The Self-Consistent Loop

n
ϕ

$D=N_{p} N_{r}$

Current Implementation

EV8

```
* nxmu
damping factor for the mean-field potential (evolve)
xmu=nxmu/100.; w(n+1)=xmu*w(n+1)+(1.-xmu)*w(n)
if nxmu is read 0, xmu is set to 0.25
xmu = float(nxmu)/t100
ymu = one-xmu
    do i=1,2*mv
        rho(i) = xmu* rho(i)+ymu*rvst(i,1)
        vtau(i) = xmu*vtau(i)+ymu*rvst(i,2)
        vdiv(i) = xmu*vdiv(i)+ymu*rvst(i,3)
        rvst(i,1) = rho(i)
        rvst(i,2) = vtau(i)
        rvst(i,3) = vdiv(i)
    enddo
    call newpot
```


HHODD

SLOWEV=0.500
XOLDEV=SLOWEV
XNEWEV=1.00D0-XOLDEV
DO $\mathrm{IX}=1$,NXHERM
DO $I Y=1$, NYHERM
DO IZ=1,NZHERM
VN_MAS (IX,IY,IZ) = VN_MAS(IX,IY,IZ)*XOLDEV+XNEWEV*VNEUTR
END DO
End DO
END DO

Improving selfconsistent calculations of Fermion systems

Michael McNeil Forbes and Aurel Bulgac

Improving self-consistent calculations of Fermion systems

Outline

- Structure of self-consistent calculations
- Current codes
- Broyden method to accelerate convergence
- Very easy to implement
- DVR Basis to improve representation

Self-consistent calculations

Find a "fixed-point" in a high dimensional space.

$$
X \mapsto F(X)
$$

- HFB
- BdG
- DFT (LDA, Kohn)

Self-consistent calculations Weighting Scheme
$(1-w) X+w F(X)$
$\hat{H}[n, \Delta] \psi_{n}=E_{n} \psi_{n}$

Self-consistent calculations

Broyden Scheme

Broyden Method

$$
G(X)=X-F(X)=0
$$

$\left(\left\|X_{n}\right\rangle,\left\|G_{n}\right\rangle, \mathbf{J}_{n}^{-1}\right)$	- Multidimensional Secant method
$\|d X\rangle=-\mathbf{J}_{n}^{-1} \cdot\left\|G_{n}\right\rangle$	- Start with $\mathbf{J}^{-1}=w$.
$\left\|X_{n+1}\right\rangle=\left\|X_{n}\right\rangle+\|d X\rangle$	- Start with $\mathbf{J}_{0}{ }^{-1}=w$:
$\left\|G_{n+1}\right\rangle=G\left(\left\|X_{n+1}\right\rangle\right)$	- $X_{1}=(1-w) X_{0}+w F\left(X_{0}\right)$
$\|d G\rangle=\left\|G_{n+1}\right\rangle-\left\|G_{n}\right\rangle$	
$\mathbf{J}_{n+1}^{-1}=\mathbf{J}_{n}^{-1}+\frac{\left(\|d X\rangle-\mathbf{J}_{n}^{-1}\|d G\rangle\right)\langle d X\| \mathbf{J}_{n}^{-1}}{\langle d X\| \mathbf{J}_{n}^{-1}\|d G\rangle}$	- May keep track of dyadics if space is large
$\left(\left\|X_{n+1}\right\rangle,\left\|G_{n+1}\right\rangle, \mathbf{J}_{n+1}^{-1}\right)$	- Hold $\mathbf{J}_{n}{ }^{-1}=w$ for old method

Described in Numerical Recipies in *, Press, Teukolsky, Vetterling, Flannery (1992)

Broyden Improves Convergence

Current Implementation

EV8

```
* nxmu
damping factor for the mean-field potential (evolve)
xmu=nxmu/100.; w(n+1)=xmu*w(n+1)+(1.-xmu)*w(n)
if nxmu is read 0, xmu is set to 0.25
xmu = float(nxmu)/t100
ymu = one-xmu
    do i=1,2*mv
        rho(i) = xmu* rho(i)+ymu*rvst(i,1)
        vtau(i) = xmu*vtau(i)+ymu*rvst(i,2)
        vdiv(i) = xmu*vdiv(i)+ymu*rvst(i,3)
        rvst(i,1) = rho(i)
        rvst(i,2) = vtau(i)
        rvst(i,3) = vdiv(i)
    enddo
    call newpot
```


HHODD

SLOWEV=0.500
XOLDEV=SLOWEV
XNEWEV=1.00D0-XOLDEV
DO $\mathrm{IX}=1$,NXHERM
DO $I Y=1$, NYHERM
DO IZ=1,NZHERM
VN_MAS (IX,IY,IZ) = VN_MAS(IX,IY,IZ)*XOLDEV+XNEWEV*VNEUTR
END DO
End DO
END DO

Simple Code Modifications

MATLAB Code

```
if iter == 1 % usual step for first iteration or if using usual procedure
    G0 = x0 - [V_0;D_0;V_1;D_1; mu_a*N_a/N0_a;mu_b*N_b/N0_b];
    Jinv0 = w % use weight on initial step or if using usual procedure
    dx = - Jinv0*G0;
    x0 = x0 + dx;
elseif iter > 1 % broyden step from second iteration
    G1 = x0 - [V_0;D_0;V_1;D_1; mu_a*N_a/N0_a;mu_b*N_b/N0_b];
    dG = G1 - G0;
    ket = dx - Jinv0*dG;
    bra = dx'*Jinv0;
    inorm = 1.0/(bra*dG);
    Jinv0 = Jinv0 + ket*bra*inorm; % update inverse jacobian here
    dx = - Jinv0*G1;
    x0 = x0 + dx;
    G0 = G1;
end
```


Broyden Method

$$
G(X)=X-F(X)=0
$$

$\left(\left\|X_{n}\right\rangle,\left\|G_{n}\right\rangle, \mathbf{J}_{n}^{-1}\right)$	- Multidimensional Secant method
$\|d X\rangle=-\mathbf{J}_{n}^{-1} \cdot\left\|G_{n}\right\rangle$	- Start with $\mathbf{J}^{-1}=w$.
$\left\|X_{n+1}\right\rangle=\left\|X_{n}\right\rangle+\|d X\rangle$	- Start with $\mathbf{J}_{0}{ }^{-1}=w$:
$\left\|G_{n+1}\right\rangle=G\left(\left\|X_{n+1}\right\rangle\right)$	- $X_{1}=(1-w) X_{0}+w F\left(X_{0}\right)$
$\|d G\rangle=\left\|G_{n+1}\right\rangle-\left\|G_{n}\right\rangle$	
$\mathbf{J}_{n+1}^{-1}=\mathbf{J}_{n}^{-1}+\frac{\left(\|d X\rangle-\mathbf{J}_{n}^{-1}\|d G\rangle\right)\langle d X\| \mathbf{J}_{n}^{-1}}{\langle d X\| \mathbf{J}_{n}^{-1}\|d G\rangle}$	- May keep track of dyadics if space is large
$\left(\left\|X_{n+1}\right\rangle,\left\|G_{n+1}\right\rangle, \mathbf{J}_{n+1}^{-1}\right)$	- Hold $\mathbf{J}_{n}{ }^{-1}=w$ for old method

Described in Numerical Recipies in *, Press, Teukolsky, Vetterling, Flannery (1992)

Broyden Costs

- Simple: (Maintain and update Jacobian inverse)
- $O\left(N^{2}\right) \times N_{\text {iter }}$
- Dyadic Representation:
- $\mathrm{O}\left(N \times N_{\text {iter }}\right) \times N_{\text {iter }}$

$$
\begin{aligned}
\mathbf{J}_{m+1}^{-1} & =w \mathbf{1}+\sum_{n=1}^{m}\left|a_{n}\right\rangle\left\langle b_{n}\right| \\
\left|a_{n}\right\rangle & =\left|d X_{n}\right\rangle-\mathbf{J}_{n}^{-1}\left|d G_{n}\right\rangle \\
\left\langle b_{n}\right| & =\frac{\left\langle d X_{n}\right| \mathbf{J}_{n}^{-1}}{\left\langle d X_{n}\right| \mathbf{J}_{n}^{-1}\left|d G_{n}\right\rangle}
\end{aligned}
$$

Difficulties with HO Basis

- Large radius behavious of HO Basis introduces artifacts
- Need large number of states to correct
- (Requires HO Basis wavefunctions to high precision)

Grasso and Urban, BCS Code

Grasso and Urban, PRA, 68, 0336I0 (2003)

Problem with HO Basis

DVR solves the problem

Our code in HO Basis

Our code in DVR basis

HO Spectrum with DVR

HO, I=90

DVR Basis in one-dimension

(Higher dimensional generalization is straightforward)
$P^{2}=P \quad$ (Projection onto restricted Hilbert space)
$\langle x| P|y\rangle=\int_{-\pi / l}^{\pi / l} \frac{\mathrm{~d} k}{2 \pi} e^{i k(x-y)}=\frac{\sin \left(\frac{\pi}{l}(x-y)\right)}{\pi(x-y)}$,
$\Delta_{\alpha}=P\left[\delta\left(x-x_{\alpha}\right)\right]$,
$\left\langle\Delta_{\alpha} \mid \Delta_{\beta}\right\rangle=\Delta_{\alpha}\left(x_{\beta}\right)=\Delta_{\beta}\left(x_{\alpha}\right)=K_{\alpha} \delta_{\alpha \beta}$,
$\psi(x)=\sum_{\alpha=1}^{N} c_{\alpha} \Delta_{\alpha}+\mathrm{O}\left(e^{-c N}\right) \approx \sum_{n} \psi(n l) \frac{\sin \left[\frac{\pi}{l}(x-n l)\right]}{\frac{\pi}{l}(x-n l)}$
$c_{\alpha}=\int \mathrm{d} x \frac{1}{K_{\alpha}} \Delta_{\alpha}(x) \psi(x)=\frac{1}{K_{\alpha}} \psi\left(x_{\alpha}\right), \quad x_{\alpha}=n l$

Littlejohn et al. J. Chem. Phys. I I 6, 869I (2002)

$$
\begin{aligned}
& \psi(x)=\sum_{\alpha=1}^{N} d_{\alpha} F_{\alpha}(x)+\mathrm{O}\left(e^{-c N}\right) \\
& F_{\alpha}=\frac{1}{\sqrt{K_{\alpha}}} \Delta_{\alpha}(x), \quad x_{\alpha}=n l, \quad\left\langle F_{\alpha} \mid F_{\beta}\right\rangle=\delta_{\alpha, \beta} \\
& \sum_{\beta}\left[\left\langle F_{\alpha}\right| \widehat{\mathbf{T}}\left|F_{\beta}\right\rangle+V\left(x_{\alpha}\right) \delta_{\alpha \beta}\right] d_{\beta}=E d_{\alpha}
\end{aligned}
$$

Area of Strip $=2 \pi \hbar$

DVR for Radial Equation: Bessel DVR Basis

Littlejohn et al. J. Chem. Phys. I I 7, 27 (2002)

$$
F_{\nu n}(r)=(-1)^{n+1} \frac{K z_{\nu n} \sqrt{2 r}}{K^{2} r^{2}-z_{\nu n}^{2}} J_{\nu}(K r)
$$

$$
P\left(r, r^{\prime}\right)=\int_{0}^{K} \mathrm{~d} k\left\langle k r \mid J_{\nu}\right\rangle\left\langle J_{\nu} \mid k r^{\prime}\right\rangle
$$

$$
\left\langle F_{\nu n}\right| k_{r}^{2}+\frac{\nu^{2}-\frac{1}{4}}{r^{2}}\left|F_{v n^{\prime}}\right\rangle
$$

$$
=\left\{\begin{array}{l}
\frac{K^{2}}{3}\left[1+\frac{2\left(\nu^{2}-1\right)}{z_{\nu n}^{2}}\right], \quad n=n^{\prime}, \\
(-1)^{n-n^{\prime}} 8 K^{2} \frac{z_{v n} z_{v n^{\prime}}}{\left(z_{v n}^{2}-z_{v n^{\prime}}^{2}\right)^{2}}, \quad n \neq n^{\prime},
\end{array}\right.
$$

FIG. 2. Plots of the Bessel DVR functions $F_{\nu n}(r)$ for $K=1$ and for selected values of ν and n.

Momentum Space

$$
\begin{aligned}
& \varepsilon_{F}, \quad \Delta, T \ll \frac{\hbar^{2} \pi^{2}}{2 m l^{2}} \\
& \delta \varepsilon>\frac{2 \hbar^{2} \pi^{2}}{m L^{2}} \\
& \varepsilon_{F}, \Delta T \gg \frac{2 \hbar^{2} \pi^{2}}{m L^{2}} \\
& \xi \ll L=N_{s} l \\
& \delta p>\frac{2 \pi \hbar}{L}
\end{aligned}
$$

Summary

- Broyden Improves Convergence
- Extremely easy to implement
- Can be made inexpensive
- HO Basis has problems with large r tails
- DVR Basis solves these problems
- Near optimal phase-space coverage

