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LDA is understood here as the Kohn-Sham extension of the Hohenberg-
Kohn extension of the Energy Density Functional (EDF). 

We shall not discuss here the existence and/or the uniqueness of the LDA 
(EDF) to systems with pairing correlations.  

However, we shall discuss the feasibility, the implementation, how LDA for 
systems with pairing correlations works and the accuracy of this approach.

Since the Hartree-Fock-Bogoliubov approximation is not accurate for the 
description of the pairing correlations (explicit examples will be given during 
the presentation) in either the weak or strong coupling limits, one is left with 
no option but to use an EDF or some other approach (still to be formulated, 
but it is really unclear what else could be feasible).  

A few introductory clarifications:
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Dilute atomic Fermi gases                  Tc > 10-12 eV

• Liquid  3He                                         Tc > 10-7 eV

• Metals, composite materials               Tc > 10-3 – 10-2 eV

Nuclei, neutron stars                          Tc > 105 – 106 eV

• QCD color superconductivity               Tc > 107 – 108 eV

Superconductivity and superfluidity in Fermi systems

units (1 eV > 104 K)



Why is the nuclear  pairing problem 
still an open problem ?

We do not know yet whether pairing has a volume or/and surface 
character.
The isospin properties of the pairing field are largely unknown (more 
about this later).
Coupling of the pairing field to vibrations is a field still in its infancy. 
Even though nuclear pairing coupling occurs in the so called weak 
coupling limit, screening effects are large and effects beyond mean-
field (HFB) are substantial.
Pairing is a key feature of neutron stars and we understand this part 
still rather badly:  proton and neutron pairing in s and p partial 
waves, properties of vortices, mixed phases, etc.
Prediction of nucleon drip lines and basic nuclear properties for 
exotic nuclei - RIA physics and astrophysics (nucleo-synthesis).  



Density Functional Theory (DFT) 
Hohenberg and Kohn, 1964

Local Density Approximation (LDA) 
Kohn and Sham, 1965 

Normal Fermi systems only!
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Nonsense!

Assume that there are two different many-
body wave functions, corresponding to the 
same number particle density!



Gap   2D

Cooper pair

Cooper’s argument



After retaining  only the pole (bound state) 
contribution in the 2-particle channel

Following Migdal and using a half-century old language: 
Feynman diagrams (sum over histories)

Improve the particle propagator
beyond the usual mean-field

A new  field, the pairing field, 
is appearing, which mixes 
particle and hole states.



Hartree-Fock-Bogoliubov approximation
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LDA for superfluid fermi systems
(Bogoliubov-de Gennes equations)

There is a little problem! The pairing field D diverges.

Mean-field and pairing field are both local fields!
(for sake of simplicity spin degrees of freedom are not shown)



),(),(
2
1),(

1)()u(v),(

212121

210
2k1

*
k21

rrrrVrr

rr
rrrr

kE

rrrrrr

rr
rrrr

ν

ν

=∆

−
∝= ∑

>

Nature of the problem

It is easier to show how this singularity appears 
in infinite homogeneous matter (BCS model)
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A (too) simple case

21
22

0
2221 22

sin
2

)(

0,0

rr
m

kr
krdkmrr

kF

rr
hh

rr

−
∆

=
∆

→−

→→

∫
∞ π

ππ
ν

δ

The integral converges (conditionally) at  k > 1/r    (iff r>0)

The divergence is due to high momenta and thus its nature is 
independent of whether the system is finite or infinite 
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In the final analysis all is an issue of the order of taking various limits:
r → 0 versus cut-off x → ∞



Solution of the problem in the case of the homogeneous matter 
(Lee, Huang  and Yang and others)

Gap equation 
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How people deal with this problem in finite 
systems?

Introduce an explicit energy cut-off, which can vary from 
5 MeV to 100 MeV (sometimes significantly higher) from 
the Fermi energy.
Use a particle-particle interaction with a finite range, the 
most popular one being Gogny’s interaction. 

Both approaches are in the final analysis equivalent in principle, as a  potential 
with a finite range r0 provides a (smooth) cut-off at an energy Ec =ħ2/mr0

2

The argument that nuclear forces have a finite range is superfluous, because 
nuclear pairing is manifest at small energies and distances of the order of the 
coherence length, which is much smaller than  nuclear radii. 

Moreover, LDA works pretty well for the regular mean-field.

A similar argument fails as well in case of electrons, where  the radius of the 
interaction is infinite and LDA is fine.



FD NV
Exp εω <<








−=∆

||
1

1
0

−=≅ F
F

k
p

r h

radius of interaction interparticle separation

0
1 r
k

F

F

>>
∆

≈
εξ

coherence length
size of the Cooper pair

Why would one consider a local pairing field?
Because it makes sense physically!
The treatment is so much simpler!
Our intuition is so much better also.



Pseudo-potential approach 
(appropriate for very slow particles, very transparent
but somewhat difficult to improve)

Lenz   (1927), Fermi  (1931), Blatt and Weiskopf (1952)
Lee, Huang and Yang  (1957)
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How to deal with an inhomogeneous/finite system?
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There is complete freedom in choosing  the Hamiltonian h
and we are going to take advantage of this!
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The renormalized equations:

Typo: replace m by m(r)



A. Bulgac, Phys. Rev. C 65, 051305 (2002)

A. Bulgac and Y. Yu,
Phys. Rev. Lett. 88, 042504 (2002)

Vacuum renormalization

New renormalization scheme



A few notes:

The cut-off energy Ec should be larger than the Fermi energy.
It is possible to introduce an even faster converging scheme for the pairing 
field with Ec of a few D’s only.
Even though the pairing field was renormalized, the total energy should be 
computed with care, as the “pairing” and “kinetic” energies separately diverge.

Still diverges!
One should now introduce the normal and the superfluid contributions to the 
Energy Density Functional (EDF).
Isospin symmetry

We considered so far only the case g0=g1.



BCS

from Lombardo and Schulze
astro-ph/0012209

“Screening effects” are significant!

s-wave pairing gap in infinite
neutron matter with realistic
NN-interactions

These are major effects beyond the naïve HFB



Andreev reflection

Peculiarity of the finite systems:
deep hole states are continuum states.

outside inside
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How well does the new approach work?

Ref. 21, Audi and Wapstra, Nucl. Phys. A595, 409 (1995).
Ref. 11, S. Goriely et al. Phys. Rev. C 66, 024326 (2002) - HFB
Ref. 23,  S.Q. Zhang et al. nucl-th/0302032.   - RMF
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Charge radii
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• We use the same normal EDF as Fayans et al. 
volume pairing only with one universal constant

• Fayans et al. Nucl. Phys. A676, 49 (2000)
5 parameters for pairing (density dependence with 
gradient terms (neutrons only).

• Goriely et al. Phys. Rev. C 66, 024326 (2002)
volume pairing, 5 parameters for pairing, 
isospin symmetry broken

• Exp. - Audi and Wapstra, Nucl. Phys. A595, 409 (1995)



Borrowed from http://www.lsw.uni-heidelberg.de/~mcamenzi/NS_Mass.html

“meat balls”

“lasagna”



Landau criterion for superflow stability
(flow without dissipation)

Consider a superfluid flowing in a pipe with velocity vs:
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Vortex in neutron matter
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Fayans’s FaNDF0
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from  Heiselberg et al 
Phys. Rev. Lett. 85, 2418, (2000)

An additional factor of 1/(4e)1/3 

is due to induced interactions
Again, HFB not valid.



Distances scale with lF
Distances scale with x>>lF
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Dramatic structural changes of the vortex state naturally lead 
to significant changes  in the energy balance of a neutron star



Vortices in dilute atomic Fermi 
systems in traps

1995 BEC was observed.
2000 vortices in BEC were created, thus BEC confirmed 
un-ambiguously.
In 1999 DeMarco and Jin created a degenerate atomic 
Fermi gas.
2002 O’Hara, Hammer, Gehm, Granada and Thomas observed 
expansion of a Fermi cloud compatible with the existence of a 
superfluid fermionic phase.

Observation of stable/quantized vortices in Fermi systems  would provide the 
ultimate and most spectacular proof for the existence of a Fermionic superfluid
phase. 



How can one put in evidence a vortex
in a Fermi superfluid?

Hard to see, since density changes are not expected, unlike   
the case of a Bose superfluid.

What we learned from the structure of a vortex in low density
neutron matter can help however.

If the gap is not small one can expect a noticeable density 
depletion along the vortex core, and the bigger the gap the 
bigger the depletion. 

One can change the magnitude of the gap by altering the 
scattering length between two atoms with magnetic fields
by means of a Feshbach resonance.



Regal and Jin 
Phys. Rev. Lett. 90, 230404 (2003)

Feshbach resonance
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Consider Bertsch’s MBX challenge (1999): “Find the ground 
state of infinite homogeneous neutron matter interacting with 
an infinite scattering length.” 

Carlson, Morales, Pandharipande and Ravenhall, 
nucl-th/0302041,  with Green Function Monte Carlo (GFMC) 
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Carlson, Chang, Pandharipande and Schmidt,
physics/0303094, with GFMC
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normal state

superfluid state

This state is half the way from BCS→BEC crossover, the pairing 
correlations are in the strong coupling limit and HFB invalid again.



Now one can construct an LDA functional to describe 
this new state of Fermionic matter 

This form is not unique, as one can have either:
b=0 (set I)  or b≠0 and  m*=m (set II).
Gradient terms not determined yet (expected minor role).
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Solid lines are results  for parameter 
set I, dashed lines  for parameter set II
(dots – velocity profile for ideal vortex) 

The depletion along the vortex core
is reminiscent of the corresponding
density depletion in the case of a 
vortex in a Bose superfluid, when the 
density vanishes exactly along the axis
for 100% BEC.



m= 0.14µ10-10eV, ħw=0.568 µ10-12eV, 
a = -12.63nm (when finite)
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40K (Fermi) atoms in a spherical harmonic trap

Effect of interaction, with and without weak and strong pairing correlations 
with fixed chemical potential.



ħw=0.568 µ10-12eV, a = -12.63nm (when finite)

40K (Fermi) atoms in a spherical harmonic trap

Effect of interaction, with and without weak and strong pairing correlations 
with fixed particle number, N = 5200.
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Lessons:

There are essentially no systems where the naïve BCS/HFB 
approximation works with reasonable accuracy. In nuclear/neutron
matter one would need densities lower than 10-6 fm-3 for the simple
BCS formula and one would still be off by a factor of 2 in the gap.

Even in dilute Fermi gases corrections to the BCS/HFB formalism
are essential, even though often (but not always) n|a|3á1

Nuclei and  neutron stars are essentially in the regime of strong
coupling, even though in particular nuclei the pairing gaps are 
relatively small

No need for a finite range of the interaction so far in pairing and the 
big question is whether there are any nuclear phenomena in particular 
where the role of the finite range corrections in medium could be 
ascertained unambiguously!?



Summary
LDA for Fermi systems with superfluid correlation is simple and easy to 
implement with all nuclear symmetries satisfied. 

The agreement between experiment and  theory for one- and two-nucleon 
separation energies is spectacular, and likely there is  lot of room for 
improvement. 

The simple form of the LDA functional suggest new facets of pairing worthy 
investigation (g0≠g1).

Application to other physical systems: neutron stars, dilute (and not) atomic 
systems straightforward and offering new qualitative results.

A number of theoretical developments desirable: isoscalar and isovector
density dependence of the pairing coupling, “effective range” corrections(?), 
linear response, EDF dependences on anomalous densities other than 
quadratic, pairing in other partial waves, coupling between neutron and 
proton pairing vibrations. 


