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A rather incomplete list of major questions still left unanswered

in nuclear physics concerning pairing correlations:

v" Do nuclear pairing correlations have a volume or/and surface character?

Phenomenological approaches give no clear answer as anything fits equally well.
The density dependence of the pairing gap (partially related to the previous
topic), the role of higher partial waves (p-wave etc.) especially in neutron matter.

v The role of the isospin symmetry in nuclear pairing.

Routinely the isospin symmetry is broken in phenomenological approaches with

really very lame excuses.
Role of collective modes, especially surface modes in finite nuclei, role of
“screening effects.”

v’ Is pairing interaction momentum or/and energy dependent at any noticeable

level?
Pairing in T = 0 channel?

v Does the presence or absence of neutron superfluidity have any influence

on the presence and/or character of proton superfluidity and vice versa.
New question raised recently: are neutron stars type | or Il superconductors?

We should try to get away from the heavily phenomenological approach which
dominated nuclear pairing studies most of last 40 years and put more effort in an
ab initio and many-body theory of pairing and be able to make reliable predictions,
especially for neutron stars. The studies of dilute atomic gases with tunable
interactions could serve as an extraordinary testing ground of theories.



To tell me how to describe pairing correlations
in nuclei and nuclear/neutron matter?

Most likely you will come up with one of
the standard doctrines, namely:




How does one decide if one or another theoretical approach is
meaningful?

Really, this is a very simple question. One has to check a few things.

@ Is the theoretical approach based on a sound approximation
scheme?
Well,..., maybe!

© Does the particular approach chosen describe known key
experimental results, and moreover, does this approach predict
new qualitative features, which are later on confirmed experimentally?

@ Are the theoretical corrections to the leading order result under
control, understood and hopefully not too big?



Let us check a simple example, homogeneous dilute Fermi gas with a weak
attractive interaction, when pairing correlations occur in the ground state.

An additional factor of is due
to induced interactions
Gorkov and Melik-Barkhudarov in 1961.

FIG. 1. Diagrams for the induced interactions between two fer-
mions in different internal states to second order in the effective
interaction.

from Heiselberg et al
Phys. Rev. Lett. 85, 2418, (2000)



“Screening effects” are significant!

from Lombardo and Schulze
astro-ph/0012209




[LDA (Kohn-Sham)) for superfluid fermi systems

(Bogoliubov-de Gennes equations)

E,, = [d’rs(p(7),c(7),v(7))
p(F) =2 |v,(F)}, () =2 |Vv, ()

v(F) =D u, (F)v,(F)

T'+U((r)—A A(r) u,(7) _ u,(7)
A (F) ~(T+U@FE) =D \v(®)) v (7)

Mean-field'and pairing fieldfare both local fields!

(Tersake el simplicity spinTdEQrEES Gl ffeedoen ane not shown)




Nature of the problem
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It is easier to show how this singularity appears
in infinite homogeneous matter (BCS model)

at small separations
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Solution of the problem in the case of the homogeneous matter
(Lee, Huang and Yang and others)

Gap equation

V(n-r)=gdé(1 —r,)

Lippmann-Schwinger equation
(zero energy collision)

Now combine the two equations and
the divergence is (magically) removed!
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IHow: people deal with this problem in finite
systems?

v Introduce an explicit energy cut-off, which can vary from
5 MeV to 100 MeV (sometimes significantly higher) from
the Fermi energy.

v Use a particle-particle interaction with a finite range, the
most popular one being Gogny's interaction.

Bothrappreaches are in thefinallanalysisiequivalentiniprinciple; as ar potential
Withrafinite range rp Provides a (smoeoeth) cut=efifat anrenergy B, =hz/mr;2

> heangument that nuclear forees, have afinite range IsiSUperileus, PECAUSE
AUcEIear paiing s maniiest at small energies: and distances ol the erder o the
conerence lengt, Whichiissmuchrsmallefthans nuciearradik

> Wereover, EDAWorks pretty welliortheregularmeansield:

> A similarargumentiiails asiwellin case ol electrons, Where the radiusioirthe
interaction isininiterand ERDANS finE:



Why would one consider a local pairing field?

radius of interaction interparticle separation

|
A= (()DEXP[—WV < ¢&

coherence length
size of the Cooper pair



Pseudo-potential approach
(appropriate for very slow particles, very transparent
but somewhat difficult to improve)

Lenz (1927), Fermi (1931), Blatt and Weiskopt (1952)
LLee, Huang and Yang (1957)
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How to deal with an iInhomogeneous/finite system?

W}A% (4.7)
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There is complete freedom in choosing the Hamiltonian'h
and we are going to take advantage of this!



We shall use a “Thomas-Fermi”” approximation for the propagator G.
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The renormalized equations:
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How well does the new approach work?

TABLE I. The rms of 5., and &%, deviations, respectively,

from experiment [21] (in MeV 's) for several isotope and isotone
chains,

Z or N Sﬂ_ﬁl l."rS_H Sﬂ_ﬁl I."rS_H Sﬂ_ﬁu
chain present Ref. [11] Retf. [23]

0.82,/0.76 1.02/0.92 (.96
0.67/0.50 0.66/0.55 1.30
0.93,/0.63 0.66,/0.63 221
0.29,/0.21 0.43,/0.35 (LY95
0.23,/0.37 0.58/0.53 0,74
0.37,/0.26 0.41,/0.23 MNA
0.43,/0.31 0.50,/0.56 MNA
0.42,/0.23 0.88,/0.52 MNA
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Ref. 21, Audi and Wapstra, Nucl. Phys. A595, 409 (1995).
Ref. 11, S. Goriely ef al. Phys. Rev. C 66, 024326 (2002) - HFB
Ref. 23, S.Q. Zhang ef a/. nucl-th/0302032. - RMF




One-neutron separation energies
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We use the same normal EDF as Fayans ef a/.

Fayans ef al. Nucl. Phys. A676, 49 (2000)

Goriely ef al. Phys. Rev. C 66, 024326 (2002)

Exp. - Audi'and Wapstra, Nucl. Phys. A595, 409 (1995)



One-nucleon separation energies
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Let me backtrack a bit and summarize some of the ingredients of
the LDA to superfluid nuclear correlations.

Energy Density (ED) describing the normal system

ED contribution due to superfluid correlations

E, = [driey[p, (7). p, (P + £5Lp, (F). 0, (F).v, (F).v, (P}

exlp, (), p,(F)=¢eylp,(r), p,(r)]
(EsLp. (), p,(P),v, (), v,(F)]=&lp,(F), p,(F),v,(F),v,(F)]

Isospin symmetry
(Coulomb energy and other relatively small terms not shown here.)

Let us consider the simplest possible ED compatible with nuclear symmetries
and with the fact that nuclear pairing corrrelations are relatively weak.

. 2
gS[ppﬂpn9Vp’Vn]_gO|Vp+Vn| +gl|vp_vn

;_\K__J ;_\K__J

like p,+p, like p,—-p,

g, and g, could depend as well on p and p,



Let us stare at this part of the ED for a moment, ... or two.

SU(2) invariant ?

2 2
=g |v,+tv, [ +g|v,-v,]

=gllv, [ +v,[1 + g [v,v, +v,v,]

g=g,+g g£=8,-&

NB | am dealing here with s-wave pairing only|(S=0 and T=1)!

The last term could not arise from a two-body bare interaction.



Zavischa, Regge and Stapel, Phys. Lett. B 185, 299 (1987)
Apostol, Bulboaca, Carstoiu, Dumitrescu and Horoi,

Europhys. Lett. 4, 197 (1987) and Nucl. Phys. A 470, 64 (1987)
Dumitrescu and Horoi, Nuovo Cimento A 103, 635 (1990)
Horoi, Phys. Rev. C 50, 2834 (1994)

considered various mechanisms to couple the proton and neutron
superfluids in nuclei, in particular a zero range four-body interaction

which could lead to terms like <RIV

* Buckley, Metlitski and Zhitnitsky, astro-ph/0308148 considered an
SU(2) - invariant Landau-Ginsburg description of neutron stars in
order to settle the question of whether neutrons and protons
superfluids form a type | or type Il superconductor. However, | have
doubts about the physical correctness of the approach .



Schematic model, one single degenerate level per each kind of nucleon

Assuming g < g'< 0 (g =g,+t&g, 8'=g0— 8,)
Egs=g0(vp+vn)2+g1(vp—vn)2=g(vf,+v,f)+2g'vpvn
_ NQ, [, N |, 29,|,__Z This would have been
s 2 2Q 2 2Q the same if g’=0.
+2g' NQ, 1 - N 29, 1 - Z «— N tribution!?
g 5 20 5 2Q ew contribution!’
=-A,v,-A v,




If one takes into account that pairing redistributes particles over single-particle
levels also, the gain in the total energy due to the onset of pairing correlations,
The so called condensation (of Cooper pairs) energy, becomes:

It looks like total binding energy of a given system does not acquire
a qualitative new contribution. One can mimic two couplings by one only.
This might not be the case however if one tries to describe many systems

The excitation spectrum however is changed when g’#0 (different gaps).



2 2
=g lv,+v, | +g|v,—Vv,|

=gllv, [ +|v,I'] + g [v,v,+v,v,]

_ "
g=8)1E& =80 &
This ED is SU(2) invariant, however is not U(2) invariant!

If one allows for density dependence of the coupling constant, then

2 2

NB, in general the coupling is not a symmetric function! gﬁon,pp) ¢g(,0p,,0n)



Let us try to cure that and consider a different contribution to EDF:

~ P
+ £,
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Let me now put the two things together:

VoV |= &0, POV, I+, ]

P, =P,
+ (o, pV, [ =lv,['] =2
p,+p,
where  g(p,,p,)=g(p,,P,)

and  f(p,.0,)=1(p,P,)




Goriely et al, Phys. Rev. C 66, 024326 (2002) in the most extensive and
by far the most accurate fully self-consistent description of all known
nuclear masses (2135 nuclei with A28) with an rms better than 0.7 MeV use:

V' =-265.3MeV

pp

V' =-237.6 MeV

nn

for even systems

vV —=-=-277.8MeV

pp

V. =-246.9 MeV
E. =15MeV cutoff energy

for odd systems

While no other part of their nuclear EDF violates isospin symmetry, and moreover,
while they where unable to incorporate any contribution from CSB-like forces, this
fact remains as one of the major drawbacks of their results and it is an
embarrassment and needs to be resolved. Without that the entire approach is in
the end a mere interpolation, with limited physical significance.



Let us now remember that there are more neutron rich nuclei and let me estimate
the following quantity of all measured nuclear masses:

Conjecturing now that Goriely et al, Phys. Rev. C 66, 024326 (2002) have as a
matter of fact replaced in the “true” pairing EDF the isospin density dependence
simply by its average over all masses, one can easily extract from their pairing
parameters the following relation:

where f = -039¢g>0 and g<0

repulsion attraction



The most general form of the superfluid contribution (s-wave only) to
the LDA energy density functional, compatible with known nuclear symmetries.

|2

2
=g(p,,p)IV, " +g(p,,p,) |V,

v" In principle one can consider as well higher powers terms in the anomalous
densities, but so far | am not aware of any need to do so, if one considers
binding energies alone.

v There is so far no clear evidence for gradient corrections terms in the
anomalous density or energy dependent effective pairing couplings.



How one can determine the density dependence
of the coupling constant g? | know two methods.

v" In homogeneous low density matter one can compute the pairing gap as a
function of the density.

v' One compute also the energy of the normal and superfluid phases as a function
of density, as was recently done by Carlson et al, Phys. Rev. Lett. 91, 050401 (2003)
for a Fermi system interacting with an infinite scattering length (Bertsch’s MBX

1999 challenge)

In both cases one can extract from these results the superfluid contribution to the
LDA energy density functional in a straight foward manner.



Conclusions

v" An LDA-DFT formalism for describing pairing correlations in Fermi systems
has been developed. This represents the first genuinely local extensiontion
of the Kohn-Sham LDA from normal to superfluid systems

v" Nuclear symmetries lead to a relatively simple form of the superfluid
contributions to the energy density functional.

v Phenomenological analysis of a relatively large number of nuclei (more
than 200) indicates that with a single coupling constant one can describe
very accurately proton and neutron pairing correlations in both odd and
even nuclei. However, there seem to be a need to introduce a consistent
isospin dependence of the pairing EDF.

v' There is a need to understand the behavior of the pairing as a function of
density, from very low to densities several times nuclear density, in particular
pairing in higher partial waves, in order to understand neutron stars.

v It is not clear so far whether proton and neutron superfluids do influence
each other in a direct manner, if one considers binding energies alone.

v The formalism has been applied as well to vortices in neutron stars and to
describe various properties of dilute atomic Fermi gases and there is also
an extension to 2-dim quantum dots due to Yu, Aberg and Reinman.



