The Self-Consistent Loop

Current Implementation

* * *

EV8

С	* nxmu	
С	*	damping factor for the mean-field potential (evolve)
С	*	xmu=nxmu/100.; w(n+1)=xmu*w(n+1)+(1xmu)*w(n)
С	*	if nxmu is read 0, xmu is set to 0.25

```
xmu = float(nxmu)/t100
ymu = one-xmu
do i=1,2*mv
    rho(i) = xmu* rho(i)+ymu*rvst(i,1)
    vtau(i) = xmu*vtau(i)+ymu*rvst(i,2)
    vdiv(i) = xmu*vdiv(i)+ymu*rvst(i,3)
    rvst(i,1) = rho(i)
    rvst(i,2) = vtau(i)
    rvst(i,3) = vdiv(i)
enddo
call newpot
```

<u>HHODD</u>

```
SLOWEV=0.500
XOLDEV=SLOWEV
XNEWEV=1.00D0-XOLDEV
DO IX=1,NXHERM
        DO IY=1,NYHERM
        DO IZ=1,NZHERM
        VN_MAS(IX,IY,IZ) = VN_MAS(IX,IY,IZ)*XOLDEV+XNEWEV*VNEUTR
        END DO
        END DO
END DO
END DO
```

Improving selfconsistent calculations of Fermion systems

Michael McNeil Forbes and Aurel Bulgac

Outline

- Structure of self-consistent calculations
- Current codes
- Broyden method to accelerate convergence
 - Very easy to implement
- DVR Basis to improve representation

Self-consistent calculations

Find a "fixed-point" in a high dimensional space. $X \mapsto F(X)$

- HFB
- BdG
- DFT (LDA, Kohn)

Broyden Method G(X) = X - F(X) = 0

- Multidimensional Secant method
- Start with $J_0^{-1} = w$:
 - $X_1 = (1-w)X_0 + wF(X_0)$
- May keep track of dyadics if space is large
- Hold $J_n^{-1} = w$ for old method

Described in Numerical Recipies in <u>*</u>, Press, Teukolsky, Vetterling, Flannery (1992)

Broyden Improves Convergence

Current Implementation

* * *

EV8

С	* nxmu	
С	*	damping factor for the mean-field potential (evolve)
С	*	xmu=nxmu/100.; w(n+1)=xmu*w(n+1)+(1xmu)*w(n)
С	*	if nxmu is read 0, xmu is set to 0.25

```
xmu = float(nxmu)/t100
ymu = one-xmu
do i=1,2*mv
    rho(i) = xmu* rho(i)+ymu*rvst(i,1)
    vtau(i) = xmu*vtau(i)+ymu*rvst(i,2)
    vdiv(i) = xmu*vdiv(i)+ymu*rvst(i,3)
    rvst(i,1) = rho(i)
    rvst(i,2) = vtau(i)
    rvst(i,3) = vdiv(i)
enddo
call newpot
```

<u>HHODD</u>

```
SLOWEV=0.500
XOLDEV=SLOWEV
XNEWEV=1.00D0-XOLDEV
DO IX=1,NXHERM
        DO IY=1,NYHERM
        DO IZ=1,NZHERM
        VN_MAS(IX,IY,IZ) = VN_MAS(IX,IY,IZ)*XOLDEV+XNEWEV*VNEUTR
        END DO
        END DO
END DO
END DO
```

Simple Code Modifications

MATLAB Code

if iter == 1 % usual step for first iteration or if using usual procedure				
G0 = x0 - [V_0;D_0;V_1;D_1; mu_a*N_a/N0_a;mu_b*N_b/N0_b];				
Jinv0 = w % use weight on initial step or if using usual procedure				
dx = - Jinv0*G0;				
x0 = x0 + dx;				
elseif iter > 1 % broyden step from second iteration				
G1 = x0 - [V_0;D_0;V_1;D_1; mu_a*N_a/N0_a;mu_b*N_b/N0_b];				
dG = G1 - G0;				
ket = dx - Jinv0*dG;				
bra = dx'*Jinv0;				
inorm = 1.0/(bra*dG);				
Jinv0 = Jinv0 + ket*bra*inorm; % update inverse jacobian here				
dx = - Jinv0*G1;				
x0 = x0 + dx;				
GO = G1;				
end				

Broyden Method G(X) = X - F(X) = 0

- Multidimensional Secant method
- Start with $J_0^{-1} = w$:
 - $X_1 = (1-w)X_0 + wF(X_0)$
- May keep track of dyadics if space is large
- Hold $J_n^{-1} = w$ for old method

Described in Numerical Recipies in <u>*</u>, Press, Teukolsky, Vetterling, Flannery (1992)

Broyden Costs

- Simple: (Maintain and update Jacobian inverse)
 - $O(N^2) \times N_{iter}$
- Dyadic Representation:
 - O(N×N_{iter}) ×N_{iter}

$$\mathbf{J}_{m+1}^{-1} = w\mathbf{1} + \sum_{n=1}^{m} |a_n\rangle \langle b_n|$$
$$|a_n\rangle = |dX_n\rangle - \mathbf{J}_n^{-1} |dG_n\rangle$$
$$\langle b_n| = \frac{\langle dX_n | \mathbf{J}_n^{-1} | dG_n\rangle}{\langle dX_n | \mathbf{J}_n^{-1} | dG_n\rangle}$$

Difficulties with HO Basis

- Large radius behavious of HO Basis introduces artifacts
- Need large number of states to correct
 - (Requires HO Basis wavefunctions to high precision)

Tails spoil large r behaviour

DVR solves the problem

Our code in HO Basis

Our code in DVR basis

HO Spectrum with DVR

DVR Basis in one-dimension (Higher dimensional generalization is straightforward)

 $P^2 = P$ (Projection onto restricted Hilbert space) $\langle x|P|y\rangle = \int_{-\pi/l}^{\pi/l} \frac{\mathrm{d}k}{2\pi} e^{ik(x-y)} = \frac{\sin\left(\frac{\pi}{l}(x-y)\right)}{\pi(x-y)},$ $\Delta_{\alpha} = P[\delta(x - x_{\alpha})],$ $\langle \Delta_{\alpha} | \Delta_{\beta} \rangle = \Delta_{\alpha}(x_{\beta}) = \Delta_{\beta}(x_{\alpha}) = K_{\alpha} \delta_{\alpha\beta},$ $\psi(x) = \sum_{n=1}^{N} c_{\alpha} \Delta_{\alpha} + \mathcal{O}(e^{-cN}) \approx \sum_{n=1}^{N} \psi(nl) \frac{\sin\left[\frac{\pi}{l}(x-nl)\right]}{\frac{\pi}{l}(x-nl)}$ $\alpha = 1$ $c_{\alpha} = \int \mathrm{d}x \; \frac{1}{K_{\alpha}} \Delta_{\alpha}(x) \psi(x) = \frac{1}{K_{\alpha}} \psi(x_{\alpha}), \qquad x_{\alpha} = nl$

Littlejohn et al. J. Chem. Phys. 116, 8691 (2002)

DVR for Radial Equation: Bessel DVR Basis

Littlejohn et al. J. Chem. Phys. **117**, 27 (2002)

Momentum Space

$$\begin{split} \varepsilon_F, \quad \Delta, \quad T \ll \frac{\hbar^2 \pi^2}{2ml^2}, \\ \delta \varepsilon > \frac{2\hbar^2 \pi^2}{mL^2}, \end{split}$$
 $\varepsilon_F, \ \Delta T \gg rac{2\hbar^2\pi^2}{mL^2},$ $\xi \ll L = N_s l,$ $\delta p > \frac{2\pi\hbar}{L}.$

Summary

- Broyden Improves Convergence
 - Extremely easy to implement
 - Can be made inexpensive
- HO Basis has problems with large r tails
- DVR Basis solves these problems
 - Near optimal phase-space coverage