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Superconductivity and superfluidity in Fermi systems

20 ox:ders off magnitude over a century of (low temperature) physics

v"  Dilute atomic Fermi gases T.~ 1012-10"°eV
v" Liquid 3He T.~ 107eV

v' Metals, composite materials T,~ 103-102eV
v" Nuclei, neutron stars T.~ 10°-106eV

e QCD color superconductivity T, 107 - 108 eV

Q




A little bit of history



Bertsch Many-Body X challenge, Seattle, 1999

What are the ground state properties of the many-body system composed of

spin Y2 fermions interacting via a zero-range, infinite scattering-length contact
interaction.

Why? Besides pure theoretical curiosity, this problem is relevant to neutron stars!

In 1999 it was not yet clear, either theoretically or experimentally,
whether such fermion matter is stable or not! A number of people arqued that
under such conditions fermionic matter is unstable.

- systems of bosons are unstable (Efimov effect)
- systems of three or more fermion species are unstable (Efimov effect)

» Baker (winner of the MBX challenge) concluded that the system is stable.
See also Heiselberg (entry to the same competition)

» Carlson et al (2003) Fixed-Node Green Function Monte Carlo
and Astrakharchik et al. (2004) FN-DMC provided the best theoretical
estimates for the ground state energy of such systems.

 Thomas’ Duke group (2002) demonstrated experimentally that such systems
are (meta)stable.




Bertsch’s regime is nowadays called the unitary regime

The system 1s very dilute, but strongly interacting!
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Early theoretical approach to BCS-BEC crossover
Dyson (?), Eagles (1969), Leggett (1980) ...

gap equation

number density equation

pairing gap

quasi-particle energy




Consequences:

° Usual BCS solution for small and negative scattering lengths,
with exponentially small pairing gap

* For small and positive scattering lengths this equations describe
a gas a weakly repelling (weakly bound/shallow) molecules,
essentially all at rest (almost pure BEC state)

¥ (1.0, T,) = Al o(T)e(T,)...

In BCS limit the particle projected many-body wave function
has the same structure (BEC of spatially overlapping Cooper pairs)

* For both large positive and negative values of the scattering
length these equations predict a smooth crossover from BCS to BEC,

from a gas of spatially large Cooper pairs to a gas of small molecules



What is wrong with this approach:

°* The BCS gap (a<0 and small) is overestimated, thus the critical temperature
and the condensation energy are overestimated as well.

* In BEC limit (a>0 and small) the molecule repulsion is overestimated

* The approach neglects of the role of the “meanfield (HF) interaction,”
which is the bulk of the interaction energy in both BCS and
unitary regime

* All pairs have zero center of mass momentum, which is
reasonable in BCS and BEC limits, but incorrect in the
unitary regime, where the interaction between pairs is strong !!!

(this situation is similar to superfluid “He)

W (5T Ten) ~ A0, )0(F ).




Two-body density matrix and condensate fraction
(wi G+ P} Gy + Py (D, (7)) ———F (|7 = 7, |)

where
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2 + —* + =+ =+ =
g.(r)= Ejd%d% (Wi G+ P (5 + Py Ry, ()

* ik a=0

* 1k a=1
1k a=4
Bogoliubov

| quantum depletion

condensate fraction

BCS theory |

From a talk of Stefano Giorgini (Trento)



What is the best, the most accurate theory
(so far) for the T=0 case?



Fixed-Node Green Function Monte Carlo approach at T=0
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Theory for fermions at T >0
in the unitary regime

Put the system on a spatio-temporal lattice and use
a path integral formulation of the problem



Grand Canonical Path-Integral Monte Carlo

2 2

2m 2m

H=T+V =jd3x{w;(7<)£—h A]WT(me‘(z)(—h A]%(X)}—gjd}'x A, (XA, (X)
N = [d*x [A,(0)+n,(%)], A =y, (x), s=T{

Trotter expansion (trotterization of the propagator)

1 .
E(T)= Tr H ex
(T) 7D p

N(T)= Z(lT)Tr N exp

No approximations so far, except for the fact that the interaction is not well defined!




Recast the propagator at each time slice and put the system on a 3d-spatial lattice,
in a cubic box of side L=N.], with periodic boundary conditions

Discrete Hubbard-Stratonovich transformation

Z 1%[1 * Gi(X)AﬁT(i)] [1 T Gi(X)Aﬁ¢(X)], A= \/exp(rg) —1

o, (X)=%

o-fields fluctuate both in space and imaginary time

Running coupling constant g defined by lattice



Momentum space



A | How to choose the lattice spacing and the box size

n(k)

2L L — box size
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Fermions on a Lattice

How can we study fermions at finite temperature on a computer?
Path integrals on a 4D space-time lattice !
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From a talk of J.E. Drut



Z(T) = j HDG(:E, ) TrU({c})

One-body evolution
=T
H exp{~r[h({c}) - ul} operator in imaginary time

H Do(z,7)TrU({o}) [AU({o})]
Z(T) TrU({c})

Tr0({o}) = {det[1 + U({o})]}* = exp[-S({o})] > 0

All traces can be expressed through these single-particle density matrices




More details of the calculations:
* Lattice sizes used from 63 x (300-1361), 8° x (250-1750) and 103

 Effective use of FFT(W) makes all imaginary time propagators diagonal (either in real
space or momentum space) and there is no need to store large matrices

» Update field configurations using the Metropolis importance sampling algorithm

* Change randomly at a fraction of all space and time sites the signs the auxiliary fields
O(x,T) so as to maintain a running average of the acceptance rate of about 0.5

* Thermalize for 50,000 — 100,000 MC steps or/and use as a start-up
field configuration a o(x,7)-field configuration from a different T

» At low temperatures use Singular Value Decomposition of the
evolution operator U({0}) to stabilize the numerics

* Use 100,000-2,000,000 6(x,7)- field configurations for calculations

* MC correlation “time” = 250 — 300 time steps at T= T
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Superfluid to Normal Fermi Liquid Transition
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The known dependence of the entropy on temperature at
unitarity S(T) can be used to devise a thermometer!

How?

* The temperature can be measured either in the BCS
or BEC limits, where interactions are weak, and easily be
related to the entropy S(T)

* The system can then adiabatically (S= constant) be brought
into the unitary regime and from the calculated S(T) one can
read T
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NB The chemical potential is essentially constant below
the critical temperature!



This is the same behavior as for a gas of noninteracting (!) bosons
below the condensation temperature.




assuming a Bogoliubov like spectrum  &(p) = pc \/1 +

I'(3)g(3)

3

TV, if T<my’, ¢ =¢E
h'c

and fitting to lattice results = m, = 3m

* Why this value for the bosonic mass?

 Why these bosons behave like noninteracting particles?




Let us consider other power law behaviors

Lattice results disfavor either n=3 or n<2
and suggest n=2.5(0.25)



More Results...

Condensate fraction O:
Order parameter for

Off Diagonal A E:
Long Range Order b ,
(C.N. Yang) 210

=== Free Bose

Free Bose gas-like:
3/2

o) = &(0) [ 1 - (Tl) ]

Free : (0) =1
Unitary: &(0) = 0.6

[ Tc=023(2) ]

Functional form for an ideal Bose gas!

Two-body density matrix and condensate fraction

(Wi G+ 7 W + P (5w (7)) —aF (|7~ 7 ) From a talk of J.E. Drut






Conclusions

v' The present calculational scheme is free of the fermion sign problem
(unlike the Quantum MC T=0 results). The T=0 limit of the present
results confirms the QMC results.

v' Fully non-perturbative calculations for a spin %> many fermion

system in the unitary regime at finite temperatures are feasible.
This system undergoes a phase transition in the bulk at T = 0.22 (3) €,

v' The phase transition is observed in various thermodynamic potentials
(total energy, entropy, chemical potential) as well as in the presence

of off-diagonal long range order in the two-body density matrix. One can
define also a thermometer.

v' Below the transition temperature the system behaves as a free condensed
Bose gas (!), which is superfluid at the same time! No thermodynamic hint of
Fermionic degrees of freedom!

Above the critical temperature one observes the thermodynamic behavior of
a free Fermi gas! No thermodynamic trace of bosonic degrees of freedom!

v"  New type of fermionic superfluid.




