
The Many Facets of The Many Facets of SuperfluiditySuperfluidity in in 
Dilute Fermi SystemsDilute Fermi Systems

Aurel Bulgac

collaborators: Yongle Yu, P.F. Bedaque. A. C. Fonseca

Transparencies will be available shortly at 
http://www.phys.washington.edu/~bulgac



Robert B. Laughlin, Nobel Lecture, December 8, 1998Robert B. Laughlin, Nobel Lecture, December 8, 1998



Dilute atomic Fermi gases                  Dilute atomic Fermi gases                  TTcc > > 1010--1212 eVeV

•• Liquid  Liquid  33He                                         He                                         TTcc >> 1010--77 eVeV

•• Metals, composite materials               Metals, composite materials               TTcc > > 1010--3 3 –– 1010--22 eVeV

Nuclei, neutron stars                          Nuclei, neutron stars                          TTcc > > 101055 –– 101066 eVeV

•• QCD color superconductivity               QCD color superconductivity               TTcc > > 10107 7 –– 10108 8 eVeV

Superconductivity and Superconductivity and superfluiditysuperfluidity in Fermi systemsin Fermi systems

units (1 eV > 104 K)



• 1913    1913    KamerlinghKamerlingh OnnesOnnes

•• 1972    1972    BardeenBardeen, Cooper and , Cooper and SchriefferSchrieffer

•• 1973    1973    EsakiEsaki, , GiaeverGiaever and and JosephsonJosephson

•• 1987    1987    BednorzBednorz and Mullerand Muller

•• 1996    Lee, 1996    Lee, OsheroffOsheroff and Richardsonand Richardson

•• 2003   2003   AbrikosovAbrikosov, , GinzburgGinzburg and Leggettand Leggett

Memorable years in the history of Memorable years in the history of superfluiditysuperfluidity and and 
superconductivity  of Fermi systemssuperconductivity  of Fermi systems



Gap   2D

Cooper pair

Cooper’s argument (1956)

How pairing emerges?



In dilute Fermi systems only very few characteristics of 
the particle-particle interaction are relevant. Why?   

• These systems are typically very cold  

• A dilute Fermi system is degenerate and the fastest particle 
has a momentum of the order of the Fermi momentum

• The wave functions are basically constant over the interaction
volume of two particles and thus they cannot “see” any details,
except the scattering length typically. 
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What is the scattering length?

2
0 0

0

1 1 cotan ( )  ...    
2

0    a bound state exists
   

0   there is no bound state

( ) exp( ) exp( )    1 ( )
kr

k k - r k
a

a
a  

f ar ik r ikr O kr
r r

δ

ψ
→

= + +

>
 <

= + ≈ − +
GG Gi

In the region outside the potential well



At very low energies the interaction of two particles 
can be approximated by the pseudo-potential
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In dilute atomic systems experimenters can control nowadays
almost anything:

• The number of atoms in the trap

• The density of atoms

• Mixtures of various atoms

• The temperature of the atomic cloud

• The strength of the atomThe strength of the atom--atom interactionatom interaction



Regal and Jin 
Phys. Rev. Lett. 90, 230404 (2003)

Feshbach resonance
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Tiesinga, Verhaar, Stoof
Phys. Rev. A47, 4114 (1993)

Atomic
seperation 

Energy 

E
res

 

E
th

 



BCS  →BEC crossover

If a<0 at T=0 a Fermi system is a BCS superfluid

Leggett (1980), Nozieres and Schmitt-Rink (1985), Randeria et al. (1993)
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If |a|=∞ and nr0
3á1 a Fermi system is strongly coupled and its properties 

are universal. Carlson et al. PRL 91, 050401 (2003)

If a>0 (a≫r0) and na3á1 the system is a dilute  BEC of tightly bound dimers
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1/a

T

a<0
no 2-body bound state

a>0
shallow 2-body bound state

BCS Superfluid

High T, normal atomic (plus a few molecules) phase 

Molecular BEC and
Atomic+Molecular Superfluids

Expected phases of a two species dilute Fermi system



Regal, Ticknor, Bohm and Jin, Nature 424, 47 (2003)

a) Loss of atoms |9/2,-9/2> and |9/2,-5/2> as a function of final B. The initial value of 
B=227.81 G.

b)  Scattering length between hyperfine states |9/2,-9/2> and |9/2,-5/2> as a function
of the magnetic field B.

Number of atoms after ramping B from  
228.25 G to 216.15 (black dots) and for 
ramping B down (at 40 ms/G) and up at 
various rates (squares).



DeMarco and Jin, Phys. Rev. A 58, R4267 (1998)



Dimer/molecule binding energy

Symmetric peak is near the atomic  |9/2,-5/2>
to |9/2,-7/2> transition. The total number of 
|9/2,-5/2> and |9/2,-7/2> atoms is constant.

Asymmetric peak corresponds to dissociation
of molecules into free |9/2,-5/2> and |9/2,-7/2>
atoms. The total number of |9/2,-5/2> and |9/2,-7/2> 
atoms increases. EEhh bindingatomrf ∆−−= νν

Regal, Ticknor, Bohm and Jin, Nature 424, 47 (2003)



Molecular BEC in a cloud of  40K atoms (fermions)
Greiner, Regal and Jin, Nature 426, 537 (2003)

T > TC T<TC



Size of the atomic cloud as a function of temperature 
around the critical temperature



“Fundamental” and “effective” Hamiltonians

If one is interested in phenomena with momenta p = ħk << ħ/r0 , ,where r0 
is the typical range of the interaction, the “fundamental” Hamiltonian is too complex.

Working with contact couplings requires regularization and renormalization,
which can be done in several different, but equivalent ways. 

We will show that Heff is over-determined.



Köhler, Gasenzer, Jullienne and Burnett, cond-mat/0305028.

Feshbach resonance

Atomic
seperation 

Energy 

E
res

 

E
th

 

NB The size of the “Feshbach molecule”
(closed channel state) is largely B-independent
and smaller than the interparticle separation. 



Some simple estimates in case a > 0 and a ≫ r0

Most of the time the two atoms spend at large separations, 
y1(r) — open channel (dimer), y2(r) — closed channel (Feshbach molecule) 
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In order to develop our program we have at first to have a well defined 
procedure for constructing an effective Hamiltonian for interacting atoms 
and dimers starting from  the “fundamental” Hamiltonian describing bare 
interacting atoms.    

Ha is a low energy reduction of the “fundamental” Hamiltonian, l2 and l3 are 
determined by the scattering length a and a three-body characteristic (denoted 
below by a3’). Interaction terms with derivatives are small as long as kr0á1.

Ham is determined by the matching” to be briefly described  below.



Matching between the 2--, 3-- and 4--particle amplitudes computed with Ha and Ham.
Only  diagrams containing l2--vertices are shown. 

The effective vertices thus defined (right side) can then be used to compute the 
ground state interaction energy in the leading order terms in an na3 expansion, 
which is  given by the diagrams after the arrows.

atom-atom vertex
(Lippmann-Schwinger eq.)

atom-dimer vertex
(Faddeev eqs.)

dimer-dimer vertex
(Yakubovsky eqs.)

Ha Ham E/V



Fermi atoms
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aam was first computed first by Skornyakov and Ter-Martirosian (1957) 
who  studied neutron-deuteron scattering. 

amm was computed by Petrov (2003) and Fonseca (2003) .
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Consider now a dilute mixture of fermionic atoms and (bosonic) dimers
at temperatures smaller than the dimer binding energy (a>0 and a≫r0)

Induced fermion-fermion interaction

Bardeen et al. (1967), 
Heiselberg et al. (2000), 
Bijlsma et al. (2000)
Viverit (2000), 
Viverit and Giorgini (2000) 
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coherence/healing length 
and speed of sound

One can show that 
pairing is typically weak!



a = nb
-1/3/2.5  (solid line)

a = nb
-1/3/3   (dashed line)
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The atom-dimer mixture can potentially be a system 
where relatively strong coupling pairing can occur. 
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CrustCrust:  normal Fermi fluid
MantleMantle: Molecular BEC + Atomic Fermi Superfluid

Core:Core: Molecular BEC 

How this atomic-molecular cloud really looks like in a trap?

Everything s made of one kind of atoms only, in two different hyperfine states.



All this follows by solving the Thomas-Fermi equations:
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The core, the central region.
Molecular BEC  

The crust, the outside layer.
Normal Fermi gas

The mantle, the layer between the core and the crust.
Molecular BEC + Fermi BCS



So far we dealt with the relatively simple cases, when the system
is dilute, in the sense that the particles are on average at separations
significantly larger than the interaction radius ≈r0.

However, in these systems the scattering length a really plays
the role of interaction radius.

What happens when |a|=¶ ?



Consider Bertsch’s MBX challenge (1999): “Find the ground 
state of infinite homogeneous neutron matter interacting with 
an infinite scattering length.” 

Carlson, Morales, Pandharipande and Ravenhall, 
PRC 68, 025802 (2003),  with Green Function Monte Carlo (GFMC) 
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Carlson, Chang, Pandharipande and Schmidt,
PRL 91, 050401 (2003), with GFMC

normal state

superfluid state

This state is half the way from BCS→BEC crossover, the pairing 
correlations are in the strong coupling limit and HFB invalid again.
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Green Function Monte Carlo with Fixed Nodes
J. Carlson, S.-Y. Chang, V. Pandharipande and K. Schmidt
private communication (2003)
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Fixed node GFMC results, J. Carlson et al. (2003)

a<0 (apart from two cases) a>0
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Fixed node GFMC results, J. Carlson et al. (2003)



Even though two atoms can bind, 
there is no binding among dimers!

Fixed node GFMC results, J. Carlson et al. (2003)



• A neutron star will cover 
the map at the bottom

• The mass is  about 
1.5 solar masses

• Density 1014  g/cm3

Anderson and Itoh,Nature, 1975
“Pulsar glitches and restlessness as a hard superfluidity phenomenon” 
The crust of neutron stars is the only other place in  the entire Universe where one 
can find solid matter, except planets.

Author: Dany Page



Landau criterion for superflow stability
(flow without dissipation)

Consider a superfluid flowing in a pipe with velocity vs:
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no internal excitations



Density Functional Theory (DFT) 
Hohenberg and Kohn, 1964

Local Density Approximation (LDA) 
Kohn and Sham, 1965 

Normal Fermi systems only!
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GρΕ= particle density
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The energy density is typically 
determined in ab initio calculations
of infinite homogeneous matter.

The main reason for the A in LDA is 
due to the inaccuracies of the gradient
corrections.  

Single-particle wave functions
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LDA (KohnLDA (Kohn--Sham) for Sham) for superfluidsuperfluid fermifermi systemssystems
((BogoliubovBogoliubov--de de GennesGennes equations)equations)

There is a little problem! The pairing field There is a little problem! The pairing field DD diverges.diverges.

MeanMean--field and pairing field are both local fields!field and pairing field are both local fields!
(for sake of simplicity spin degrees of freedom are not shown)(for sake of simplicity spin degrees of freedom are not shown)
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It is easier to show how this singularity appears 
in infinite homogeneous matter (BCS model)
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PseudoPseudo--potential approach potential approach 
(appropriate for very slow particles, very transparent(appropriate for very slow particles, very transparent
but somewhat difficult to improve)but somewhat difficult to improve)

Lenz   (1927), Fermi  (1931), Lenz   (1927), Fermi  (1931), BlattBlatt and and WeiskopfWeiskopf (1952)(1952)
Lee, Huang and Yang  (1957)Lee, Huang and Yang  (1957)
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The SLDA (renormalized) equationsThe SLDA (renormalized) equations



How can one determine the density dependence How can one determine the density dependence 
of the coupling constant g?  I know two methods.of the coupling constant g?  I know two methods.

In homogeneous low density matter one can compute the pairing gaIn homogeneous low density matter one can compute the pairing gap as a p as a 
function of the density. function of the density. NB this is not a BCS/HFB result!NB this is not a BCS/HFB result!

One computes also the energy of the normal and One computes also the energy of the normal and superfluidsuperfluid phases as a function phases as a function 
of density, as was recently done by Carlson et al, Phys. Rev. Leof density, as was recently done by Carlson et al, Phys. Rev. Lett. tt. 9191, 050401 (2003), 050401 (2003)
for a Fermi system interacting with an infinite scattering lengtfor a Fermi system interacting with an infinite scattering length (h (Bertsch’sBertsch’s MBXMBX
1999 challenge) 1999 challenge) 
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In both cases one can extract from these results the In both cases one can extract from these results the superfluidsuperfluid contribution to thecontribution to the
LDA energy density functional in a straight forward manner. LDA energy density functional in a straight forward manner. 
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Vortex in neutron matter
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Schwenk, Friman, Brown, Nucl. Phys. A713, 191 (2003)

NB! Extremely high relative Tc

Corrected Emery formula (1960)

NN-phase shift



Distances scale with lF

Distances scale with x>>lF
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Dramatic structural changes of the vortex state naturally lead Dramatic structural changes of the vortex state naturally lead 
to significant changes  in the energy balance of a neutron starto significant changes  in the energy balance of a neutron star

Some similar conclusions have been reached recently also by 
Donati and Pizzochero, Phys. Rev. Lett. 90, 211101 (2003).



Vortices in dilute atomic Fermi 
systems in traps

1995 BEC was observed.
2000 vortices in BEC were created, thus BEC 
confirmed un-ambiguously.
In 1999 DeMarco and Jin created a degenerate 
atomic Fermi gas.
2002 O’Hara, Hammer, Gehm, Granada and Thomas observed 
expansion of a Fermi cloud compatible with the existence of a 
superfluid fermionic phase.

Observation of stable/quantized vortices in Fermi systems  would provide the 
ultimate and most spectacular proof for the existence of a Fermionic superfluid
phase. 



K.W. Madison et al, J. Mod. Opt. 47, 2715 (2000),
F. Chevy et al, Phys. Rev. Lett. 85, 2223 (2000). 

J.R. Abo-Shaeer et al, Science, 285, 1703 (2001)

BEC Vortices BEC Vortices 





Why would one study vortices in neutral 
Fermi superfluids?

They are perhaps just about the only 
phenomenon in which one can have  
a true stable superflow! 



How can one put in evidence a vortex
in a Fermi superfluid?

Hard to see, since density changes are not expected, unlike   
the case of a Bose superfluid.

What we learned from the structure of a vortex in low density
neutron matter can help however.

If the gap is not small one can expect a noticeable density 
depletion along the vortex core, and the bigger the gap the 
bigger the depletion. 

One can change the magnitude of the gap by altering the 
scattering length between two atoms with magnetic fields
by means of a Feshbach resonance.



Now one can construct an LDA functional to describe 
this new state of Fermionic matter 

This form is not unique, as one can have either:
b=0 (set I)  or b≠0 and  m*=m (set II).
Gradient terms not determined yet (expected minor role).
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Dots – velocity profile for ideal vortex 

The depletion along the vortex core
is reminiscent of the corresponding
density depletion in the case of a 
vortex in a Bose superfluid, when the 
density vanishes exactly along the axis
for 100% BEC. Extremely fast quantum vortical motion!



m= 0.14µ10-10eV, ħw=0.568 µ10-12eV, 
a = -12.63nm (when finite)
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40K (Fermi) atoms in a spherical harmonic trap

Effect of interaction, with and without weak and strong pairing correlations 
with fixed chemical potential.



ħw=0.568 µ10-12eV, a = -12.63nm (when finite)

40K (Fermi) atoms in a spherical harmonic trap

Effect of interaction, with and without weak and strong pairing correlations 
with fixed particle number, N = 5200.
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Conclusions:Conclusions:
The field of dilute atomic systems is going to be for many years to come

one of the most exciting fields in physics, with lots surprises at every corner.


