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What shall | talk about?

v | shall describe how a rather subtle quantum phenomenon,
the Fermion counterpart of the Casimir effect, is affecting quite
drastically the crystalline structure of the neutron star crust,
leading likely to a more complex phase, with a richer structure.

v | shall also show that in low density neutron matter, when neutron
matter becomes superfluid and vortices can form, the spatial profile

of a vortex resembles more its Bose counterpart, and develops a strong
density depletion along its axis.
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Cet me create! al caricature ofi a the pasta phase: In the crust o a neutron: star.

Imagine that the entire plane is a cross section through a space filled with
non-interacting fermions at some finite density and zero temperature.

Let me create two empty spherical or cylindrical regions of radius a and
separated by r.

Question: What is the most favorable arrangement of these two spheres?

Answer: The energy of the system does not depend on r as long as r > 2a.
NB Assuming that a liquid drop model for the fermions is accurate!



Let us try to think of this situation now in quantum mechanical terms.

The dark blue region is really full of de Broglie’s waves, which is in
the absence of homogeneities are simple plane waves.

When inhomogeneities are present, there are a lot of scattered waves.

Also, there are some almost stationary waves, which reflect back and forth
from the two tips of the empty spheres.

r

As in the case of a musical instrument, in the absence of damping, the stable
“musical notes” correspond to stationary modes.

Problems: 1) There is a large number of such modes.
2) The tip-to-tip modes cannot be absolutely stable, as the
reflected wave disperses in the rest of the space.



The ratio of the exact Casimir energy and the chemical potential for four equidistant
spheres of radius a separated by r forming a tetrahedron and also the same ratio
computed as a sum of interactions between pairs or triplets for two different separations.
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The Casimir energy for various phases.
The lattice constants are:

L = 23, 25 and 28 fm respectively.

u — antifilling factor

I, — average density



b) u=0.5 p,=0.04 fm™*
a) u=0.87 p,=0.037 fm™°
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FIG. 4. The energy density
difference AE/V between nuclear
phases as a function of the total
density. Solid curve denotes the
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and rodhke phase. Dotted curve
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Smaller subfigures show the en-
ergy density of mpe matter as a
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moment for four different densi-
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What have we established so far?

v' Quantum corrections (Casimir energy) to the ground state energy of
inhomogeneous neutron matter are of the same magnitude or larger
then the energy differencies between various simple phases.

v’ Lattice defects and lattice distortions have characteristic energy
changes of the same order of magnitude.

v Only relatively large temperatures (of order of 10 MeV) lead to
the disappearance of these quantum energy corrections.

v" Fully self-consistent calculations confirm the fact that the “pasta phase”
might have a rather complex structure, various shapes can coexist, at

the same time significant lattice distortions are likely and the neutron star
crust could be on the verge of a disordered phase.

* Pethick and Potekhin, Phys. Lett. B 427, 7 (1998) present argument in favor
of a liquid crystal structure of the “pasta phase.”

* Jones, Phys. Rev. Lett. 83, 3589 (1999) claims that the thermal fluctuations are
so large that the system likely cools down to an amorphous and heterogeneous
phase.



Now | shall switch gears and discuss some aspects of the physics of
vortices in low density neutron matter .

A vortex is just about the only phenomenon in which a true stable
superflow is created in a neutral system

v" | shall describe briefly the DFT-LDA to superfluid Fermi systems
(Density Functional Theory-Local Density Approximation).

v" | shall apply this theory to describe the basic properties of a vortex
in low density neutron matter.



The LDA equations for superfluid Fermi systems:

E,s = /{Eg-r'[éfﬁr[rf] + Eq(r)].
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Y.Yu and A. Bulgac, PRL 90, 222501 (2003)



“Screening effects” are significant!

from Lombardo and Schulze
astro-ph/0012209




- — - non-interacting
— without pairing
— — with pairing

T

FIG. 1. Diagrams for the induced interactions between two fer-
mions in different internal states to second order in the effective
interaction.




Landau criterion for superflow: stability:

(flow without dissipation)

Consider a superfluid flowing in a pipe with velocity v..

2
Nmv;

E,+ 5
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no internal excitations

One single quasi-particle excitation with momentum p

A

In the case of a Fermi superfluid this condition becomes \4
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\ortex In neutron matter
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], n - half -integer

A(F) = A7) exp(id), 7 =(7,¢,z) [cyllindrical coordinates]

Oz - vortex symmetry axis

Ideal vortex, Onsager's quantization (one 7 per Cooper pair)
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Y. Yu and A. Bulgac, PRL 90, 161101 (2003)
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Dramatic structural changes of the vortex state naturally lead
to significant changes in the energy balance of a neutron star

e In low density region &(p,,,) 0., > £(p,,) P,

which thus leads to a large anti - pinning energy E;.n >0:

E;n = [8(pout ),001" - g(pin )pin ]V

e The energy per unit length is going to be changed

dramatically when compared to previous estimates, by

AE

#Ortex = [g(pout)pout o 8(pi”)’0m ]ﬂ.Rz

e Specific heat, transport properties are expected to

significantly affected as well.

Some similar conclusions have been reached recently also by
Donati and Pizzochero, Phys. Rev. Lett. 90, 211101 (2003).

Y. Yu and A. Bulgac, PRL 90, 161101 (2003)



Main conclusions of this presentation:

v The crust of a neutron star has most likely a rather complex
structure, among candidates: regular solid lattice, liquid crystal,
significant number of defects and lattice distortions, disordered
phase, amorphous and heterogeneous phase. The elastic properties
of such structures vary, naturally, a lot from one structure to another.

v' At very low neutron densities vortices are expected to have a
very unusual spatial profile, with a prominent density depletion along
the axis of the vortex. The energetics of a star is thus affected in a
major way and the pinning mechanism of the vortex to impurities is
changed as well.



