
with the exception of the Fermi level.with the exception of the Fermi level.
The singleThe single--particle spectrum of extended Kohnparticle spectrum of extended Kohn--Sham approach has physical meaning.Sham approach has physical meaning.



Extended KohnExtended Kohn--Sham equationsSham equations

Position dependent mass Position dependent mass 

2
3

*

2 2

1 1
2

*

( ) [ ( )] ( )
2 [ ( )]

( ) | ( ) |      ( ) | ( ) |

( ) ( ) ( ) ( )
2 [ ( )]

gs

N N

i i
i i

i i i i

E d r r n r n r
m n r

n r r r r

r U r r r
m n r

τ ε

ψ τ ψ

ψ ψ εψ

= =

⎧ ⎫
= +⎨ ⎬

⎩ ⎭

= = ∇

−∇ ∇ + =

∫

∑ ∑

Normal Fermi systems only!



However, not everyone is normal!However, not everyone is normal!



Superconductivity and superfluidity in Fermi systemsSuperconductivity and superfluidity in Fermi systems

• Dilute atomic Fermi gases                   Tc ≈ 10-12 – 10-9 eV

• Liquid  3He                                             Tc ≈ 10-7 eV

• Metals, composite materials                Tc ≈ 10-3 – 10-2 eV

• Nuclei, neutron stars                            Tc ≈ 105 – 106 eV

• QCD color superconductivity              Tc ≈ 107 – 108 eV

units (1 eV ≈ 104 K)



BogoliubovBogoliubov--de Gennes equations and renormalizationde Gennes equations and renormalization
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SLDA  - Extension of Kohn-Sham approach to 
superfluid Fermi systems

MeanMean--field and pairing field are both local fields!field and pairing field are both local fields!
(for sake of simplicity spin degrees of freedom are not shown)(for sake of simplicity spin degrees of freedom are not shown)

There is a little problem! The pairing field There is a little problem! The pairing field ∆∆ diverges. diverges. 
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Why would one consider a local pairing field?Why would one consider a local pairing field?

Because it makes sense physically!Because it makes sense physically!
The treatment is so much simpler!The treatment is so much simpler!
Our intuition is so much better also.Our intuition is so much better also.
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Nature of the problemNature of the problem

*
1 2 k 1 k 2

0 1 2

1 2 1 2 1 2

1
( , ) v ( )u ( )

( , ) ( , ) ( , )
kE

r r r r
r r

r r V r r r r

ν

ν
>

= ∝
−

∆ = −

∑ at small separations

It is easier to show how this singularity appears 
in infinite homogeneous matter.

||       ,
)(

)sin(
2

)(

2
    ,

2
    ,1vu   ,

)(
1

2
1v

)exp(u)(u     ),exp(v)(v

212222

2

0
22

222

k
2
k

2
k22

k

k2
k

2k2k1k1k

rrr
kk
k

kr
krdkmr

m
U

m
k

rkirrkir

F

−=
+−

∆
=

=∆+==+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∆+−

−
−=

⋅=⋅=

∫
∞

δπ
ν

δε
µε
µε



PseudoPseudo--potential approach potential approach 
(appropriate for very slow particles, very transparent,(appropriate for very slow particles, very transparent,
but somewhat difficult to improve)but somewhat difficult to improve)

Lenz   (1927), Fermi  (1931), Lenz   (1927), Fermi  (1931), BlattBlatt and and WeiskopfWeiskopf (1952)(1952)
Lee, Huang and Yang  (1957)Lee, Huang and Yang  (1957)
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Position and momentum dependent running coupling constantPosition and momentum dependent running coupling constant
Observables are (obviously) independent of cutObservables are (obviously) independent of cut--off energy (when chosen properly).off energy (when chosen properly).

The SLDA (renormalized) equations



Superfluid Local Density Approximation (SLDA) Superfluid Local Density Approximation (SLDA) 
for a unitary Fermi gasfor a unitary Fermi gas



The naThe naïïve SLDA energy density functional ve SLDA energy density functional 
suggested by dimensional argumentssuggested by dimensional arguments
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The renormalized SLDA energy density functional  The renormalized SLDA energy density functional  
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How to determine the dimensionless parameters How to determine the dimensionless parameters α, β α, β andand γ ?γ ?
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One thus obtains:One thus obtains:
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solid/dotted blue line        solid/dotted blue line        -- SLDA, homogeneous GFMC due to Carlson et al SLDA, homogeneous GFMC due to Carlson et al 
red circles                          red circles                          -- GFMC due to Carlson and Reddy GFMC due to Carlson and Reddy 
dashed blue line                dashed blue line                -- SLDA, homogeneous MC due to SLDA, homogeneous MC due to JuilletJuillet
black dashedblack dashed--dotted line dotted line –– meanfield at unitaritymeanfield at unitarity

Quasiparticle spectrum in homogeneous matterQuasiparticle spectrum in homogeneous matterBonus!Bonus!

Two more universal parameter characterizing the unitary 
Fermi gas and its excitation spectrum: 
effective mass, meanfield potential 



Extra Bonus!Extra Bonus!

The normal state has been also determined in GFMCThe normal state has been also determined in GFMC
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Fermions at unitarity in a harmonic trap within SLDA Fermions at unitarity in a harmonic trap within SLDA 
and comparison with and comparison with abab intiointio resultsresults

GFMC     GFMC     -- Chang and Bertsch, Phys. Rev. A 76, 021603(R) (2007)Chang and Bertsch, Phys. Rev. A 76, 021603(R) (2007)
FNFN--DMC DMC -- von von StecherStecher, Greene and , Greene and BlumeBlume, arXiv:0705.0671, arXiv:0705.0671

arXiv:0708.2734arXiv:0708.2734



Fermions at unitarity in a harmonic trapFermions at unitarity in a harmonic trap

GFMC     GFMC     -- Chang and Bertsch, Phys. Rev. A 76, 021603(R) (2007)Chang and Bertsch, Phys. Rev. A 76, 021603(R) (2007)
FNFN--DMC DMC -- von von StecherStecher, Greene and , Greene and BlumeBlume, arXiv:0705.0671, arXiv:0705.0671



NB Particle projectionNB Particle projection
neither required nor neither required nor 
needed in SLDA!!!needed in SLDA!!!



SLDA  - Extension of Kohn-Sham approach to superfluid Fermi systems
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Densities for N=8 (solid), N=14 (dashed) and N=20 (dotDensities for N=8 (solid), N=14 (dashed) and N=20 (dot--dashed)dashed)
GFMC (red),  SLDA (blue)GFMC (red),  SLDA (blue)



New extended FNNew extended FN--DMC resultsDMC results
D. D. BlumeBlume, J. von , J. von StecherStecher, and C.H. Greene, arXiv:0708.2734, and C.H. Greene, arXiv:0708.2734



New extended FNNew extended FN--DMC resultsDMC results
D. D. BlumeBlume, J. von , J. von StecherStecher, and C.H. Greene, arXiv:0708.2734, and C.H. Greene, arXiv:0708.2734



•• Agreement between GFMC/FNAgreement between GFMC/FN--DMC  and SLDA extremely good, DMC  and SLDA extremely good, 
a few percent (at most) accuracya few percent (at most) accuracy

Why not better?Why not better?
A better agreement would have really signaled big troubles!A better agreement would have really signaled big troubles!

•• Energy density functional is not unique, Energy density functional is not unique, 
in spite of the strong restrictions imposed by unitarity in spite of the strong restrictions imposed by unitarity 

•• SelfSelf--interaction correction neglectedinteraction correction neglected
smallest systems affected the mostsmallest systems affected the most

•• Absence of polarization effects Absence of polarization effects 
spherical symmetry imposed, odd systems mostly affectedspherical symmetry imposed, odd systems mostly affected

•• Spin number densities not included Spin number densities not included 
extension from SLDA to SLSD(A) neededextension from SLDA to SLSD(A) needed
ab initioab initio results for asymmetric system neededresults for asymmetric system needed

•• Gradient corrections not included Gradient corrections not included 



OutlookOutlook

Extension away from unitarity Extension away from unitarity -- trivialtrivial

Extension to (some) excited states Extension to (some) excited states -- easyeasy

Extension to time dependent problems Extension to time dependent problems –– appears easyappears easy

Extension to finite temperatures Extension to finite temperatures -- easy, but one more parameter easy, but one more parameter 
is needed, the pairing gap dependence as a function of Tis needed, the pairing gap dependence as a function of T

Extension to asymmetric systems straightforward (at unitarityExtension to asymmetric systems straightforward (at unitarity
quite a bit is already know about the equation of state) quite a bit is already know about the equation of state) 


