Some arguments for the need of exascale computing for nuclear structure and reactions and for a comprehensive many-body approach to fermionic superfluid phenomena in general (nuclei, neutron stars, condensed matter systems, cold atom in traps)

> Aurel Bulgac, University of Washington, Seattle, WA

> > To boldly go where no man has gone before

There are two obvious ways to think of using more powerful computers:

• <u>Incremental</u>: consider problems and systems of increased size and increase the number of cases studied – size really matters a great deal

• <u>Quantum jump</u>: generate a qualitatively new approach and a qualitatively new set of problems – new quality matters even more

Generic adiabatic large amplitude potential energy SURFACES

In LACM adiabaticity is not a guaranteed
Level crossings are a great source of :

entropy production (dissipation) dynamical symmetry breaking non-abelian gauge fields

``Spontaneous fission" of ³²S

J.W. Negele, Nucl. Phys. <u>A 502</u>, 371c (1989) An unpublished calculation due to R. Wolff, G. Puddu and J.W. Negele

``Spontaneous fission" of ³²S

J.W. Negele, Nucl. Phys. <u>A 502</u>, 371c (1989) an unpublished calculation due to R. Wolff, G. Puddu and J.W. Negele

8 occupied orbitals evolved in 3D and imaginary time on a mesh 20³x1000
no isospin dof, no pairing, simplified nuclear EDF

Stochastic Time-Dependent Superfluid Local Density Approximation

A traditional approach to LACM within a typical collective description (ATDHF, GCM, CC, etc.) is both unreasonable in a large collective space and insufficient on physics grounds

In order to allow full dynamics on many energy surfaces, onset of entropy production in the simplest realization one has to introduce a stochastic element

- **3D** spatial lattice N_s³=100³
- Number of time steps N_t=10⁴...10⁶
- Number of orbitals $O(N_s^3)=10^6$ on $O(N_s^3)=10^6$ spatial mesh points
- Memory requirements $100 \ge O(N_s^6) = 10^{14}$
- Number of stochastic field realizations 10³...10⁶
- Total number of floating point operations per nucleus 10¹⁸...10²¹

Stochastic Time-Dependent Superfluid Local Density Approximation

This is a general many-body problem with direct applications in:

- Nuclear physics: fission, heavy-ion collision, nuclear reactions
- Neutron star crust, dynamics of vortices, vortex pinning mechanism
- Cold atom physics
- Condensed matter physics

• Time dependent response of superfluid fermionic systems to a large variety of external probes