Some arguments for the need of exascale computing for nuclear structure and reactions and for a comprehensive many-body approach to fermionic superfluid phenomena in general (nuclei, neutron stars, condensed matter systems, cold atom in traps)

Aurel Bulgac, University of Washington, Seattle, WA

To boldly go where no man has gone before
There are two obvious ways to think of using more powerful computers:

- **Incremental**: consider problems and systems of increased size and increase the number of cases studied – size really matters a great deal.

- **Quantum jump**: generate a qualitatively new approach and a qualitatively new set of problems – new quality matters even more.
• In LACM adiabaticity is not a guaranteed
• Level crossings are a great source of:
 entropy production (dissipation)
 dynamical symmetry breaking
 non-abelian gauge fields
``Spontaneous fission“ of 32S

An unpublished calculation due to R. Wolff, G. Puddu and J.W. Negele
``Spontaneous fission`` of 32S

an unpublished calculation due to R. Wolff, G. Puddu and J.W. Negele

- 8 occupied orbitals evolved in 3D and imaginary time on a mesh $20^3 \times 1000$
- no isospin dof, no pairing, simplified nuclear EDF
Stochastic Time-Dependent Superfluid Local Density Approximation

A traditional approach to LACM within a typical collective description (ATDHF, GCM, CC, etc.) is both unreasonable in a large collective space and insufficient on physics grounds.

In order to allow full dynamics on many energy surfaces, onset of entropy production in the simplest realization one has to introduce a stochastic element.

- 3D spatial lattice $N_s^3 = 100^3$
- Number of time steps $N_t = 10^4 \ldots 10^6$
- Number of orbitals $O(N_s^3) = 10^6$ on $O(N_s^3) = 10^6$ spatial mesh points
- Memory requirements $100 \times O(N_s^6) = 10^{14}$
- Number of stochastic field realizations $10^3 \ldots 10^6$
- Total number of floating point operations per nucleus $10^{18} \ldots 10^{21}$
Stochastic Time-Dependent Superfluid Local Density Approximation

This is a general many-body problem with direct applications in:

- Nuclear physics: fission, heavy-ion collision, nuclear reactions
- Neutron star crust, dynamics of vortices, vortex pinning mechanism
- Cold atom physics
- Condensed matter physics
- Time dependent response of superfluid fermionic systems to a large variety of external probes