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Superconductivity and superfluidity in Fermi systems

v Dilute atomic Fermi gases T~ 1012_10°%eV

v" Liquid 3He T,~ 107eV

v'  Metals, composite materials T,~ 103-102eV

v Nuclei, neutron stars T

Cc

10° - 106 eV

i

e QCD color superconductivity T

e

107 - 108 eV

units (1 eV ~ 10¢ K)



A little bit of history



Bertsch Many-Body X challenge, Seattle, 1999

What are the ground state properties of the many-body system composed of

spin ¥z fermions interacting via a zero-range, infinite scattering-length contact
interaction.

Why? Besides pure theoretical curiosity, this problem is relevant to neutron stars!

In 1999 it was not yet clear, eithe

cally or experimentally,

ot! A number of people argued th
under such conditions fermionic ma IS unstable.

whether such fermion matter is sta D




Bertsch’s regime is nowadays called the unitary regime

The system 1s very dilute, but strongly interacting!

nr, < 1 n fa® > 1

n - number density

r < 0P R N/2 < |a
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r, - range of interaction a - scattering length
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no 2-body bound state shallow 2-body bound state
halo dimers




Early theoretical approach to BCS-BEC crossover
Dyson (?), Eagles (1969), Leggett (1980) ...

gap equation

number density equation

pairing gap

quasi-particle energy




Consequences:

* Usual BCS solution for small and negative scattering lengths,
with exponentially small pairing gap

* For small and positive scattering lengths this equations describe
a gas a weakly repelling (weakly bound/shallow) molecules,
essentially all at rest (almost pure BEC state)

Fen) = A[0(F,)0(Ty).]

In BCS limit the particle projected many-body wave function
has the same structure (BEC of spatially overlapping Cooper pairs)

* For both large positive and negative values of the scattering
length these equations predict a smooth crossover from BCS to BEC,

from a gas of spatially large Cooper pairs to a gas of small molecules



What is wrong with this approach:

* The BCS gap (a<0 and small) is overestimated, thus the critical temperature
and the condensation energy are overestimated as well.

* In BEC limit (a>0 and small) the molecule repulsion is overestimated

* The approach neglects of the role of the “meanfield (HF) interaction,”
which is the bulk of the interaction energy in both BCS and
unitary regime

* All pairs have zero center of mass momentum, which is
reasonable in BCS and BEC limits, but incorrect in the
unitary regime, where the interaction between pairs is strong !!!

(this situation is similar to superfluid “He)

¥ (L5, Ten) ~ A[ (T, )0(Fy ). ]




Two-body density matrix and condensate fraction
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BCS theory

From a talk of Stefano Giorgini (Trento)



What is the best theory for the T=0 case?



Fixed-Node Green Function Monte Carlo approach at T=0
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Even though two atoms can bind,
there is no binding among dimers!

Fixed node GFMC results, J. Carlson et al. (2003)



Theory for fermions at T >0
in the unitary regime

Put the system on a spatio-temporal lattice and use
a path integral formulation of the problem



A short detour

Let us consider the following one-dimensional Hilbert subspace
(the generalization to more dimensions is straightforward)

P*=P projector in this Hilbert subspace

sin [% (x — y)}
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Littlejohn et al. J. Chem. Phys. 116, 8691 (2002)



Schroedinger equation

P .
Area of Strip = 2zh
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Momentum space



Grand Canonical Path-Integral Monte Carlo

2 2

5 A . ([ nA _ [ KA . S0 o o
H=T+V =jd X{wi(X)[— - jWT(XHwI(X)(—z—jm(X)}—gfd X Ny (X)N (X)
N = [d*x [A,(0)+n,(%)], A =y, (x), s=T{

Trotter expansion (trotterization of the propagator)

1 .
E(T)= Tr H ex
(T) 7D p

N(T):Z(IT)TrNexp

No approximations so far, except for the fact that the interaction is not well defined!




Recast the propagator at each time slice and put the system on a 3d-spatial lattice,
in a cubic box of side L=N_l, with periodic boundary conditions

Running coupling constant g defined by lattice



A | How to choose the lattice spacing and the box size

n(k)

2n/L L — box size
D e

| - lattice spacing

k_ . =nll

max




= j HDG(@', ) TrU({c})

One-body evolution
=T
H exp{~r[h({c}) - ul} operator in imaginary time

l;IDO'(a?, 7)TrU({c}) e[ A0({o})]
Z(T) TrU({o})

TrU({o}) = {detl1+ U{o})]Y = expl-S{o})] > 0

ny(Z,7) = n,(%,7) = Z 0.( { U({c}) )} ¢l( ), 0.() = exp\(/zé.f)

1+U({0'}

All traces can be expressed through these single-particle density matrices

kl<k,




More details of the calculations:

* Lattice sizes used from 63 x 300 (high Ts) to 63 x 1361 (low T's)
83 running (incomplete, but so far no surprises) and larger sizes to come

 Effective use of FFT(W) makes all imaginary time propagators diagonal (either in
real space or momentum space) and there is no need to store large matrices

» Update field configurations using the Metropolis importance
sampling algorithm

* Change randomly at a fraction of all space and time sites the signs the auxiliary

fields o(x,T) so as to maintain a running average of the acceptance rate between
0.4 and 0.6

* Thermalize for 50,000 — 100,000 MC steps or/and use as a start-up
field configuration a o(x,7)-field configuration from a different T

» At low temperatures use Singular Value Decomposition of the
evolution operator U({0}) to stabilize the numerics

* Use 100,000-2,000,000 6(x,7)- field configurations for calculations

* MC correlation “time” = 250 — 300 time steps at T= T



Superfluid to Normal Fermi Liquid Transition

E(T) [0.6e N], u[e]

Bogoliubov-Anderson phonons
contribution only (little crosses)
People never consider this 777

Quasi-particles contribution only
(dashed line)

u - chemical potential
(circles)




"

—
o

-

Z,
w
e
el
=,
Z
[m
W
©
=
=
L
=
LLl

=
on

= uN-PV+TS = ggF(n)N e(

'k
= 2 8F (n) — -

N_ K
|74 2m

T

3 Y
5
3 e(n) — No-( T
T &p(n)



Specific heat of a fermionic cloud in a trap

At T << T_only the Bogoliubov-Anderson modes in a trap are excited

In a spherical trap

In an anisotropic trap




Now we can estimate E(T)
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The previous estimate used an approximate collective spectrum.
Let us use the exact one for spherical traps:
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The last estimate includes only the surface modes



Let us try to estimate the contribution from surface modes
in a deformed trap (only n=0 modes):
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Let us estimate the maximum temperature for which
this formula is reasonable:
T
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Conclusions

v" Fully non-perturbative calculations for a spin %> many fermion
system in the unitary regime at finite temperatures are feasible and

apparently the system undergoes a phase transition in the bulk at
T,=0.22 (3) g,

(One variant of the fortran 90 program, version in matlab, has about 500
lines, and 1t can be shortened also. This 1s about as long as a PRL!)

v" Below the transition temperature both phonons and fermionic
quasiparticles contribute almost equaly to the specific heat. In more
than one way the system is at crossover between a Bose and Fermi
systems

v In a trap the surface modes seem to affect significantly the
thermodynamic properties of a fermionic atomic cloud



