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What | would like to cover

v' Brief review of DFT and LDA

v" Introduce SLDA

v Apply SLDA to nuclei and neutron stars (vortices)
v Apply SLDA to dilute atomic Fermi gases (vortices)

v Conclusions



Superconductivity and superfluidity in Fermi systems

v Dilute atomic Fermi gases

e Liquid He

e Metals, composite materials
v Nuclei, neutron stars

e QCD color superconductivity
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Density Functional Theory (DFT)
Hohenberg and Kohn, 1964

E o5 E[ p(? )] <= particle density only!

: : i The energy density is typically
Local Den3|ty ApprOX|mat|on (LDA) determined in ab initio calculations

Kohn and Sham, 1965 of infinite homogeneous matter.
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Extended Kohn-Sham equations

Position dependent mass
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Phenomenological nuclear Skyrme EDF
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One can try to derive it, however, from an ab initio (?) lagrangian
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Bhattacharyya and Furnstahl, nucl-phys/0408014
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One can construct however an EDF which depends both on
particle density and kinetic energy density and use it in a
extended Kohn-Sham approach
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Notice that dependence on kinetic energy density and on the gradient
of the particle density emerges because of finite range effects.

Bhattacharyya and Furnstahl, nucl-phys/0408014
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TABLE I. Energies per particle, averages of the local Fermi momentum kg, and rms radii for
sample parameters and particle numbers for a dilute Fermi gas in a harmonic trap. See the text
for a description of units. The scattering length is fixed at a;, = 0.16 and the effective range is set
to ¢ = 2a4/3 when a, # 0. Results with the DFT functional including 7 are marked “r-NNLO.”
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Local Density Approximation (LDA)
Kohn and Sham, 1965
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However, not everyone iIs normal!



SLDA - Extension of Kohn-Sham approach to
superfluid Fermi systems

E, = [d*re(p(7),z(F).v(7))
p(F) =2 |v,(F)[, (7)) =2 |Vv, ()

v(F) = u, (F)v, (F)
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A (F) —(T+UF - \v, (7)) v ()

Mean-field and pairing field are both local fields!
(for sake of simplicity spin degrees of freedom are not shown)

There is a little problem! The pairing field A diverges.




Why would one consider a local pairing field?
v'Because it makes sense physically!

v'The treatment is so much simpler!
v Qur intuition is so much better also.

/

radius of interaction inter-particle separation

coherence length
size of the Cooper pair



Nature of the problem
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It is easier to show how this singularity appears
in infinite homogeneous matter.

at small separations
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Closad shell nucleus

How pairing emerges?

Cooper’s argument (1956)

Gap = 2A

Cooper pair



Pseudo-potential approach

(appropriate for very slow particles, very transparent,
but somewnhat difficult to improve)

Lenz (1927), Fermi (1931), Blatt and Weiskopf (1952)
Lee, Huang and Yang (1957)
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The SLDA (renormalized) equations
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Position and momentum dependent running coupling constant
Observables are (obviously) independent of cut-off energy (when chosen properly).



RIA physics

_ _ The isotope and isotone chains treated
Courtesy of Mario Stoitsov by us are indicated with red numbers.



How to describe nuclei?

Neutron matter

FalNDF® {fit)

Symmetric
nuclear malter

Fayans parameterization of the infinite matter calculations
Wiringa, Fiks and Fabrocini, Phys. Rev. 38, 1010 (1988)
Friedman and Pandharipande, Nucl. Phys. A 361, 502 (1981)

This defines the normal part of the EDF.




Pairing correlations show prominently in the staggering of the
binding energies.

Systems with odd particle number are less bound than
systems with even particle number.
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One-neutron separation energies
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» SLy4 - Chabanat et al.
Nucl. Phys. A627, 710 (1997)
Nucl. Phys. A635, 231 (1998)

I Nucl. Phys. A643, 441(E)(1998)

» FaNDF%— Fayans
JETP Lett. 68, 169 (1998)




Two-neutron separation energies
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One-nucleon separation energies
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Anderson and Itoh, Nature, 1975

“Pulsar glitches and restlessness as a hard superfluidity phenomenon™
The crust of neutron stars is the only other place in the entire Universe where one

can find solid matter, except planets.

e A neutron star will cover
the map at the bottom
e The mass is about
1.5 solar masses
e Density 1014 g/cm?
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Author: Dany Page



How can one determine the density dependence
of the coupling constant g? | know two methods.

&g [,O(I_’:),V(Ij:)] = g[p(?)] | V(?) |2 <«— Superfluid contribution to EDF

v' In homogeneous very low density matter one can compute the pairing gap
as a function of the density. NB this is not a simple BCS result!

Gorkov and Melik-Barkhudarov, 1961

v One compute also the energy of the normal and superfluid phases as a function
of density, as was recently done by Carlson et al, Phys. Rev. Lett. 91, 050401 (2003)
for a Fermi system interacting with an infinite scattering length (Bertsch’s MBX

1999 challenge)

In both cases one can extract from these results the superfluid contribution to the
LDA energy density functional in a straight forward manner.



“Screening effects” are significant!

from Lombardo and Schulze
astro-ph/0012209

ke II’m'1 |
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Schwenk, Friman, Brown, Nucl. Phys. A713, 191 (2003)




Vortex In heutron matter

Uy (7)) (u,(r)expli(n+1/2)¢p—ikz]
v . (7)) v (r)expli(n—1/2)p—ikz]

], n - half -integer

A(F) = A(r)exp(ig), ¥ =(r,¢,z) [cyllindrical coordinates]

Oz - vortex symmetry axis

Ideal vortex, Onsager's quantization (one 7z per Cooper pair)
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Dramatic structural changes of the vortex state naturally lead
to significant changes in the energy balance of a neutron star

\% A . .
o S < — ~ 0.12, extremely fast vortical motion,

VF F max
A A

S &
e In IOW denSity region g(pout )pout > g(pin )pill

%4 .
pin > O y

which thus leads to a large anti - pinning energy E
E;in = [g(pout )pouz - g(pin )pin ]V

e The energy per unit length is going to be changed dramatically

when compared to previous estimates, by

AE vortex

L = [g(pom )Ioout — 8(101'11 )pin ]77R2

e Specific heat, transport properties are expected to significantly

affected as well.

Some similar conclusions have been reached recently also by
Donati and Pizzochero, Phys. Rev. Lett. 90, 211101 (2003).



Bertsch Many-Body X challenge, Seattle, 1999

What are the ground state properties of the many-body system composed of
spin Y2 fermions interacting via a zero-range, infinite scattering-length contact
interaction.

In 1999 it was not yet clear, either theoretically or experimentally,
whether such fermion matter is stable or not.

- systems of bosons are unstable (Efimov effect)
- systems of three or more fermion species are unstable (Efimov effect)

« Baker (winner of the MBX challenge) concluded that the system is stable.
See also Heiselberg (entry to the same competition)

* Chang et al (2003) Fixed-Node Green Function Monte Carlo
and Astrakharchik et al. (2004) FN-DMC provided best the theoretical
estimates for the ground state energy of such systems.

« Thomas’ Duke group (2002) demonstrated experimentally that such systems
are (meta)stable.




Consider Bertsch’s MBX challenge (1999): “Find the ground
state of infinite homogeneous neutron matter interacting with

an infinite scattering length. rn—>0 << A, << |aj>o

» Carlson, Morales, Pandharipande and Ravenhall,
PRC 68, 025802 (2003), with Green Function Monte Carlo (GFMC)

normal state

» Carlson, Chang, Pandharipande and Schmidt,
PRL 91, 050401 (2003), with GFMC

superfluid state

This state is half the way from BCS—BEC crossover, the pairing
correlations are in the strong coupling limit and HFB invalid again.



BEC side BCS side

Solid line with open circles — Chang et al. physics/0404115
Dashed line with squares - Astrakharchik et al. cond-mat/0406113



A2n+1)=E(2n+1) — EFI.E' (2n) + E(2n 4 2))

Result for akr = —o0

Green Function Monte Carlo with Fixed Nodes
S.-Y. Chang, J. Carlson, V. Pandharipande and K. Schmidt
physics/0403041



Fixed node GFMC results, S.-Y. Chang et al. (2003)



BCS —BEC crossover
Leggett (1980), Nozieres and Schmitt-Rink (1985), Randeria et al. (1993),...
If a<0 at T=0 a Fermi system is a BCS superfluid

7/3 1242
e

exp[ 4 )<<5F, iff k.|a|<<1 and ézk

2m ra

If |a|]=c0 and nr,*<1 a Fermi system is strongly coupled and its properties
are universal. Carlson et al. PRL 91, 050401 (2003)

Enorma 3 Esu erflui 3
le0.54§gF, ;\fﬂ . z0.44§gF and§=0(/1p), A=0(gr)

If a>0 (a>r,) and na*<«1 the system is a dilute BEC of tightly bound dimers

s

and na’<<1, where n, = = and a,, =0.6a >0



SLDA for dilute atomic Fermi gases

Parameters determined from GFMC results of
Chang, Carlson, Pandharipande and Schmidt, physics/0404115

Dimensionless coupling constants




Now we are going to look at vortices
In dilute atomic gases in the vicinity
of the Feshbach resonance.

Why would one study vortices in neutral
Fermi superfluids?

They are perhaps just about the only
phenomenon in which one can have
a true stable superflow!



How can one put in evidence a vortex
In a Fermi superfluid?

Hard to see, since density changes are not expected, unlike
the case of a Bose superfluid.

However, if the gap Is not small one can expect a
noticeable density depletion along the vortex core,
and the bigger the gap the bigger the depletion!

One can change the magnitude of the gap by
altering the scattering length between two atoms
with magnetic fields by means of a Feshbach
resonance.



From Ketterle’'s
group

; ép i
Bosons with na® E 10 and 10

Number density and pairing field profiles Local vortical speed as fraction of
Fermi speed




Conclusions:

v' An LDA-DFT formalism for describing pairing correlations in Fermi systems
has been developed. This represents the first genuinely local extention

of the Kohn-Sham LDA from normal to superfluid systems - SLDA
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