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EV8

HHODD

Current Implementation

c    * nxmu                                                                *
c    *        damping factor for the mean-field potential (evolve)         *
c    *        xmu=nxmu/100.; w(n+1)=xmu*w(n+1)+(1.-xmu)*w(n)               *
c    *        if nxmu is read 0, xmu is set to 0.25

      xmu = float(nxmu)/t100
      ymu = one-xmu
          do i=1,2*mv
            rho(i)  = xmu* rho(i)+ymu*rvst(i,1)
            vtau(i) = xmu*vtau(i)+ymu*rvst(i,2)
            vdiv(i) = xmu*vdiv(i)+ymu*rvst(i,3)
            rvst(i,1) =  rho(i)
            rvst(i,2) = vtau(i)
            rvst(i,3) = vdiv(i)
          enddo
          call newpot

SLOWEV=0.500
XOLDEV=SLOWEV
XNEWEV=1.00D0-XOLDEV
DO IX=1,NXHERM
    DO IY=1,NYHERM
       DO IZ=1,NZHERM
         VN_MAS(IX,IY,IZ) = VN_MAS(IX,IY,IZ)*XOLDEV+XNEWEV*VNEUTR
       END DO
    END DO
END DO
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(na,nb)=(30,15)    Iterative (w=1.0)

(na,nb)=(30,30)    Iterative (w=1.0)

(na,nb)=(30,15)    Iterative (w=0.5)
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(na,nb)=(30,15)    Broyden (w=0.5)

(na,nb)=(30,15)    Broyden (w=1.0)

(na,nb)=(30,30)    Broyden (w=1.0)

(na,nb)=(30,30)    Broyden (w=0.5)



Outline

• Structure of self-consistent calculations

• Current codes

• Broyden method to accelerate convergence

• Very easy to implement

• DVR Basis to improve representation



Self-consistent calculations

• HFB

• BdG

• DFT (LDA, Kohn)

Find a “fixed-point” in a high dimensional space.



Self-consistent calculations
Weighting Scheme



Broyden

Self-consistent calculations
Broyden Scheme



• Multidimensional Secant method

• Start with J0-1 = w:

• X1 = (1-w)X0 + wF(X0)

• May keep track of dyadics if 
space is large

• Hold Jn-1 = w for old method

Broyden Method

Described in Numerical Recipies in  * , Press, Teukolsky,  Vetterling, Flannery (1992)
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Broyden Improves Convergence
(na,nb)=(30,15)    Iterative (w=1.0)

(na,nb)=(30,30)    Iterative (w=1.0)

(na,nb)=(30,15)    Iterative (w=0.5)

(na,nb)=(30,30)    Iterative (w=0.5)

(na,nb)=(30,15)    Broyden (w=0.5)

(na,nb)=(30,15)    Broyden (w=1.0)

(na,nb)=(30,30)    Broyden (w=1.0)

(na,nb)=(30,30)    Broyden (w=0.5)



EV8

HHODD

Current Implementation

c    * nxmu                                                                *
c    *        damping factor for the mean-field potential (evolve)         *
c    *        xmu=nxmu/100.; w(n+1)=xmu*w(n+1)+(1.-xmu)*w(n)               *
c    *        if nxmu is read 0, xmu is set to 0.25

      xmu = float(nxmu)/t100
      ymu = one-xmu
          do i=1,2*mv
            rho(i)  = xmu* rho(i)+ymu*rvst(i,1)
            vtau(i) = xmu*vtau(i)+ymu*rvst(i,2)
            vdiv(i) = xmu*vdiv(i)+ymu*rvst(i,3)
            rvst(i,1) =  rho(i)
            rvst(i,2) = vtau(i)
            rvst(i,3) = vdiv(i)
          enddo
          call newpot

SLOWEV=0.500
XOLDEV=SLOWEV
XNEWEV=1.00D0-XOLDEV
DO IX=1,NXHERM
    DO IY=1,NYHERM
       DO IZ=1,NZHERM
         VN_MAS(IX,IY,IZ) = VN_MAS(IX,IY,IZ)*XOLDEV+XNEWEV*VNEUTR
       END DO
    END DO
END DO



Simple Code Modifications
MATLAB Code

if iter == 1      % usual step for first iteration or if using usual procedure
   G0    =   x0 - [V_0;D_0;V_1;D_1; mu_a*N_a/N0_a;mu_b*N_b/N0_b];
   Jinv0 =   w    % use weight on initial step or if using usual procedure
   dx    = - Jinv0*G0;
   x0    =   x0 + dx;
elseif iter > 1   % broyden step from second iteration
   G1    =    x0 - [V_0;D_0;V_1;D_1; mu_a*N_a/N0_a;mu_b*N_b/N0_b];
   dG    =    G1 - G0;
   ket   =    dx - Jinv0*dG;
   bra   =    dx'*Jinv0;
   inorm =    1.0/(bra*dG);
   Jinv0 =    Jinv0 + ket*bra*inorm;    % update inverse jacobian here
   dx    =  - Jinv0*G1;
   x0    =    x0  + dx;
   G0    =    G1;
end



• Multidimensional Secant method

• Start with J0-1 = w:

• X1 = (1-w)X0 + wF(X0)

• May keep track of dyadics if 
space is large

• Hold Jn-1 = w for old method

Broyden Method

Described in Numerical Recipies in  * , Press, Teukolsky,  Vetterling, Flannery (1992)



Broyden Costs
• Simple: (Maintain and update Jacobian inverse)

• O(N2)×Niter 

• Dyadic Representation:

• O(N×Niter) ×Niter



Difficulties with HO Basis
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Grasso and Urban, PRA, 68, 033610 (2003)

Grasso and Urban, BCS Code Our Unitary HO Basis Code

• Large radius behavious of HO Basis introduces artifacts

• Need large number of states to correct

• (Requires HO Basis wavefunctions to high precision)
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DVR solves the problem

Our code in DVR basisOur code in HO Basis
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HO Spectrum with DVR
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DVR Basis in one-dimension
(Higher dimensional generalization is straightforward)

Littlejohn et al. J. Chem. Phys. 116, 8691 (2002)

(Projection onto restricted Hilbert space)





DVR for Radial Equation: Bessel DVR Basis

Littlejohn et al. J. Chem. Phys. 117, 27 (2002)

!
0

R

r dr J!"kr #2

!
1

2k2
$k2R2J!!"kR #2""k2R2#!2#J!"kR #2% . "5.3#

To obtain the matrix elements of the projection operator

P , we change notation in the integral "5.2#, swapping r and
k and replacing R by K , to obtain

&r"P"r!'!!
0

K

dk&r"k!'&k!"r!'

!!rr!!
0

K

k dk J!"kr #J!"kr!#

!
K!rr!
r
2#r!2

$r!J!"Kr #J!!"Kr!##rJ!"Kr!#J!!"Kr #% .

"5.4#

This is evidently a continuum version of the Darboux–

Christoffel formula,45,46 which in its usual, discrete version is

necessary for the proof that orthogonal polynomials can be

used to construct DVR sets.19,21 Now setting r!!r!n , we

obtain the projected ( functions,

)!n"r #!&r"P"r!n'!
!rz!n

3
K
3

K
2
r
2#z!n

2 J!!"z!n#J!"Kr #, "5.5#

which obviously vanish at all grid points r!r!n! except n
!n!. Thus, these are orthogonal DVR functions. The nor-
malized versions of these functions are obtained by taking

r→r!n in Eq. "5.5# to obtain

N!n!&)!n")!n'!)!n"r!n#!
Kz!nJ!!"z!n#

2

2
, "5.6#

a manifestly positive result, which implies

F!n"r #!"#1 #n"1
Kz!n!2r
K
2
r
2#z!n

2 J!"Kr #. "5.7#

The phase (#1)n"1 is the sign of J!!(z!n).

Some of these DVR functions are plotted in Fig. 2 for

the value K!1. Curves at other values of K differ only by

scaling. The plot with !!3, n!10 illustrates the fact that
when n is large, the Bessel DVR functions resemble sinc

functions, while the other three plots "for n!0, !!0,3,10#
show that the Bessel DVR functions differ substantially from

sinc functions at small n .

The plots also illustrate some points regarding boundary

conditions at r!0. Radial eigenfunctions in a potential V(r)
that is analytic near r!0 have a Taylor series expansion at
r!0 that begins with r

! and subsequently contains every

other power, r!"2, r!"4, etc. This is proved in Ref. 47 in

two and three dimensions. Naturally, Bessel functions, which

are eigenfunctions in the potential V(r)!0, also have these
boundary conditions, and therefore so also do the DVR func-

tions F!n(r). Moreover, like exact eigenfunctions in an ana-

lytic potential, the Bessel DVR functions decay exponen-

tially as one moves to the left of the first oscillation, that is,

they have an effective radial turning point. The turning point

of the DVR functions, however, need not be the same as the

turning point of the functions one wishes to expand. In fact,

for good convergence, the Bessel DVR turning point should

be to the left of the turning point of the function being ex-

panded. This is achieved in practice by raising the value of

the cutoff K , which moves the classical turning point to the

left, as illustrated in part "a# of Fig. 1. Part "b# of that figure
shows a Bessel DVR function superimposed on a phase

space plot, illustrating the phase space region covered by the

DVR function, the decay beyond the classical turning point,

and the boundary conditions at r!0. Note that Bessel DVR
functions do not have the same boundary conditions as

eigenfunctions in a potential "like the Coulomb potential#
that is singular at r!0. Bessel DVR functions are not suit-
able for such potentials. Note also that sinc functions are not

suitable for any potential on the radial half-line,48 since they

never have the right boundary conditions at r!0.

VI. COMPLETENESS AND BOUNDARY CONDITIONS
IN MOMENTUM SPACE

As in the case of sinc functions, we can prove complete-

ness of the Bessel DVR functions on the subspace defined by

Eq. "5.1# by going to k space. On analogy with sinc func-
tions, we guess that the Bessel DVR functions are the Fou-

rier transforms of the eigenfunctions of a particle in a spheri-

cal box in k space, that is, eigenfunction of r2 which cut off

at radius k!K , where K is the momentum cutoff in Eq.

"5.1#. Once this is proved completeness follows, since free
particle eigenfunctions in a circular box are complete on the

space of wave functions confined to the box.

Since it is more physical to think of boxes in r space,

we shall examine that problem first, then switch to k space

with a change of notation. The free particle eigenfunctions

in the spherical box of radius R in d-dimensional r space

are specified by the radial wave function *!n(r)

FIG. 2. Plots of the Bessel DVR functions F!n(r) for K!1 and for selected
values of ! and n .
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formation matrix between the two. Then, for example, in the

case of Hermite or harmonic oscillator DVR functions, Un! ,

considered as a function of n for fixed ! , can be regarded as
the wave function of the !th DVR state !F!" in the energy
representation. This wave function can be extended to values

of n#N , for which it vanishes identically, since the DVR

function F! is necessarily a linear combination of the har-

monic oscillator eigenfunctions for 0$n!N . This is just

like the particle in a box in k space. In particular, the wave

function vanishes at n"N . But if we examine how this func-

tion approaches zero as n→N , we find that it is like a con-

tinuous function satisfying Dirichlet boundary conditions.

This fact is illustrated in Fig. 3, which plots these expansion

coefficients for certain values of N and !. Notice the resem-
blance of the function plotted %for discrete values of the vari-
able n& to the eigenfunctions of a particle in a spherical box
satisfying Dirichlet boundary conditions on the boundary.

We were originally led to the Bessel DVR functions pre-

sented in this paper by consideration of the two-dimensional

DVR functions discussed in Ref. 22. In that reference, DVR

functions are constructed that cover a hexagonal region of

momentum space and satisfy periodic boundary conditions

on the hexagon. It was pointed out in that reference that a

hexagon is close to a circle, the region of momentum space

that one normally needs to cover in two-dimensional prob-

lems in quantum mechanics. This led us to consider what

would happen if one could exactly cover a circle in momen-

tum space. Making the required changes in boundary condi-

tions, we then found the DVR functions presented here. It is

interesting, however, that on going from a hexagon to a

circle and on changing boundary conditions, the two-

dimensional DVR set is lost. Instead it is replaced by a one-

dimensional DVR set, in the radial coordinate only, while the

angular coordinate is covered by the usual Fourier basis

eim'.

VII. MATRIX ELEMENTS OF THE KINETIC ENERGY

As usual with DVR functions, the matrix elements of the

kinetic energy can be computed analytically in the Bessel

DVR basis. These are conveniently computed by going to k

space, as described above, whereupon we obtain an integral

which is a generalization of Eq. %5.2& %with an extra factor of
r2 in the integrand&. This integral can be obtained by differ-
entiating Eq. %5.2& with respect to k and using the Bessel

differential equation. Some algebra is involved in the deriv-

ing the final answer, which we merely quote. We find

(F)n!kr
2#

)2$ 1
4

r2
!F)n!"

""
K2

3 #1#
2%)2$1 &

z)n
2 $ , n"n!,

%$1 &n$n!8K2
z)nz)n!

%z)n
2 $z)n!

2 &2
, n*n!,

%7.1&

where kr"$i+/+r . Notice that the centrifugal potential is
included in these matrix elements, so that the matrix ele-

ments of the potential energy need only include the true po-

tential. This is fortunate, because the centrifugal potential is

singular, and the arguments leading to exponential conver-

gence of the DVR method21 rely on the smoothness of the

potential. See Ref. 18 for a discussion of quadrature methods

that treat singular potentials exactly.

VIII. NUMERICAL EXPERIMENTS WITH BESSEL
DVR BASES

To test the Bessel DVR bases numerically, we found the

eigenvalues and radial eigenfunctions in two dimensions of

the quartic potential, V(r)"r4/4. We choose units such that

the mass is unity, so the Hamiltonian is H"p2/2#r4/4,

where p"!p! and p"(px ,py). The semiclassical estimate of
the number of eigenstates in this potential with energy below

some value E is 2E3/2/3,2. This was computed as the four-
dimensional phase space volume with energy below E , di-

vided by (2-,)2. We choose ,"!2/3000.0.025 82, which
gives a semiclassical estimate of 1000 eigenvalues below the

energy E"1. In fact, there turn out to be precisely 1000
eigenvalues below E"1, distributed among the angular mo-
menta from m"0 to m"46. There are 22 radial eigenvalues
below E"1 at m"0, which decreases to just one radial ei-
genvalue at m"46. The eigenvalues for m%0 are doublets,
due to the m→$m symmetry; this fact must be taken into

account to get the total of 1000 states %there are 511 distinct
energy eigenvalues, not counting doublets twice&.

A classical particle with E$1 moving in the potential
r4/4 has a maximum possible momentum at E"1 and r

"0, where p"!p!"& . Therefore we chose a momentum

cutoff P0",K for our Bessel DVR basis to be P0" f& ,

where f is a factor relating the actual momentum cutoff P0 to

that needed to just cover all states with E!1, and where K is
the wave number cutoff in the projection operator %5.1&. In
the limit ,→0, f"1 would give us the basis we would need
to find all eigenstates with energies below E"1, but with
actual %nonzero& values of , it is necessary to raise f above

FIG. 3. A plot of the expansion coefficients cn"Un! of the !th Hermite
DVR function in the harmonic oscillator basis, with an energy cutoff of N .

The function appears as a discrete version of a wave function in n space

satisfying Dirichlet boundary conditions at n"N .
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Momentum Space



Summary

• Broyden Improves Convergence

• Extremely easy to implement

• Can be made inexpensive

• HO Basis has problems with large r tails

• DVR Basis solves these problems

• Near optimal phase-space coverage


