
SuperfluidSuperfluid LDA (SLDA) LDA (SLDA) 

Local Density Approximation / KohnLocal Density Approximation / Kohn--Sham Sham 
for Systems with for Systems with SuperfluidSuperfluid CorrelationsCorrelations

AurelAurel BulgacBulgac ((SeattleSeattle) and ) and YongleYongle Yu (Yu (Seattle Seattle →→LundLund))

Slides will be posted shortly at
http://www.phys.washington.edu/~bulgac/



What I would like to cover

Brief review of DFT and LDA

Introduce SLDA 
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Superconductivity and Superconductivity and superfluiditysuperfluidity in Fermi systemsin Fermi systems

Dilute atomic Fermi gases                 Dilute atomic Fermi gases                 TTcc ≈≈ 1010--1212 –– 1010-9 eVeV

•• Liquid  Liquid  33He                                        He                                        TTcc ≈ 1010--77 eVeV

•• Metals, composite materials              Metals, composite materials              TTcc ≈ 1010--3 3 –– 1010--22 eVeV

Nuclei, neutron stars                         Nuclei, neutron stars                         TTcc ≈ 101055 –– 101066 eVeV

•• QCD color superconductivity              QCD color superconductivity              TTcc ≈ 10107 7 –– 10108 8 eVeV

units (1 eV ≈ 104 K)



Density Functional Theory (DFT) Density Functional Theory (DFT) 
HohenbergHohenberg and and KohnKohn, 1964, 1964

Local Density Approximation (LDA)  Local Density Approximation (LDA)  
KohnKohn and Sham, 1965and Sham, 1965

)]([ rEgs ρΕ= particle density only!particle density only!
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The energy density is typically 
determined in ab initio calculations
of infinite homogeneous matter.

KohnKohn--Sham equationsSham equations



Extended Kohn-Sham equations

Position dependent mass 
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Phenomenological nuclear Skyrme EDF

One can try to derive it, however, from an ab initio (?) lagrangian

Bhattacharyya and Furnstahl, nucl-phys/0408014





One can construct however an EDF which depends both on 
particle density and kinetic energy density and use it in a 
extended Kohn-Sham approach

Notice that dependence on kinetic energy density and on the gradient
of the particle density  emerges because of finite range effects.

Bhattacharyya and Furnstahl, nucl-phys/0408014



The single-particle spectrum of usual Kohn-Sham approach is unphysical, 
with the exception of the Fermi level.
The single-particle spectrum of extended Kohn-Sham approach has physical meaning.  



Local Density Approximation (LDA) Local Density Approximation (LDA) 
KohnKohn and Sham, 1965and Sham, 1965
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Normal Normal FermiFermi systems only!systems only!



However, not everyone is normal!However, not everyone is normal!
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SLDA  SLDA  -- Extension of KohnExtension of Kohn--Sham approach to Sham approach to 
superfluidsuperfluid Fermi systems   Fermi systems   

MeanMean--field and pairing field are both local fields!field and pairing field are both local fields!
(for sake of simplicity spin degrees of freedom are not shown)(for sake of simplicity spin degrees of freedom are not shown)

There is a little problem! The pairing field There is a little problem! The pairing field ∆∆ diverges. diverges. 
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Why would one consider a local pairing field?Why would one consider a local pairing field?

Because it makes sense physically!Because it makes sense physically!
The treatment is so much simpler!The treatment is so much simpler!
Our intuition is so much better also.Our intuition is so much better also.
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Nature of the problemNature of the problem
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in infinite homogeneous matter.
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How pairing emerges?

Cooper’s argument (1956)

Gap =  2∆

Cooper pair



PseudoPseudo--potential approach potential approach 
(appropriate for very slow particles, very transparent,(appropriate for very slow particles, very transparent,
but somewhat difficult to improve)but somewhat difficult to improve)

Lenz   (1927), Fermi  (1931), Lenz   (1927), Fermi  (1931), BlattBlatt and and WeiskopfWeiskopf (1952)(1952)
Lee, Huang and Yang  (1957)Lee, Huang and Yang  (1957)
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Position and momentum dependent running coupling constant
Observables are (obviously) independent of cut-off energy (when chosen properly).

The SLDA (renormalized) equationsThe SLDA (renormalized) equations
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How to describe nuclei?

Fayans parameterization of the infinite matter calculations
Wiringa, Fiks and Fabrocini, Phys. Rev. 38, 1010 (1988)
Friedman and Pandharipande, Nucl. Phys. A 361, 502 (1981)

This defines the normal part of the EDF.



Pairing correlations show prominently in the staggering of the
binding energies. 

Systems with odd particle number are less bound than 
systems with even particle number.
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OneOne--neutron separation energiesneutron separation energies
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Anderson and Itoh,  Nature, 1975
“Pulsar glitches and restlessness as a hard superfluidity phenomenon” 
The crust of neutron stars is the only other place in  the entire Universe where one 
can find solid matter, except planets.

• A neutron star will cover 
the map at the bottom

• The mass is  about 
1.5 solar masses

• Density 1014  g/cm3

Author: Dany Page



How can one determine the density dependence How can one determine the density dependence 
of the coupling constant g?  I know two methods.of the coupling constant g?  I know two methods.

[ ]  |)(|  )]([)(),( 2rrgrrS νρνρε = Superfluid contribution to EDF

In homogeneous very low density matter one can compute the pairiIn homogeneous very low density matter one can compute the pairing gap ng gap 
as a function of the density. as a function of the density. NB this is not a simple BCS result!NB this is not a simple BCS result!
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One compute also the energy of the normal and One compute also the energy of the normal and superfluidsuperfluid phases as a function phases as a function 
of density, as was recently done by Carlson et al, Phys. Rev. Leof density, as was recently done by Carlson et al, Phys. Rev. Lett. 91, 050401 (2003)tt. 91, 050401 (2003)
for a Fermi system interacting with an infinite scattering lengtfor a Fermi system interacting with an infinite scattering length (h (Bertsch’sBertsch’s MBXMBX
1999 challenge) 1999 challenge) 

In both cases one can extract from these results the In both cases one can extract from these results the superfluidsuperfluid contribution to thecontribution to the
LDA energy density functional in a straight forward manner. LDA energy density functional in a straight forward manner. 



““Screening effects” are significant!Screening effects” are significant!

BCS

ss--wave pairing gap in infinitewave pairing gap in infinite
neutron matter with realisticneutron matter with realistic
NNNN--interactionsinteractions

from Lombardo and Schulze
astro-ph/0012209

These are major effects beyond the naïve HFB when it comes to deThese are major effects beyond the naïve HFB when it comes to describingscribing
pairing correlations.pairing correlations.



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

k [fm−1]

∆ 
[M

eV
]

phase shift
effective range
RG

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

k [fm−1]

∆
/ε

F

phase shift
effective range

NB! Extremely high relative Tc

Corrected Emery formula (1960)

RG- renormalization group calculation
Schwenk, Friman, Brown, Nucl. Phys. A713, 191 (2003)

NN-phase shift



Vortex in neutron matter
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Distances scale with λF

Distances scale with ξF



Dramatic structural changes of the vortex state naturally lead Dramatic structural changes of the vortex state naturally lead 
to significant changes  in the energy balance of a neutron starto significant changes  in the energy balance of a neutron star
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Some similar conclusions have been reached recently also by 
Donati and Pizzochero, Phys. Rev. Lett. 90, 211101 (2003).



BertschBertsch ManyMany--Body X challenge, Seattle, 1999Body X challenge, Seattle, 1999

What are the ground state properties of the manyWhat are the ground state properties of the many--body system composed of body system composed of 
spin ½ fermions interacting via a zerospin ½ fermions interacting via a zero--range, infinite scatteringrange, infinite scattering--length contactlength contact
interaction. interaction. 

In 1999 it was not yet clear, either theoretically or experimentally, 
whether such fermion matter is stable or not.

- systems of bosons are unstable (Efimov effect)
- systems of  three or more fermion species are unstable (Efimov effect)

• Baker (winner of the MBX challenge)  concluded that the system is stable.
See also Heiselberg (entry to the same competition)

• Chang et al (2003) Fixed-Node Green Function Monte Carlo
and Astrakharchik et al. (2004) FN-DMC provided best the theoretical 
estimates for the ground state energy of such systems.

• Thomas’ Duke group (2002) demonstrated experimentally that such systems
are (meta)stable.  



Consider Bertsch’s MBX challenge (1999): “Find the ground 
state of infinite homogeneous neutron matter interacting with 
an infinite scattering length.” 

Carlson, Morales, Pandharipande and Ravenhall, 
PRC 68, 025802 (2003),  with Green Function Monte Carlo (GFMC) 
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Carlson, Chang, Pandharipande and Schmidt,
PRL 91, 050401 (2003), with GFMC
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This state is half the way from BCS→BEC crossover, the pairing 
correlations are in the strong coupling limit and HFB invalid again.



Solid line with open circles – Chang et al. physics/0404115
Dashed line with squares  - Astrakharchik et al. cond-mat/0406113

BEC sideBEC side BCS sideBCS side
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Green Function Monte Carlo with Fixed Nodes
S.-Y. Chang, J. Carlson, V. Pandharipande and K. Schmidt
physics/0403041
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BCS  →BEC crossover
Leggett (1980), Nozieres and Schmitt-Rink (1985), Randeria et al. (1993),…

If a<0 at T=0 a Fermi system is a BCS superfluid
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SLDA for dilute atomic Fermi gases

Parameters determined from GFMC  results ofParameters determined from GFMC  results of
Chang, Carlson, Chang, Carlson, PandharipandePandharipande and Schmidt, and Schmidt, physics/0404115
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Now we are going to look at vortices Now we are going to look at vortices 
in dilute atomic gases in the vicinity in dilute atomic gases in the vicinity 
of the of the FeshbachFeshbach resonance.resonance.

Why would one study vortices in neutral 
Fermi superfluids?

They are perhaps just about the only 
phenomenon in which one can have  
a true stable superflow! 



How can one put in evidence a vortex
in a Fermi superfluid?

Hard to see, since density changes are not expected, unlike   
the case of a Bose superfluid.

However, if the gap is not small one can expect a However, if the gap is not small one can expect a 
noticeable density depletion along the vortex core, noticeable density depletion along the vortex core, 
and the bigger the gap the bigger the depletion! and the bigger the gap the bigger the depletion! 

One can change the magnitude of the gap by One can change the magnitude of the gap by 
altering the scattering length between two atoms altering the scattering length between two atoms 
with magnetic fields by means of a with magnetic fields by means of a FeshbachFeshbach
resonance.resonance.



Number density and pairing field profiles

The depletion along the vortex core
is reminiscent of the corresponding
density depletion in the case of a 
vortex in a Bose superfluid, when 
the density vanishes exactly along 
the axis for 100% BEC.

Extremely fast quantum vortical motion!

Local vortical speed as fraction of 
Fermi speed

Fermions with 1/kFermions with 1/kFFa = 0.3, 0.1, 0, a = 0.3, 0.1, 0, --0.1, 0.1, --0.50.5

Bosons with naBosons with na33 = 10= 10--33 and 10and 10--55

From Ketterle’s
group



Conclusions:Conclusions:
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An LDAAn LDA--DFT formalism for describing pairing correlations in Fermi systeDFT formalism for describing pairing correlations in Fermi systems ms 
has been developed.  This represents the first genuinely lhas been developed.  This represents the first genuinely local ocal extentionextention
of the Kohnof the Kohn--Sham LDA  from normal to Sham LDA  from normal to superfluidsuperfluid systems systems -- SLDASLDA
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