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One of my favorite times in the academic vear occurs in early spring when |

give my class of extremely bright graduate students, who have mastered

quantum mechanics but are otherwise unsuspecting and imnoceént, a take-
home exam in which they are asked to deduce superfluidity from first prin-

ciples. There is no doubt a special place in hell being reserved for me at this

very moment for this mean trick, for the task is impossible. Superfluidity, like

the fractional quantum Hall effect, is an emergent phenomenon — a low-ener-
gv collective effect of huge numbers of particles that cannot be deduced from
the microscopic equations of motion in a rigorous way and that disappears
completely when the system is taken apart®. There are prototypes for super-
fluids, of course, and students who memorize them have taken the first step
down the long road to understanding the phenomenon, but these are all ap-
proximate and in the end not deductive at all, but fits to experiment. The
students feel betrayed and hurt by this experience because they have been
trained to think in reductionist terms and thus to believe that everything not
amenable to such thinking is unimportant. But nature is much more heart-

less than I am, and those students who stay in physics long enough to se-
riously confront the experimental record eventually come to understand that
the reductionist idea is wrong a great deal of the time, and perhaps always.

Robert B. Laughlin, Nobel Lecture, December 8, 1998




Superconductivity and superfluidity in Fermi systems

v Dilute atomic Fermi gases T,> 1012V
e Liquid 3He T.> 107 eV
e Metals, composite materials T.>103-102eV
v" Nuclei, neutron stars T, >10° - 106 eV

e QCD color superconductivity T, >107 - 103eV
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How pairing emerges?

Cooper’s argument (1956)

Gap 2D

Cooper pair



In dilute Fermi systems only very few characteristics of
the particle-particle interaction are relevant. Why?

» These systems are typically very cold

* A dilute Fermi system 1s degenerate and the fastest particle
has a momentum of the order of the Fermi momentum
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» The wave functions are basically constant over the interaction
volume of two particles and thus they cannot “see” any details,
except the scattering length typically.




What is the scattering length?
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‘a>0 abound state exists

a<0 there 1s no bound state
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In the region outside the potential well




At very low energies the interaction of two particles
can be approximated by the pseudo-potential

>0 (repulsive) 1f a>0
<0 (attractive) 1f a<0
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In dilute atomic systems experimenters can control nowadays
almost anything:

e The number of atoms in the trap

 The density of atoms

» Mixtures of various atoms

* The temperature of the atomic cloud

* The strength of the atom-atom interaction




Feshbach resonance

Tiesinga, Verhaar, Stoof
Phys. Rev. A47, 4114 (1993)
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Regal and Jin
Phys. Rev. Lett. 90, 230404 (2003)



BCS —BEC crossover
Leggett (1980), Nozieres and Schmitt-Rink (1985), Randeria ef a/. (1993)

If a<0 at T=0 a Fermi system is a BCS superfluid

j, iff k. [al<<]and £=—fE 55 1
a

k. Ak,

If |a|=0 and nr,°a 1 a Fermi system is strongly coupled and its properties
are universal. Carlson ef a/. PRL 91, 050401 (2003)
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If a>0 (a>>r;) and na’*a 1 the system is a dilute BEC of tightly bound dimers

n
and na’ <<1, where n, =—_ and a,, =0.600(3)a >0
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Expected phases of a two species dilute Fermi system

M
A fluids
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a<( a>() 1/a
no 2-body bound state shallow 2-body bound state



Regal, Ticknor, Bohm and Jin, Nature 424, 47 (2003)
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FIG. 1. Schematic of the ground-state hyperfine levels of *'K
(shown with exaggerated Zeeman splittings).

DeMarco and Jin, Phys. Rev. A 58, R4267 (1998)



Regal, Ticknor, Bohm and Jin, Nature 424, 47 (2003)
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FIG. 4: Absorption images of the quantum gas using a Stern-
Gerlach technique. We start with ultracold fermionie atoms in
the 9/2, ~5/2) and [9/2, —9/2) states of ""K. A magnetic field
ramp through the Feshbach resonance causes 509 atom loss,
due to adiabatic conversion of atoms to diatomic molecules.
To directly detect these bosonic molecules we apply an rf pho-
todissociation pulse; the dissociated molecules then appear in
the |9/2 —7/2) and 9/2 —0/2) atom states. The shaded bar
indicates the optical depth.




Greiner, Regal and Jin, Nature 426, 537 (2003)
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Size of the atomic cloud as a function of temperature
around the critical temperature
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“Fundamental” and “effective” Hamiltonians
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If one is interested in phenomena with momenta , where r
is the typical range of the interaction, the “fundamental” Hamiltonian is too complex.
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Working with contact couplings requires regularization and renormalization,
which can be done in several different, but equivalent ways.

We will show that IS over-determined.




Kohler, Gasenzer, Jullienne and Burnett, cond-mat/0305028.
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Some simple estimates in case a > 0 and a > r,

wi in open channel at r > 1 wis inregionr <r,

To

ry(r) = Ar, {HO( Py, (r) =y, (r) = 1y 4

a

Probability to find two atoms:

Ty 2A2 3 AZ 3

P(r<ny)=[rdr[y,(r) +y,(r) |~ . o [or o
0

if oscillatej

Most of the time the two atoms spend at large separations,
y,(r) — open channel (dimer), v,(r) — closed channel (Feshbach molecule)




In order to develop our program we have at first to have a well defined
procedure for constructing an effective Hamiltonian for interacting atoms
and dimers starting from the “fundamental” Hamiltonian describing bare

interacting atoms.
45 h2v2 1 A 1 o AR A
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H, is a low energy reduction of the “fundamental” Hamiltonian, I, and I, are
determined by the scattering length a and a three-body characteristic (denoted
below by a.’). Interaction terms with derivatives are small as long as kr,a 1.

H,,, is determined by the matching” to be briefly described below.



H, Ham E/N

atom-atom vertex
(Lippmann-Schwinger eq.)

atom-dimer vertex
(Faddeev eqgs.)

dimer-dimer vertex
(Yakubovsky eqgs.)

Matching between the 2--, 3-- and 4--particle amplitudes tomputed with H_ and
Only diagrams containing I.--vertices are shown.

The effective vertices thus defined (right side) can then be used to compute the
ground state interaction energy in the leading order terms in an expansion,
which is given by the diagrams after the arrows.



Fermi atoms

P 3zh’a,, 3.537xh’a
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a, =1.179a

 2zh*a,, 127h’a
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A

a =0.600(3)a

a_., was first computed first by Skornyakov and Ter-Martirosian (1957)
who studied neutron-deuteron scattering.
a..., was computed by Petrov (2003) and Fonseca (2003).




Consider now a dilute mixture of fermionic atoms and (bosonic) dimers
at temperatures smaller than the dimer binding energy (2a>0 and a>>r)

E 3n’k; m’a , 3.537xh’a 0.67h’°a , .
== +————n,n, +———n, +&,n, + corrections
: m

I’lf + I’lf

V_S 2m m

One can show that
pairing is typically weak!

2n,e,

Uylg,0)=U; —5—"———
fbf(q ) o o —¢,(g,+2nU,,)

U, = . _I'q Induced fermion-fermion interaction
m, 2m,

Bardeen et al. (1967),

in coordinate representation at @ =0 Heiselberg of ol (2000),
vz Bijlsma ef a/. (2000)
Uy (1) ", 4ntir eXp[ Viverit (2000),

Viverit and Giorgini (2000)

coherence/healing length
and speed of sound




a=n,"3/2.5 (solid que)
a=n,"3/3 (dashed line)




How this atomic-molecular cloud really looks like in a trap?

Core: Molecular BEC

Crust: normal Fermi fluid
Mantle: Molecular BEC + Atomic Fermi Superfluid

Everything s made of one kind of atoms only, in two different hyperfine states.



All this follows by solving the Thomas-Fermi equations:

U 2U
——fb,ub _[1 _
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Hy =2V () =U ,n(r)
Uy,

n,(r)=

Ik (F)

. +U pn, (r)=p, =V (r) } F only for V(ﬁz) = const <V(r) < V(R,,) = const

n,(r)= . —U2V(r)} B only for V(r)< V(IE) = const
bb

Molecular BEC




So far we dealt with the relatively simple cases, when the system
1s dilute, 1n the sense that the particles are on average at separations
significantly larger than the interaction radius =r,.

However, in these systems the scattering length a really plays
the role of interaction radius.

What happens when |a|=9] ?



Consider Bertsch’s MBX challenge (1999): “Find the ground
state of infinite homogeneous neutron matter interacting with

an infinite scattering length. n—>0 << A, << |al>w

» Carlson, Morales, Pandharipande and Ravenhall,
PRC 68, 025802 (2003), with Green Function Monte Carlo (GFMC)

normal state

» Carlson, Chang, Pandharipande and Schmidt,
PRL 91, 050401 (2003), with GFMC

superfluid state

This state is half the way from BCS—BEC crossover, the pairing
correlations are in the strong coupling limit and HFB invalid again.



A@n+ 1) = E@n+ 1) — 2(E(2n) + E(2n +2))

0.44 N E .

Result for akpr = —o¢

Green Function Monte Carlo with Fixed Nodes
J. Carlson, S.-Y. Chang, V. Pandharipande and K. Schmidt

private communication (2003)



Fixed node GFMC results, J. Carlson ef al. (2003)

a<0 (apart from two cases)




Fixed node GFMC results, J. Carlson et al. (2003)



Even though two atoms can bind,
there 1s no binding among dimers!

Fixed node GFMC results, J. Carlson et al. (2003)



Anderson and Itoh,Nature, 1975
“Pulsar glitches and restlessness as a hard superfluidity phenomenon”

The crust of neutron stars is the only other place in the entire Universe where one

can find solid matter, except planets. ANEUTRON STAR: SURFACE and INTERIOR
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Landau criterion for superflow stability

(flow without dissipation)

Consider a superfluid flowing in a pipe with velocity v..

2
Nmv

: - o
B, + 5 <Eyt+é&;+v,-p+

no internal excitations

One single quasi-particle excitation with momentum p

A

In the case of a Fermi superfluid this condition becomes \4

S <—
hk,



Density Functional Theory (DFT)
Hohenberg and Kohn, 1964

RSB €————————particle density

Local Density Approximation (LDA) The energy density is typically
Kohn and Sham. 1965 \ determined in ab initio calculations
—_— b

E, = [drel p(7),7(F)]

of infinite homogeneous matter.

Kl‘he main reason for the A in LDA is
due to the inaccuracies of the gradient
corrections.

p(F) = Z| Vi(?) |2

—~ Single-particle wave functions

7(F) = Z| Vv, (7) [




LDA (Kohn-Sham) for superfluid fermi systems

(Bogoliubov-de Gennes equations)

E,, = [d’re(p(F), 7(7),v(7))
p(F) =2 |v,(F)[, (7)) =2 Vv, (F)

v(F) =D u, (F)v,(7)

(T+U(77)_ﬂ A(7) j(uk(’_;)j:E (uk(?)j
A7) ~(T+UF -\ v, (7)) "\ v, ()
Mean-field and pairing field are both local fields!

(for sake of simplicity spin degrees of freedom are not shown)

There is a little problem! The pairing field D diverges.




Nature of the problem

- o . 1
v(R,n)= ka(’ﬂ)uk(’”z)oc .
E, >0 ‘7’1—7"2‘
O B
A(rlarz)ZEV(rlarz)V(rvrz)

It is easier to show how this singularity appears
in infinite homogeneous matter (BCS model)

at small separations

vi (7)) = v, exp(ik -7), u, (%) =u, exp(ik -F,)

2 2 -
J, u, +v, =1, ¢ =




Pseudo-potential approach
(appropriate for very slow particles, very transparent
but somewhat difficult to improve)

Lenz (1927), Fermi (1931), Blatt and Weiskopt (1952)
Lee, Huang and Yang (1957)

AL o . . :
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m
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v v v
2
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a 2 m(1 + ika)

if kr,<<1 then V(F)y(F)= ga(f)ai[w(f)]
r

Example : w(r) = £+ B+.=> 5(?)?[1/;”(17)]: o(r)B
r r




The SLDA (renormalized) equations
E,=[d’riey [p(F) )]+ e [o@)v ()]

def

esloGlv@)] = —AGW.(F)= g G .GY

2m(r

A (F)u,(F) = [h(F) = p1v,(F) = E,v,(F) AGF)=—g.(FW.(7)

{maw—umxﬂ+Aawwﬁ>=meﬂ <Vﬁ?§ "G U

11 _mUUhUU{L_hJﬂlnhﬁﬂ+h%ﬂ}
gy (F)  glp(]  27°R° 2k, (F) "k (F) = kp(F)

p. () =23 Vi, v.7) =3 v, (P, ()

E,;>0 E,;>0
2712 = 2712 ;=
PP . GO e W .3 GO R o
2m(r) 2m(r)
Position and momentum dependent running coupling constant
Observables are (obviously) independent of cut-off energy (when chosen properly).




How can one determine the density dependence
of the coupling constant g? | know two methods.

&g [ ,0(77 ), V(F )] — Y [ ,O(I_’: )] | V(? ) |2 <«— Superfluid contribution to EDF

v" In homogeneous low density matter one can compute the pairing gap as a
function of the density.

v" One computes also the energy of the normal and superfluid phases as a function
of density, as was recently done by Carlson et al, Phys. Rev. Lett. 91, 050401 (2003)
for a Fermi system interacting with an infinite scattering length (Bertsch’s MBX

1999 challenge)

In both cases one can extract from these results the superfluid contribution to the
LDA energy density functional in a straight forward manner.



Vortex in neutron matter

Uy (7)) (u,(r)expli(n+1/2)¢ —ikz]
v . (7)) \v, (r)expli(n—1/2)¢—ikz]

j, n - half -integer

A(F) = A(r)exp(i@), ¥ =(r,9,z) [cyllindrical coordinates]

Oz - vortex symmetry axis

Ideal vortex, Onsager's quantization (one 7 per Cooper pair)




— phase shift — phase shift

— effective range — effective range
" RG I

NB! Extremely high relative T,

2)?{3}32&} [ T W
— eXp| —

€ 2m 2 tano (k F) “— Corrected Emery formula (1960)
NN-phase shift
RG- renormalization group calculation

Schwenk, Friman, Brown, Nucl. Phys. A713, 191 (2003)
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Dramatic structural changes of the vortex state naturally lead
to significant changes in the energy balance of a neutron star

0.12, extremely fast vortical motion,

_(X:_

S &
® In IOW denSity region g(loout )pout > g(pin )piﬂ

which thus leads to a large anti - pinning energy E Zm >0:

E;/l'n = [g(pout)pout - g(pi” )’Oi’1 ]V

e The energy per unit length is going to be changed dramatically

when compared to previous estimates, by

AE

vortex

L = [g(pout)pout - g(pi")pi" ]ﬂRz

e Specific heat, transport properties are expected to significantly

affected as well.

Some similar conclusions have been reached recently also by
Donati and Pizzochero, Phys. Rev. Lett. 90, 211101 (2003).



Vortices in dilute atomic Fermi
systems in traps

v 1995 BEC was observed.

v' 2000 vortices in BEC were created, thus BEC
confirmed un-ambiguously.

v In 1999 DeMarco and Jin created a degenerate
atomic Fermi gas.

v' 2002 O’Hara, Hammer, Gehm, Granada and Thomas observed
expansion of a Fermi cloud compatible with the existence of a
superfluid fermionic phase.



BEC Vortices

RERERE

\%\ 1 X K.W. Madison et al, J. Mod. Opt. 47, 2715 (2000),
F. Chevy et al, Phys. Rev. Lett. 85, 2223 (2000).
| i D

J.R. Abo-Shaeer et al, Science, 285, 1703 (2001)







Why would one study vortices in neutral
Fermi superfluids?

They are perhaps just about the only
phenomenon in which one can have
a true stable superflow!



How can one put in evidence a voriex
in a Fermi superfiuid?

Hard to see, since density changes are not expected, unlike
the case of a Bose superfluid.

What we learned from the structure of a vortex in low density
neutron matter can help however.

If the gap is not small one can expect a noticeable density

depletion along the vortex core, and the bigger the gap the
bigger the depletion.

One can change the magnitude of the gap by altering the
scattering length between two atoms with magnetic fields
by means of a Feshbach resonance.



f‘.—}

T PN S 7 \5/3
{ r(r) + Bn(r)”* +

m | 2m* n(r)/

) »“}
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» This form is not unique, as one can have either:
(setl) or and (set ll).
» Gradient terms not determined yet (expected minor role).



Solid lines - parameter set |,
Dashed lines for parameter set |l
Dots — velocity profile for ideal vortex

The depletion along the vortex core
is reminiscent of the corresponding
density depletion in the case of a
vortex in a Bose superfluid, when the
density vanishes exactly along the axis
for 100% BEC.




40K (Fermi) atoms in a spherical harmonic trap

Effect of interaction, with and without weak and strong pairing correlations
with fixed chemical potential.

Mean-field and Pairing fields Particle number density

— no interaction
— mean-field + pairing
—— mean-field + no pairing

a infinite

a finite

m= 0.14u10-%V, hw=0.568 10-"%eV,
=-12.63nm (when finite)



40K (Fermi) atoms in a spherical harmonic trap

Effect of interaction, with and without weak and strong pairing correlations
with fixed particle number,

Mean-field and Pairing field Particle number density

— no interaction
- - mean-field + pairing
—— mean-field + no pairing

9
8
7
6
5
4
3
2
1

OO

hw=0.568 110-12eV, a = -12.63nm (when finite)



Conclusions:

v' The field of dilute atomic systems is going to be for many years to come
one of the most exciting fields in physics, with lots surprises at every corner.




