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A few introductory clarifications:

v LDA is understood here as the Kohn-Sham extension of the Hohenberg-
Kohn extension of the Energy Density Functional (EDF).

v" We shall not discuss here the existence and/or the uniqueness of the LDA
(EDF) to systems with pairing correlations.

v However, we shall discuss the feasibility, the implementation, how LDA for
systems with pairing correlations works and the accuracy of this approach.

v" Since the Hartree-Fock-Bogoliubov approximation is not accurate for the
description of the pairing correlations (explicit examples will be given during
the presentation) in either the weak or strong coupling limits, one is left with
no option but to use an EDF or some other approach (still to be formulated,
but it is really unclear what else could be feasible).
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Superconductivity and superfluidity in Fermi systems

v Dilute atomic Fermi gases
e Liquid 3He

e Metals, composite materials
v Nuclei, neutron stars

e QCD color superconductivity

T.>1012 eV

T.> 107 eV
T.>103-102eV
T, >105 - 106 eV

T, >107 - 108eV



Why Is the nuclear pairing problem
still an open problem ?

» We do not know yet whether pairing has a volume or/and surface
character.

> The isospin properties of the pairing field are largely unknown (more
about this later).

» Coupling of the pairing field to vibrations is a field still in its infancy.
Even though nuclear pairing coupling occurs in the so called weak
coupling limit, screening effects are large and effects beyond mean-
field (HFB) are substantial.

» Pairing is a key feature of neutron stars and we understand this part
still rather badly: proton and neutron pairing in s and p partial
waves, properties of vortices, mixed phases, etc.

» Prediction of nucleon drip lines and basic nuclear properties for
exotic nuclei - RIA physics and astrophysics (nucleo-synthesis).



Density Functional Theory (DFT)
Hohenberg and Kohn, 1964

E, = jd3r8[p(f)] G particle density

Local Density Approximation (LDA)
Kohn and Sham, 1965

E, = [drel p(),7(F)]

p(7) = ZI v, (F) [

r(F)=2 |Vv,(F) [




4o Ty ) = p(F) Assume that there are two different many-
Y, (7,...,ry) = p(r) body wave functions, corresponding to the

same number particle density!
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Closed shell nuclaus Cipen shell nucleus

Cooper's argument

Gap 2D

Cooper pair



Following Migdal and using a half-century old language:
Feynman diagrams (sum over histories)

Improve the particle propagator
beyond the usual mean-field

After retaining only the pole (bound state)
contribution in the 2-particle channel

A new field, the pairing field,
is appearing, which mixes
particle and hole states.




Hartree-Fock-Bogoliubov approximation
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LDA for superfluid fermi systems

(Bogoliubov-de Gennes equations)

E, = [d’re(p(F).t(7).v(F))
p(F) =2 |v,(F)}, () =2 |Vv, ()

v(F) =D u, (F)v,(F)

T'+U(r)—4 A(7) u,(r) _ u,(r)
A'(F) ~(T+UA - \v () v, (7)

Mean-field and pairing field are both local fields!

(for sake of simplicity spin degrees of freedom are not shown)




Nature of the problem

. . . 1
v(7,75) = ka(’ﬂ)uk(’”z)oc E—
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It is easier to show how this singularity appears
in infinite homogeneous matter (BCS model)

at small separations

v, (r)=v, exp(ilg-?), u (r)y=u, exp(ilg-?)
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A (too) simple case
k. —>0,0—>0

V(‘?l_?z‘)_) sinkr  Am T

I _ _
27z2h2£d kr 27°h* 2 -7,

The integral converges (conditionally) at k> 1/r (iff r>0)

The divergence is due to high momenta and thus its nature is
independent of whether the system is finite or infinite



If one introduces an explicit
momentum cut-off one has
deal with this integral iff r>0.

If r=0 then the integral
is simply:




Solution of the problem in the case of the homogeneous matter
(Lee, Huang and Yang and others)

Gap equation

Vn—1,)=go(rn-1)

Lippmann-Schwinger equation
(zero energy collision)

Now combine the two equations and
the divergence is (magically) removed!

m




How people deal with this problem in finite
systems?

v" Introduce an explicit energy cut-off, which can vary from
5 MeV to 100 MeV (sometimes significantly higher) from
the Fermi energy.

v Use a particle-particle interaction with a finite range, the
most popular one being Gogny’s interaction.

Both approaches are in the final analysis equivalent in principle, as a potential
with a finite range r, provides a (smooth) cut-off at an energy E, =h?/mr?

» The argument that nuclear forces have a finite range is superfluous, because
nuclear pairing is manifest at small energies and distances of the order of the
coherence length, which is much smaller than nuclear radii.

» Moreover, LDA works pretty well for the regular mean-field.

» A similar argument fails as well in case of electrons, where the radius of the
interaction is infinite and LDA is fine.



Why would one consider a local pairing field?
v'Because it makes sense physically!
v'The treatment is so much simpler!
v'Our intuition is so much better also.

radius of interaction interparticle separation

1

coherence length
size of the Cooper pair




Pseudo-potential approach
(appropriate for very slow particles, very transparent
but somewhat difficult to improve)

Lenz (1927), Fermi (1931), Blatt and Weiskopf (1952)
Lee, Huang and Yang (1957)
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How to deal with an inhomogeneous/finite system?

def A, (P (F T .
Vo (F) = Z{Vf(ﬂu"(?er} — A(Z ) G, (4,7)

def

reg -
° r'—r

G. (A7) = 1im{G(F,?',l)+m}

27h*|F = F'

[h(’_;)_gi]‘//i(’_;) =0
A -n|GF 7', 1) =6(F =7')

There is complete freedom in choosing the Hamiltonian h
and we are going to take advantage of this!



We shall use a “Thomas-Fermi’’ approximation for the propagator G.

~ mexp(ik; (17)‘17 — 77")
27h?|F — 7
ik, (r)m
27’
R, iy = 2, hzkc (7)
2m 2m
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vreg(r) = ZV (F)u,(r)+

Regularized anomalous density Regular part of G



The renormalized equations:

= —A(r)ve(r) = geg IH (7)),
[h*r*j—;fu ) + A(7)v;(r) = Eui(r),
) [JIE' |7 —,r'f] = Bv(r)

?—3
LV Ur).
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New renormalization scheme

Vacuum renormalization
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FIG. 2. The gap A and the effective coupling constant g.g
as a function of the cut-off energy FE. for three regularization
schemes. The full lines correspond to calculations using Eqs.
(— )‘ Circles correspond to the regularization scheme pre-
sented in Ref. [5] (when only terms with k. are present). The
pentagrams correspond to the vacuum regularization scheme
[16]. The calculation was performed for homogeneous neutron
matter with p = 0.08 fm~* and g = —250 MeV - fm~.

A. Bulgac, Phys. Rev. C 65, 051305 (2002)

12

FIG. 1. The neutron pairing field |::| as a hanction of
the radial coordinate and of the cut—off energy F.. Upward
various curves correspond to £, = 20, 30, 35, 40, 45 and
50 MeV respectively. On the scale of the figure the last two

curves are indistinguishable.

A. Bulgac and Y. Yu,
Phys. Rev. Lett. 88, 042504 (2002)
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A few notes:

The cut-off energy E, should be larger than the Fermi energy.

It is possible to introduce an even faster converging scheme for the pairing
field with E, of a few D’s only.

Even though the pairing field was renormalized, the total energy should be
computed with care, as the “pairing” and “kinetic” energies separately diverge.

/ BriEn (r) + Es(r)).

—A(r)ve(r) = geg(7)|Ve(1T)) 2

Still diverges!

One should now introduce the normal and the superfluid contributions to the
Energy Density Functional (EDF).

ELENENEOGEEE 2 Co(r) = go(7)|vp(r) + vn(r) [ + g1(7)|vp(r) — va(r)]

We considered so far only the case g,=9g;.




“Screening effects” are significant!

Ar [MeV]

Chen et al_MNPA 451, 509 (1986)
Ainsworth et al., PLB222, 173 (1989)

Chen gt al., NPA 555, 59 (1993)

~ Wambach et al., NPA 555, 128 (1993)

Schulze et al., PLB 375, 1{1996)
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ke Ifm"1]

from Lombardo and Schulze
astro-ph/0012209



Peculiarity of the finite systems:
deep hole states are continuum states.

outside inside

refrac{particle
reflected particle /

-

”
incident particle ’/ /

Cooper pair

reflected hpble

Andreev reflection



Integration contours used to construct the normal and
anomalous densities from the Gorkov Green functions
Belyaev ef a/, Sov. J. Nucl. Phys. 45, 783 (1987).

Even systems Odd systems






How well does the new approach work?

TABLE I. The rms of 5., and &%, deviations, respectively,
from experiment [21] (in MeV 's) for several isotope and isotone

chains.

Z or N
chain

San/Sn
present

San /Sn
Ref. [11]

Saw

Ref. [23]

£ =20
L =28
£ = 4
£ = 51}
£ =582
N = 50
N = B2
N = 126

0.82,/0.76
0.67/0.50
0.93,/0.63
0.29,/0.21
0.23,/0.37
0.37,/0.26
0.43,/0.31
0.42,/0.23

1.02,/0.92
0.66/0.55
0.66,/0.63
0.43,/0.35
(0.58,0.53
0.41,/0.23
0.50,0.56
(0.88,0.52

(.96
1.30
221
(LY95
0,74
A
A
A

Ref. 21, Audi and Wapstra, Nucl. Phys. A595, 409 (1995).
Ref. 11, S. Goriely ef al. Phys. Rev. C 66, 024326 (2002) - HFB
Ref. 23, S.Q. Zhang ef a/. nucl-th/0302032. - RMF




One-neutron separation energies
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Two-neutron separation energies
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One-nucleon separation energies
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Charge radi

e Exp. e Exp.
o Qur result e © ' o Our result
A& Goriely et al. s Goriely et al.

Exp. - Nadjakov et al. At. Data and Nucl. Data Tables, 56, 133 (1994)
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* We use the same normal EDF as Fayans ef al.
volume pairing only with one universal constant
« Fayans ef al. Nucl. Phys. A676, 49 (2000)
5 parametlers for pairing (density dependence with
gradient terms (neutrons only).
» Goriely et al. Phys. Rev. C 66, 024326 (2002)
volume pairing, 5 parameters for pairing,

ISospin symmelry broken
* Exp. - Audi and Wapstra, Nucl. Phys. A595, 409 (1995)



A NEUTRON STAR: SURFACE and INTERIOR
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Landau criterion for superflow stability

(flow without dissipation)

Consider a superfluid flowing in a pipe with velocity v..

2
Nmv;

E,+ 5

<Eyt+é&;+v,-p+

no internal excitations

One single quasi-particle excitation with momentum p

A

In the case of a Fermi superfluid this condition becomes \4

S <—
hk,



Vortex in neutron matter

Uy (7)) (u,(r)expli(n+1/2)¢—ikz]
Vi (7) E

, n - half -integer
v_(r)expli(n—1/2)¢ —ikz]

A(F) = A(r)exp(ig), ¥ =(r,¢,z) [cyllindrical coordinates]

Oz - vortex symmetry axis

Ideal vortex, Onsager's quantization (one 7 per Cooper pair)

h 1
—x,0) & — V
Zmr (y ) 27 Y.




- — - non-interacting
— without pairing
— — with pairing

Fayans’s FaNDF?

T

An additional factor of 1/(4e)/3
is due to induced interactions

FIG. 1. Diagrams for the induced interactions between two fer-
mions in different internal states to second order in the effective
interaction.

from Heiselberg et al
Phys. Rev. Lett. 85, 2418, (2000)
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Dramatic structural changes of the vortex state naturally lead
to significant changes in the energy balance of a neutron star

e In low density region &(p,,,) 0., > £(p,) P,

which thus leads to a large anti - pinning energy E;/m >0:

Egly/in = [8(pout ),00,,, - g(pin )pin ]V

e The energy per unit length is going to be changed

dramatically when compared to previous estimates, by

AE

#Om = [g(pout)poul - 8(pi”)pin ]ﬂ.Rz

e Specific heat, transport properties are expected to

significantly affected as well.




Vortices in dilute atomic Fermi
systems in traps

v 1995 BEC was observed.

v' 2000 vortices in BEC were created, thus BEC confirmed
un-ambiguously.

v In 1999 DeMarco and Jin created a degenerate atomic
Fermi gas.

v 2002 O’Hara, Hammer, Gehm, Granada and Thomas observed
expansion of a Fermi cloud compatible with the existence of a
superfluid fermionic phase.




How can one put in evidence a voriex
in a Fermi superfluid?

Hard to see, since density changes are not expected, unlike
the case of a Bose superfluid.

What we learned from the structure of a vortex in low density
neutron matter can help however.

If the gap is not small one can expect a noticeable density
depletion along the vortex core, and the bigger the gap the
bigger the depletion.



Feshbach resonance

-2
H—2p Z(Vhf+V )+ V,(F)P, + V.(¥)P, + V*
lLlr i=1

a,, — -
44 =h—’g‘S€.S", V:=(y,8°-y S")B

Tiesinga, Verhaar, Stoof
Phys. Rev. A47, 4114 (1993)

Atomic
seperation

scattering length (a )

Regal and Jin
Phys. Rev. Lett. 90, 230404 (2003)




Consider Bertsch’s MBX challenge (1999): “Find the ground
state of infinite homogeneous neutron matter interacting with
an infinite scattering length.”

»Carlson, Morales, Pandharipande and Ravenhall,
nucl-th/0302041, with Green Function Monte Carlo (GFMC)

normal state

> Carlson, Chang, Pandharipande and Schmidt,
physics/0303094, with GFMC

superfluid state




Now one can construct an LDA functional to describe
this new state of Fermionic matter

m . r/a v(r)|©
T(7r) + ,..*f'j’?’l-( ) /e + 7y — — ‘ = |,
n, ( r ) /O

Y i e F F Iy i ~

» This form is not unique, as one can have either:
b=0 (setl) or b#0 and m*=m (set II).
» Gradient terms not determined yet (expected minor role).



The depletion along the vortex core
is reminiscent of the corresponding
density depletion in the case of a
vortex in a Bose superfluid, when the
density vanishes exactly along the axis
for 100% BEC.

Solid lines are results for parameter
set |, dashed lines for parameter set |l
(dots — velocity profile for ideal vortex)




40K (Fermi) atoms in a spherical harmonic trap

Effect of interaction, with and without weak and strong pairing correlations
with fixed chemical potential.

Mean-field and Pairing fields Particle number density

— no interaction
— mean-field + pairing
mean-field + no pairing

a infinite

a finite

m= 0.14u10-%V, hw=0.568 10-"%eV,
=-12.63nm (when finite)



40K (Fermi) atoms in a spherical harmonic trap

Effect of interaction, with and without weak and strong pairing correlations
with fixed particle number, N = 5200.

Particle number density

— no interaction I
- -+ mean-field + pairing

mean-field + no pairing

Mean-field and Pairing field

hw=0.568 110-12eV, a = -12.63nm (when finite)



Lessons:

v There are essentially no systems where the naive BCS/HFB
approximation works with reasonable accuracy. In nuclear/neutron
matter one would need densities lower than 10-° fm- for the simple
BCS formula and one would still be off by a factor of 2 in the gap.

v" Even in dilute Fermi gases corrections to the BCS/HFB formalism
are essential, even though often (but not always) n|al*a 1

v Nuclei and neutron stars are essentially in the regime of strong
coupling, even though in particular nuclei the pairing gaps are
relatively small

v No need for a finite range of the interaction so far in pairing and the
big question is whether there are any nuclear phenomena in particular
where the role of the finite range corrections in medium could be
ascertained unambiguously!?




Summary

LDA for Fermi systems with superfluid correlation is simple and easy to
implement with all nuclear symmetries satisfied.

The agreement between experiment and theory for one- and two-nucleon
separation energies is spectacular, and likely there is lot of room for
Improvement.

The simple form of the LDA functional suggest new facets of pairing worthy
investigation (g,#9,).

Application to other physical systems: neutron stars, dilute (and not) atomic
systems straightforward and offering new qualitative results.

A number of theoretical developments desirable: isoscalar and isovector
density dependence of the pairing coupling, “effective range” corrections(?),
linear response, EDF dependences on anomalous densities other than
quadratic, pairing in other partial waves, coupling between neutron and
proton pairing vibrations.



