Superfluid LDA (SLDA)
Local Density Approximation for
Systems with Superfluid Correlations

Aurel Bulgac

collaborator/graduate student: Yongle Yu

Transparencies will be available shortly at
http://www.phys.washington.edu/~bulgac




V V VYV

Contents

Rather lengthy introduction, motivating the LDA approach
Description of the LDA for systems with pairing correlations.

Results of application of this new LDA approach to a rather large number of
spherical nuclei in a fully self-consistent approach with

continuum correctly accounted for.

Description of the new features of the vortex state in low density neutron
matter (neutron stars)

Application of this new LDA approach in the limit of strong coupling, (when
the pairing gap is of the order of the Fermi energy) and the description of the
vortex state in a dilute atomic Fermi gas

The role of paring correlations on the particle number density profiles in
cases when paring correlations are in the weak and in the strong coupling
limits respectively

Summary



References

Bulgac and Y. Yu,
Yu and A. Bulgac,
Yu and A. Bulgac,
Bulgac and Y. Yu,

Yu,

. Bulgac,

Bulgacand Y. Yu,

. Yu and A. Bulgac,
Bulgacand Y. Yu,
A. Bulgacand Y. Yu

><r>» X PXX?

Phys.Rev.Lett. 88, 042504 (2002)
Phys.Rev.Lett. 90, 222501 (2003)
Phys.Rev.Lett. 90, 161101 (2003)
Phys.Rev.Lett. 91, 190404 (2003)

PhD thesis (2003), almost done

Phys.Rev. C 65, 051305(R) (2002)
nucl-th/0109083 (Lectures)
nucl-th/0302007 (Appendix to PRL)
nucl-th/0310066

In preparation



Superconductivity and superfluidity in Fermi systems

v Dilute atomic Fermi gases
e Liquid 3He

e Metals, composite materials
v Nuclei, neutron stars

e QCD color superconductivity

T.>1012 eV

T.> 107 eV
T.>103-102eV
T, >105 - 108 eV

T, > 107 - 108eV



A rather incomplete list of major questions still left unanswered
in nuclear physics concerning pairing correlations:

v" Do nuclear pairing correlations have a volume or/and surface character?
Phenomenological approaches give no clear answer as anything fits equally well.
. The density dependence of the pairing gap (partially related to the previous
topic), the role of higher partial waves (p-wave etc.) especially in neutron matter.
v The role of the isospin symmetry in nuclear pairing.
Routinely the isospin symmetry is broken in phenomenological approaches with
really very lame excuses.
. Role of collective modes, especially surface modes in finite nuclei, role of
“screening effects.”
v’ Is pairing interaction momentum or/and energy dependent at any noticeable
level?
Pairing in T = 0 channel?
v Does the presence or absence of neutron superfluidity have any influence
on the presence and/or character of proton superfluidity and vice versa.
New question raised recently: are neutron stars type | or Il superconductors?

« We should try to get away from the heavily phenomenological approach which
dominated nuclear pairing studies most of last 40 years and put more effort in an
ab initio and many-body theory of pairing and be able to make reliable predictions,
especially for neutron stars. The studies of dilute atomic gases with tunable
interactions could serve as an extraordinary testing ground of theories.



To tell me how to describe pairing correlations
in nuclei and nuclear/neutron matter?

Most likely you will come up with one of
the standard doctrines, namely:

* BCS within a limited single-particle

energy shell (the size of which is chosen
essentially arbitrarily) and with a coupling

strength chosen to fit some data. Theoretically

it makes no sense to limit pairing correlations

to a single shell only. This is a pragmatic limitation.

* HFB theory with some kind of “effective”
interaction, e.g. Gogny interaction.

Many would (or used to) argue that the Gogny
interaction in particular is realistic, as, in
particular, its matrix elements are essentially
identical to those of the Bonn potential or some
Other realistic bare NN-interaction

» |In neutron stars often the Landau-Ginzburg
theory was used (for the lack of a more
practical theory mostly).



How does one decide if one or another theoretical approach is
meaningful?

Really, this is a very simple question. One has to check a few things.

© Is the theoretical approach based on a sound approximation
scheme?
Well,..., maybe!

© Does the particular approach chosen describe known key
experimental results, and moreover, does this approach predict
new qualitative features, which are later on confirmed experimentally?

@ Are the theoretical corrections to the leading order result under
control, understood and hopefully not too big?



Let us check a simple example, homogeneous dilute Fermi gas with a weak
attractive interaction, when pairing correlations occur in the ground state.

BCS result

An additional factor of is due
to induced interactions
Gorkov and Melik-Barkhudarov in 1961.

FIG. 1. Diagrams for the induced interactions between two fer-
mions in different internal states to second order in the effective
interaction.

from Heiselberg et al
Phys. Rev. Lett. 85, 2418, (2000)



“Screening effects” are significant!

(1 JJ3,,|
5 128 (1993)

from Lombardo and Schulze
astro-ph/0012209




Density Functional Theory (DFT)
Hohenberg and Kohn, 1964

E, = jd3r8[p(f)] G particle density

Local Density Approximation (LDA)
Kohn and Sham, 1965

E, = [drel p(7),7(F)]

p(7) = ZI v,(F) [

7(F) = Z| Vv, (7) [




Y, (7,...ry) = p(r)
Y, (7,...,ry) = p(r)
Y, (7 y) # W (71500 7y)

H = ZT+Z + >V, +

i<j i<j<k

L, :<\PA |H+ZVZ |LPA>:<\PA |H|\I"A>+T1‘(Vp)

Ly :<LPB |H+ZU1' |LPB>:<LPB |H|TB>+TI(Up)

E,<(Y,|H|¥,)+Tt(Vp)
E,<(¥Y,|H|¥,)+Tr(Up)
E, +E,<E, +LE,




LDA (Kohn-Sham) for superfluid fermi systems

(Bogoliubov-de Gennes equations)

E,, = [d’rs(p(7),c(7),v(7))
p(F) =2 |v,(F)[, (7)) =2 |Vv, ()

v(F) =D u, (F)v,(7)

T'+U(r)—-4 A(r) u,(7) _ u,(7)
A'(F) ~(T+U@FE =)\, (7)) v, (7)

Mean-field and pairing field are both local fields!

(for sake of simplicity spin degrees of freedom are not shown)

There is a little problem! The pairing field D diverges.




Why would one consider a local pairing field?
v Because it makes sense physically!

v'The treatment is so much simpler!
v Our intuition is so much hetter also.

/-

radius of interaction inter-particle separation

coherence length
size of the Cooper pair



Nature of the problem

S o . 1
v(n,n)= ka(’ﬂ)uk(’”z)oc .
E, >0 ‘7’1—7"2‘
O B
A(rl:rz)ZEV(rprz)V(rvrz)

It is easier to show how this singularity appears
in infinite homogeneous matter (BCS model)

at small separations

v, (F)=v, exp(ik -7), u,(F)=u, exp(ik -7)

nk’

2m

& —A
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A (too) simple case
k. —>0,0—>0

V("_”i_’jz‘)_) sinkr  Am T
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The integral converges (conditionally) at k> 1/r (i{f r>0)

The divergence is due to high momenta and thus its nature is
independent of whether the system is finite or infinite



If one introduces an explicit
momentum cut-off one has
deal with this integral il r>0.

If r=0 then the integral
is simply:




Solution of the problem in the case of the homogeneous matter
(Lee, Huang and Yang and others)

Gap equation

V(n-r)=gd6(1 —r,)

Lippmann-Schwinger equation
(zero energy collision)

T=V+VGT —

Now combine the two equations and
the divergence is (magically) removed!

e —A) A &




How people deal with this problem in
finite systems?

v" Introduce an explicit energy cut-off, which can vary from 5
MeV to 100 MeV (sometimes significantly higher) from the
Fermi energy.

v" Use a particle-particle interaction with a finite range, the most
popular one being Gogny’s interaction.

Both approaches are in the final analysis equivalent in principle, as a potential
with a finite range r, provides a (smooth) cut-off at an energy E, =h?/mr?

» The argument that nuclear forces have a finite range is superfluous, because
nuclear pairing is manifest at small energies and distances of the order of the
coherence length, which is much smaller than nuclear radii.

» Moreover, LDA works pretty well for the regular mean-field.

» A similar argument fails as well in case of electrons, where the radius of the
interaction is infinite and LDA is fine.



Pseudo-potential approach
(appropriate for very slow particles, very transparent
but somewhat difficult to improve)

Lenz (1927), Fermi (1931), Blatt and Weiskopt (1952)
Lee, Huang and Yang (1957)

/R o . . :
— “y(r)+V((rwr)=Ew(r), V(r)=0if r>R
m

w(?):exp(ilg-?)+iexp(ikr)zl +i+...zl—ﬁ+ O(kr)
v v v
2
f—l — _l+lr0k2 _lok, g — 472. h.a +".
a 2 m(1 + ika)

if kry<<1 then V@#)w(r)= gﬁ(F)ai[VW(f)]
r
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How to deal with an inhomogeneous/finite system?

NGUAGI ARG .
2(/1_‘91')

def o -
G r)-lm{ (P A+

V) = Z{v GUGE G

F'—F 272%2‘7'—

1)~ . (7) =0
A-h@)G(F, 7, 2)=0(F -7')

There is complete freedom in choosing the Hamiltonian h
and we are going to take advantage of this!




We shall use a “Thomas-Fermi’’ approximation for the propagator G.

m exp(ik , (17)‘17 —7")
27h° ‘17 4

ik, (r)m
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New renormalization scheme

Vacuum renormalization
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FIG. 2. The gap A and the effective coupling constant g.g
as a function of the cut-off energy FE. for three regularization
schemes. The full lines correspond to calculations using Eqs.
(— )‘ Circles correspond to the regularization scheme pre-
sented in Ref. [5] (when only terms with k. are present). The
pentagrams correspond to the vacuum regularization scheme
[16]. The calculation was performed for homogeneous neutron
matter with p = 0.08 fm~* and g = —250 MeV - fm~.

A. Bulgac, Phys. Rev. C 65, 051305 (2002)

12

FIG. 1. The neutron pairing field |::| as a hanction of
the radial coordinate and of the cut—off energy F.. Upward
various curves correspond to £, = 20, 30, 35, 40, 45 and
50 MeV respectively. On the scale of the figure the last two

curves are indistinguishable.

A. Bulgac and Y. Yu,
Phys. Rev. Lett. 88, 042504 (2002)




The renormalized equations:

mhk.(r)

. ¢ )
Im2h-
A
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A few notes:

The cut-off energy E_ should be larger than the Fermi energy.

It is possible to introduce an even faster converging scheme for the pairing
field with E, of a few D’s only.

Even though the pairing field was renormalized, the total energy should be
computed with care, as the “pairing” and “kinetic” energies separately diverge.

E, = / d*r[En(r) + Es(r)],

Es(r) i= —A(r)ve(B) = gesr (7)|ve(r)|

Still diverges!

One should now introduce the normal and the superfluid contributions to the
bare/unrenormalized Energy Density Functional (EDF).

EleSaSVininEaAs 2l Eq(7) = gol(7)|vp(r) + vn(r) |1"‘ + g1(r)|vp(r) —vn(r) |E




Peculiarity of the finite systems:

refraciparticle
reflected particle /

-

”
incident particle ’/ /

Cooper pair

reflected hpble

Andreev reflection



Integration contours used to construct the normal and
anomalous densities from the Gorkov Green functions
Belyaev ef a/, Sov. J. Nucl. Phys. 45, 783 (1987).

Even systems Odd systems






How well does the new approach work?

TABLE I. The rms of 5., and &%, deviations, respectively,
from experiment [21] (in MeV 's) for several isotope and isotone

chains.

Z or N
chain

San/Sn
present

San /Sn
Ref. [11]

Saw

Ref. [23]

£ =20
L =28
£ = 4
£ = 51}
£ =582
N = 50
N = B2
N = 126

0.82,/0.76
0.67/0.50
0.93,/0.63
0.29,/0.21
0.23,/0.37
0.37,/0.26
0.43,/0.31
0.42,/0.23

1.02,/0.92
0.66/0.55
0.66,/0.63
0.43,/0.35
(0.58,0.53
0.41,/0.23
0.50,0.56
(0.88,0.52

(.96
1.30
221
(LY95
0,74
A
A
A

Ref. 21, Audi and Wapstra, Nucl. Phys. A595, 409 (1995).
Ref. 11, S. Goriely ef al. Phys. Rev. C 66, 024326 (2002) - HFB
Ref. 23, S.Q. Zhang ef a/. nucl-th/0302032. - RMF




One-neutron separation energies
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Two-neutron separation energies
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One-nucleon separation energies
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Exp. Exp.
— Our result Our result
~ Goriely etal. . 77 Goriely etal.
Fayans et al. ' -~ Fayans etal.

We use the same normal EDF as Fayans ef al.

Fayans ef al. Nucl. Phys. A676, 49 (2000)

Goriely ef al. Phys. Rev. C 66, 024326 (2002)

Exp. - Audi and Wapstra, Nucl. Phys. A595, 409 (1995)






Charge radi

e Exp. e Exp.
o Qur result e © ' o Our result
s Goriely et al. s Goriely et al.

Exp. - Nadjakov et al. At. Data and Nucl. Data Tables, 56, 133 (1994)



Let me backtrack a bit and summarize some of the ingredients of
the LDA to superfluid nuclear correlations.

Energy Density (ED) describing the normal system

ED contribution due to superfluid correlations

E, = [driey[p,(7). p, (P + &5 p, (F). p, (F).v, (F).v, (P}

exlp, (), p,(F)=¢eylp,(r), p, ()]
EsLp. (), p,(F),v, (), v,(F)]=&lp,(F), p,(F),v,(F),v,(F)]

Isospin symmetry
(Coulomb energy and other relatively small terms not shown here.)

Let us consider the simplest possible ED compatible with nuclear symmetries
and with the fact that nuclear pairing corrrelations are relatively weak.

- 2
gS[ppﬂpn9Vp’Vn]_gO|Vp+Vn| +g1|vp_vn

;_\f__J ;_\f__J

like p,+p, like p,—-p,

g, and g, could depend as well on p and p,



Let us stare at this part of the ED for a moment, ... or two.

SU(2) invariant ?

2 2
=g |v,+tv, [ +g|v,-v,]

=gllv, [ +v,['1 + g [v,v, +v,v,]

g=g,t+g g=8,-8

NB | am dealing here with s-wave pairing only|(S=0 and T=1)!

The last term could not arise from a two-body bare interaction.



Zavischa, Regge and Stapel, Phys. Lett. B 185, 299 (1987)
Apostol, Bulboaca, Carstoiu, Dumitrescu and Horoi,

Europhys. Lett. 4, 197 (1987) and Nucl. Phys. A 470, 64 (1987)
Dumitrescu and Horoi, Nuovo Cimento A 103, 635 (1990)
Horoi, Phys. Rev. C 50, 2834 (1994)

considered various mechanisms to couple the proton and neutron
superfluids in nuclei, in particular a zero range four-body interaction

which could lead to terms like FRZHEANE

* Buckley, Metlitski and Zhitnitsky, astro-ph/0308148 considered an
SU(2) - invariant Landau-Ginsburg description of neutron stars in
order to settle the question of whether neutrons and protons
superfluids form a type | or type Il superconductor. However, | have
doubts about the physical correctness of the approach .



In the end one finds that a suitable superfluid
nuclear EDF has the following structure:

[sospin symmetric

\

- 2 2
=g(p,, o)V, " +|v,[']

P, =P,

+ (o, oV, [ =V, ]
p,+p,

where  g(p,,p,)=2(p,,P,)
and  f(p,,p,)=1(P.P,)

Charge symmetric



Goriely et al, Phys. Rev. C 66, 024326 (2002) in the most extensive and
by far the most accurate fully self-consistent description of all known
nuclear masses (2135 nuclei with A28) with an rms better than 0.7 MeV
use for pairing couplings:

V! =-2653MeV
Vi =-237.6 MeV

for even systems

V —=-277.8MeV

pp

V. =-246.9 MeV
E. =15MeV cutoff energy

for odd systems

While no other part of their nuclear EDF violates isospin symmetry, and moreover,
while they where unable to incorporate any contribution from CSB-like forces, this
fact remains as one of the major drawbacks of their results and it is an
embarrassment and needs to be resolved. Without that the entire approach is in
the end a mere interpolation, with limited physical significance.



Let us now remember that there are more neutron rich nuclei and let me estimate
the following quantity from all measured nuclear masses:

Conjecturing now that Goriely et al, Phys. Rev. C 66, 024326 (2002) have as a
matter of fact replaced in the “true” pairing EDF the isospin density dependence

simply by its average over all masses, one can easily extract from their pairing
parameters the following relation:

where f = -039¢g>0 and g<0

repulsion attraction



The most general form of the superfluid contribution (s-wave only) to
the LDA energy density functional, compatible with known nuclear symmetries.

|2

2
=g(p,.p)\Vv, | +g(p,,p,) |V,

v In principle one can consider as well higher powers terms in the anomalous
densities, but so far | am not aware of any need to do so, if one considers
binding energies alone.

v There is so far no clear evidence for gradient corrections terms in the
anomalous density or energy dependent effective pairing couplings.



How can one determine the density dependence
of the coupling constant g? | know two methods.

v" In homogeneous low density matter one can compute the pairing gap as a
function of the density.

v' One compute also the energy of the normal and superfluid phases as a function
of density, as was recently done by Carlson et al, Phys. Rev. Lett. 91, 050401 (2003)
for a Fermi system interacting with an infinite scattering length (Bertsch’s MBX

1999 challenge)

In both cases one can extract from these results the superfluid contribution to the
LDA energy density functional in a straight forward manner.



A NEUTRON STAR: SURFACE and INTERIOR
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Landau criterion for superflow stability

(flow without dissipation)

Consider a superfluid flowing in a pipe with velocity v..

2
Nmv

: - o
B, + 5 <Eyt+é&;+v,-p+

no internal excitations

One single quasi-particle excitation with momentum p

A

In the case of a Fermi superfluid this condition becomes \4

S <—
ik,



Vortex in neutron matter

Uy (7)) (u,(r)expli(n+1/2)¢ —ikz]
v . (7)) \v, (r)expli(n—1/2)¢—ikz]

j, n - half -integer

A(F) = A(r)exp(i@), ¥ =(r,9,z) [cyllindrical coordinates]

Oz - vortex symmetry axis

Ideal vortex, Onsager's quantization (one 7 per Cooper pair)




- — - non-interacting
— without pairing
— — with pairing

Fayans’s FaNDF?

T

An additional factor of 1/(4e)/3
is due to induced interactions

FIG. 1. Diagrams for the induced interactions between two fer-
mions in different internal states to second order in the effective
interaction.

from Heiselberg et al
Phys. Rev. Lett. 85, 2418, (2000)
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Dramatic structural changes of the vortex state naturally lead
to significant changes in the energy balance of a neutron star

e In low density region &(p,,,) 2., > €(0,,) P,

which thus leads to a large anti - pinning energy E;.n >0:

E]Zn = [8(,00ut),00m - 8(pin)pin ]V

e The energy per unit length is going to be changed

dramatically when compared to previous estimates, by

AE vortex

L = [8(pout)pout - 8(pi” )pi” ]ﬂ'R2

e Specific heat, transport properties are expected to

significantly affected as well.




Vortices in dilute atomic Fermi
systems in traps

v 1995 BEC was observed.

v' 2000 vortices in BEC were created, thus BEC
confirmed un-ambiguously.

v In 1999 DeMarco and Jin created a degenerate
atomic Fermi gas.

v' 2002 O’Hara, Hammer, Gehm, Granada and Thomas observed
expansion of a Fermi cloud compatible with the existence of a
superfluid fermionic phase.



How can one put in evidence a voriex
in a Fermi superfluid?

Hard to see, since density changes are not expected, unlike
the case of a Bose superfluid.

What we learned from the structure of a vortex in low density
neutron matter can help however.

If the gap is not small one can expect a noticeable density
depletion along the vortex core, and the bigger the gap the
bigger the depletion.



Feshbach resonance

Tiesinga, Verhaar, Stoof
Phys. Rev. A47, 4114 (1993)

g
g
E-
g

Atomic
seperation

Regal and Jin
Phys. Rev. Lett. 90, 230404 (2003)



Consider Bertsch’s MBX challenge (1999): “Find the ground
state of infinite homogeneous neutron matter interacting with
an infinite scattering length.”

»Carlson, Morales, Pandharipande and Ravenhall,
nucl-th/0302041, with Green Function Monte Carlo (GFMC)

normal state

> Carlson, Chang, Pandharipande and Schmidt,
PRL 91, 050401 (2003), with GFMC

superfluid state

This state is half the way from BCS—BEC crossover, the pairing
correlations are in the strong coupling limit and HFB invalid again.



r)n(r) = — | s—7(r) + fn(r)*"
| m | 2m*

NS

| Ve ( r ) ‘ :

» This form is not unique, as one can have either:
(setl) or and (set ll).
» Gradient terms not determined yet (expected minor role).



Solid lines are results for parameter
set |, dashed lines for parameter set |l
(dots — velocity profile for ideal vortex)




40K (Fermi) atoms in a spherical harmonic trap

Effect of interaction, with and without weak and strong pairing correlations
with fixed chemical potential.

Mean-field and Pairing fields Particle number density

— no interaction
— mean-field + pairing
—— mean-field + no pairing

a infinite

a finite

m= 0.14u10-%V, hw=0.568 10-'%eV,
=-12.63nm (when finite)



40K (Fermi) atoms in a spherical harmonic trap

Effect of interaction, with and without weak and strong pairing correlations
with fixed particle number,

Mean-field and Pairing field Particle number density

— no interaction
- - mean-field + pairing
—— mean-field + no pairing

9
8
7
6
5
4
3
2
1

OO

hw=0.568 u10-12eV, a = -12.63nm (when finite)



Conclusions

v An LDA-DFT formalism for describing pairing correlations in Fermi systems
has been developed. This represents the first genuinely local extention

of the Kohn-Sham LDA from normal to superfluid systems - SLDA

Nuclear symmetries lead to a relatively simple form of the superfluid
contributions to the energy density functional.

Phenomenological analysis of a relatively large number of nuclei (more
than 200) indicates that with a single coupling constant one can describe
very accurately proton and neutron pairing correlations in both odd and
even nuclei. However, there seem to be a need to introduce a consistent
isospin dependence of the pairing EDF.

There is a need to understand the behavior of the pairing as a function of
density, from very low to densities several times nuclear density, in particular
pairing in higher partial waves, in order to understand neutron stars.

It is not clear so far whether proton and neutron superfluids do influence
each other in a direct manner, if one considers binding energies alone.

The formalism has been applied as well to vortices in neutron stars and to
describe various properties of dilute atomic Fermi gases and there is also
an extension to 2-dim quantum dots due to Yu, Aberg and Reinman.




