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Why would one study vortices in neutral
Fermi superfluids?

They are perhaps just about the only
phenomenon in which one can have
a true stable superflow!



What shall | cover in this talk?

- SLDA - Superfluid LDA

A brief introduction into the extension of the Kohn-Shall LDA to superfluid
fermionic systems (A. Bulgac and Y. Yu, Phys. Rev. Lett. 88, 042504 (2002)
Y. Yu and A. Bulgac, Phys. Rev. Lett. 90, 222501 (2003))

 Vortices in the crust of neutron stars

* Vortices in dilute superfluid Fermi gases and some related
issues

* Density profiles of dilute normal and superfluid Fermi gases in
traps



Density Functional Theory (DFT)
Hohenberg and Kohn, 1964

E, = jd3r5[p(F)] G particle density

Local Density Approximation (LDA)
Kohn and Sham, 1965

E, = [drel p(),7(F)]

p(7) = ZI v,(F) [

r(F)=2 |Vv,(F) [
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LDA (Kohn-Sham) for superfluid fermi systems

(Bogoliubov-de Gennes equations)

E, = [d’re(p(F).t(7).v(F))
p(F) =2 |v,(F)}, () =2 |Vv, ()

v(F) =D u, (F)v,(F)

T'+U((r)—A A(7) u,(r) _ u,(r)
A'(F) ~(T+UA - \v () v, (7)

Mean-field and pairing field are both local fields!

(for sake of simplicity spin degrees of freedom are not shown)




Why would one consider a local pairing field?
v'Because it makes sense physically!

v/ The treatment is so much simpler!
v Our intuition is so much hetter also.

i

radius of interaction inter-particle separation

coherence length
size of the Cooper pair



Nature of the problem
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It is easier to show how this singularity appears
in infinite homogeneous matter (BCS model)

at small separations
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Solution of the problem in the case of the homogeneous matter
(Lee, Huang and Yang and others)

Gap equation

V(n—r)=go(rn-1)

Lippmann-Schwinger equation
(zero energy collision)

Now combine the two equations and
the divergence is (magically) removed!




How people deal with this problem in finite
(nuclei) systems?

v" Introduce an explicit energy cut-off, which can vary from
5 MeV to 100 MeV (sometimes significantly higher) from
the Fermi energy.

v Use a particle-particle interaction with a finite range, the
most popular one being Gogny’s interaction.

Both approaches are in the final analysis equivalent in principle, as a potential
with a finite range r, provides a (smooth) cut-off at an energy E, =h?/mr?

» The argument that nuclear forces have a finite range is superfluous, because
nuclear pairing is manifest at small energies and distances of the order of the
coherence length, which is much smaller than nuclear radii.

» Moreover, LDA works pretty well for the regular mean-field.

» A similar argument fails as well in case of electrons, where the radius of the
interaction is infinite and LDA is fine.



Pseudo-potential approach
(appropriate for very slow particles, very transparent
but somewhat difficult to improve)

Lenz (1927), Fermi (1931), Blatt and Weiskopf (1952)
Lee, Huang and Yang (1957)
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How to deal with an inhomogeneous/finite system?
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There is complete freedom in choosing the Hamiltonian h
and we are going to take advantage of this!




We shall use a “Thomas-Fermi’’ approximation for the propagator G.
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SLDA equations for superfluid Fermi systems:

Es(r) = —AP)ve(r) = gepr (7)|ve(r)]?.
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Y.Yu and A. Bulgac, PRL 90, 222501 (2003)



Peculiarity of the finite systems:

refraciparticle
reflected particle /

-

”
incident particle ’/ /

Cooper pair

reflected hpble

Andreev reflection



Integration contours used to construct the normal and
anomalous densities from the Gorkov Green functions
Belyaev ef a/, Sov. J. Nucl. Phys. 45, 783 (1987).

Even systems Odd systems



Let me backtrack a bit and summarize some of the SLDA ingredients.

Enerqy Density (ED) describing the normal system

ED contribution due to superfluid correlations

E, = [d'r e, [p,().p, (") + &[0, (7). p, (F).v, (F)v, (P}

exlp, (), p,(F)=¢eylp,(r), p,(r)]
(EsLo.(P), p, (7). v, (F), v, (F)]= & p,(7), p,(T),v,(F),v,(F)]

Isospin symmetry
(Coulomb energy and other relatively small terms not shown here.)

Let us consider the simplest possible ED compatible with nuclear symmetries
and with the fact that nuclear pairing corrrelations are relatively weak.
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g, and g, could depend as well on p and p,



In the end one finds that a suitable superfluid
nuclear EDF has the following structure:

[sospin sy%‘

=g(p,. pIIV, [ +v,[]
Py =P
p,+p,

+ (P PV, [ =V, []

where  g(p,.p,)=2g(p,,P,)
and  f(p,,p,)=1(p.»P,)

Charge symmetric



Let us now remember that there are more neutron rich nuclei and let me estimate
the following quantity from all measured nuclear masses:

Conjecturing now that Goriely et al, Phys. Rev. C 66, 024326 (2002) have as a
matter of fact replaced in the “true” pairing EDF the isospin density dependence
simply by its average over all masses, one can easily extract from their pairing
parameters the following relation:

where f =~ -039 ¢>0 and g<0

repulsion attraction



How can one determine the density dependence
of the coupling constant g? | know two methods.

v" In homogeneous low density matter one can compute the pairing gap as a
function of the density.

v' One compute also the energy of the normal and superfluid phases as a function
of density, as was recently done by Carlson et al, Phys. Rev. Lett. 91, 050401 (2003)
for a Fermi system interacting with an infinite scattering length (Bertsch’s MBX

1999 challenge)

In both cases one can extract from these results the superfluid contribution to the
LDA energy density functional in a straight forward manner.



What shall | cover in this talk?

- SLDA - Superfluid LDA

A brief introduction into the extension of the Kohn-Shall LDA to superfluid
fermion systems

 Vortices in the crust of neutron stars
(Y. Yu and A. Bulgac, Phys. Rev. Lett. 90, 161101 (2003))

» Vortices in dilute superfluid Fermi gases and some related
iIssues

* Density profiles of dilute normal and superfluid Fermi gases in
traps
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“Screening effects” are significant!

from Lombardo and Schulze
astro-ph/0012209




Let us check a simple example, homogeneous dilute Fermi gas with a weak
attractive interaction, when pairing correlations occur in the ground state.

An additional factor of 1/(4e)*® = 0.45 is due
to induced interactions
Gorkov and Melik-Barkhudarov in 1961.

FIG. 1. Diagrams for the induced interactions between two fer-
mions in different internal states to second order in the effective
interaction.

from Heiselberg et al
Phys. Rev. Lett. 85, 2418, (2000)



— phase shift — phase shift
— effective range — effective range
-~ RG I
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exp| —
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RG- renormalization group calculation
Schwenk, Friman, Brown, Nucl.Phys. A713, 191 (2003)R




Landau criterion for superflow stability

(flow without dissipation)

Consider a superfluid flowing in a pipe with velocity v..

2
Nmv;

E, + 5

<Eyt+é&;+v,-p+

no internal excitations

One single quasi-particle excitation with momentum p

A

In the case of a Fermi superfluid this condition becomes \4

S <—
hk,



Vortex in neutron matter
(uakn (?)j 3 (ua (ryexpli(n+1/2)¢ —ikz]

Vakn(F)

] n - half -integer

v_(r)expli(n—1/2)¢—ikz] |

A(F) = A(r)exp(id), 7 =(r,¢,z) [cyllindrical coordinates]

Oz - vortex symmetry axis

Ideal vortex, Onsager's quantization (one 7 per Cooper pair)

h 1
—x,0) & — V
2mr (y ) 27z

Y. Yu and A. Bulgac, PRL 90, 161101 (2003)



- — - non-interacting
— without pairing
— — with pairing

Fayans’s FaNDF?

T

An additional factor of 1/(4e)/3
is due to induced interactions

FIG. 1. Diagrams for the induced interactions between two fer-
mions in different internal states to second order in the effective
interaction.

from Heiselberg et al
Phys. Rev. Lett. 85, 2418, (2000)




p(r) [107°fm ]

10

x 4

x 20

ul = 5MeV
u=2MeV
u=1MeV

1 =0.5MeV |

10 r [fm] 15

Distances scale with I¢

% 10 uw=0.5MeV |
% 5 uw=1MeV
x 2.5 u=2MeV
u=5MeV
0 5 10 15 20 25
r [fm]

Bulaac, PRL 90

161101

2003

A(r) [MeV]

u=>5NMeV

iw=05MeV|

1 10 r[fm]m

20 25

Distances scale with x>>1

T \ T
W
\

= = h/dxmr
— u=5MeV
— - u=2MeV
-u=1MeV
-— - u=0.5MeV

r [fm]




Dramatic structural changes of the vortex state naturally lead
to significant changes in the energy balance of a neutron star

0.12, extremely fast vortical motion,

_m_

S &
® In IOW denSity region g(pout )pout > g(pin )pin

which thus leads to a large anti - pinning energy E Zm >0:

E;/l'n = [g(pout)pout - g(pi” )’Oi’1 ]V

e The energy per unit length is going to be changed dramatically

when compared to previous estimates, by

AE

vortex

L = [g(loout)pout - g(pi")pi" ]ﬂRz

e Specific heat, transport properties are expected to significantly

affected as well.

Some similar conclusions have been reached recently also by
Donati and Pizzochero, Phys. Rev. Lett. 90, 211101 (2003).



What shall | cover in this talk?

- SLDA - Superfluid LDA

A brief introduction into the extension of the Kohn-Shall LDA to superfluid
fermion systems

 Vortices in the crust of neutron stars

« Vortices in dilute superfluid Fermi gases and some related
iIssues

(A. Bulgac and Y. Yu, Phys. Rev. Lett. 91, 190404 (2003))

* Density profiles of dilute normal and superfluid Fermi gases in
traps



Feshbach resonance

Tiesinga, Verhaar, Stoof
Phys. Rev. A47, 4114 (1993)

»

Atomic
seperation

scattering length (a )

Regal and Jin
Phys. Rev. Lett. 90, 230404 (2003)




Reagal, Ticknor, Bohm and Jin, Nature 424, 47 (2003)

40 60 80
inverse ramp speed (Ls/G)

B
228.25 G to 216.15
B 40 ms/G
19/2,-9/2> |9/2,-5/2> B
B=227.81 G
19/2,-9/2 |9/2,-5/2>



BCS —BEC crossover
Leggett (1980), Nozieres and Schmitt-Rink (1985), Randeria ef a/. (1993)

If a<0 at T=0 a Fermi system is a BCS superfluid

If |]a|]=c0 and nr,*a 1 a Fermi system is strongly coupled and its properties
are universal. Carlson ef a/. PRL 91, 050401 (2003)
E 3 E pertiuid 3
—nomal  ().54=¢,., T 2044=¢. and& =01
¥ e Y Ser and&=0(%)

If a>0 (a>>r,) and na’a 1 the system is a dilute BEC of tightly bound dimers

n
and n,a’ <<1, where n, :7f and a,, =0.61a >0




What do we know about dilute normal Fermi systems?
(For a recent review see Hammer and Furnstahl, Nucl. Phys. A678, 277 (2000))

1

3 2

—+(g—1 }{ (kpag) + —(11 =2In2)(kras)” + —(kgry)(kpag)”
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."* ~

3 357~ 1077

— spin [degeneracy, a | - s-wave scatteripg length,
— p-wave scattering length, r_ - s-wave| effective range

kinetic energy HF energy correlation energ




Lessons:

v The first type of correction to be accounted for in both Bose and Fermi
systems is the Lee & Yang, Huang, Luttinger (1957) correlation energy,
which is still determined by the scattering length.

v’ Effective range corrections appear only much later.

v When the parameter na® becomes large, other methods are required.



“Fundamental” and “effective” Hamiltonians

AV
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91 .92

If one is interested in phenomena with momenta , where r
is the typical range of the interaction, the “fundamental” Hamiltonian is too complex.

2 Ve () + a1 )Pl P

_ﬁg,’r(,r.:, ;

e
IRV 1
— T (r) P T) 4+ 2P (PP (1) + E)‘

T

4
Fham B (P)DL ) Pa(r) Do (r)

Working with contact couplings requires regularization and renormalization,
which can be done in several different, but equivalent ways.

We will show that IS over-determined.




Explicit introduction of “Feshbach molecules”

Example: open channel — two 8°Rb atoms in f =2, m.= -2 state each
closed channel — two %Rb atoms in f = 3 each and total M, = -4
o o N )
E . _;A';Vl(’")‘FI/ll(r)W1(r)+I/12(r)W2(V):EW1(7’)
hg 041 l* Closed Channel 5

% ZZ] " DpaClame _;AW2 (F)+ V(P (F)+V, (P, (F) = Ey,(7)
I# -1
C 2] LR

S 1 1
165 166 157 158 160 160 J7 P 4 I V. =V. +V V.
aa 11 12E—Tk—V22—|—i77 21 11 12|¢0>E—E0+i77<¢0‘ 21
(Tk + sz )¢o — Eo¢o
m 1 mk m 1
= + < (cut-off reg. = DR
Arh*a a’  27’h? ( g) Arh*a a’ (DR)

After introducing contact couplings



Kohler, Gasenzer, Jullienne and Burnett, cond-mat/0305028.

Energy

- closed channel

Atomic
seperation

B =16.0mT
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Some simple estimates in case a > 0 and a > r,

wi 1n open channel atr > 1, wisinregionr <,

o

rl//l(l”)=A7‘0|:1+0( ry(r)=ry,(r)=nA

a
Probability to find two atoms :
2A32r03 (Or A

if oscillatej

P(r<r)= Jgrzdr[l//l (r) +y, (r)z]z

2 2
A”ar,

ridry, (r)” = 5

P(r<r) 4r

Most of the time the two atoms spend at large separations,
y.(r) — open channel (dimer), v.,(r) — closed channel (Feshbach molecule)




» So far we discussed only interaction between atoms and one needs
to include molecules.

» |f atoms and molecules coexist, it makes sense to introduce molecules
as independent degrees of freedom.

» Previously various authors, starting with Timmermans et al. (1998)
introduced explicitely the “Feshbach molecules” for several reasons:
%  There was hope to overcome the restriction na® & 1 close to a
Feshbach resonance, when |a|>>r,, and replace it hopefully
with the milder condition nr,2>a 1 and thus still be able to use
the many-body tools developed for dilute systems.

s Develop a formalism for a mixture of atoms and molecules.



> It is relatively easy to convince oneself that corrections to the energy of a
system of either Bose atoms and molecules, or Fermi atoms and Bose
molecules (bound state of two Fermi atoms) are always controlled by the
parameter na® and never by the parameter nr>.

(Essentially one has to repeat the old Lee, Young and Huang 1957
calculations and compute the correlation energy.)

> In order to decide whether a given program is feasible one has to
construct the ground state properties of the system under consideration
within the framework of the formalism of choice and then consider higher
order corrections. This aspect was largely ignored in previous works.

» One can develop a theoretical framework to describe atoms and dimers
(not Feshbach molecules) for the case a>0, a>r, and naU 1 and one can
show that in this regime a mixture of atoms and dimers can be described

by one coupling constant, the scattering length a.

> The regime a > 0 and na®>1 (strong coupling) can be studied as well, but
using different methods (ab /nitio).

a<0 la|>>r, nlal*U 1



In order to develop our program we have at first to have a well defined
procedure for constructing an effective Hamiltonian for interacting atoms
and dimers starting from the “fundamental” Hamiltonian describing bare
interacting atoms.
n’v? 1 1
+ +. + + =
Ha — _Wa 2m Wa +EAZWa Wa Wal)”a +§/13Wa Wa Wa Wal)”al)”a

+ h°v? +
H, =v, [—%j% + Wm(—

| + 4 o 1 tost
S A VAWt Al VoV o+ 5 sVl oV

H, is a low energy reduction of the “fundamental” Hamiltonian, I, and I, are
determined by the scattering length a and a three-body characteristic (denoted
below by a,’). Interaction terms with derivatives are small as long as kr,a 1.

H,,, is determined by the matching” to be briefly described below.



H, Ham E/N

atom-atom vertex
(Lippmann-Schwinger eq.)

atom-dimer vertex
(Faddeev eqgs.)

dimer-dimer vertex
(Yakubovsky eqgs.)

Matching between the 2--, 3-- and 4--particle amplitudes tomputed with H_ and
Only diagrams containing I.--vertices are shown.

The effective vertices thus defined (right side) can then be used to compute the
ground state interaction energy in the leading order terms in an expansion,
which is given by the diagrams after the arrows.



v In medium the magnitude of the relevant momenta are determined by estimating
The quantum fluctuations of the mean-field. One thus easily can show that
p = hk = h(na)"2/m. As long as kr, |1 ka |1 (na®)"2U 1 one can use contact couplings.

v The accuracy of the mean-field approximation can be ascertained by estimating
the magnitude of the quantum fluctuations to the energy density |in (na®)32h?/maZ.

v We shall consider the regime when a > r, when the relevant momenta satisfy
p=hk=h/a¥ (na®'"2U h/aU hir,

v Note that both Hamiltonians H_ and H_ . are appropriate for kaU 1 and kr,U 1.

v However, while perturbation theory is not valid for H, when p = h/a, all the
non-perturbative physics at this scale (dimers of size = a and the Efimov effect)
Have been encapsulated in the couplings of the Hamiltonian H._...

v The “matching” described here was performed in vaccum, at length scales of
order O(a) and this matching is not modified by the many-body physics, which
occurs at scales O(a/(na3)'2) = O(a).



Fermi atoms

P 3rh’a,, 3.5377h’°a

am d

m m

a =1.179a

m

 27h’a,

mm J

m m

P _ 1.227%%a

a =0.6la

i was first computed first by Skornyakov and Ter-Martirosian (1957)
who studied neutron-deuteron scattering.
a..., was computed by Petrov (2003) and Fonseca (2003).




Consider now a dilute mixture of fermionic atoms and (bosonic) dimers
at temperatures smaller than the dimer binding energy (a>0 and a>>r)

E 3n%k; m’a , 3.537xh’a 0.627h°a , :
=— +———nn, +———n; +&,n, + corrections
: m

—= n n
vV 5 2om / 4 m

2n,e One can show that
-7y~ b7¢ . . . .
Us0.0)=Up R0’ =z, (¢, + 2mUy) pairing is typically weak!

_4day, Induced fermion-fermion interaction

Ubb - s q P
m, m,

Bardeen ef al. (1967),

in coordinate representation at @ =0 Lzt berg of ol ( 200 O),
vz Bijlsma ef al. (2000)
Upy () == U;z) 47E2r exp( Viverit (2000),

Viverit and Giorgini (2000)

coherence/healing length
and speed of sound




The atom-dimer mixture can potentially be a system
where relatively strong coupling pairing can occur.

e 2 22\ 7!
Wk ol 2 (l_lo,zsmﬁL@@)j

4k g,

2m 7k .a

a=n,"/2.5 (solid line)
a=n,"3/3 (dashed line)




Vortices in dilute atomic Fermi
systems in traps

v 1995 BEC was observed.

v' 2000 vortices in BEC were created, thus BEC confirmed
un-ambiguously.

v In 1999 DeMarco and Jin created a degenerate atomic
Fermi gas.

v 2002 O’Hara, Hammer, Gehm, Granada and Thomas observed
expansion of a Fermi cloud compatible with the existence of a
superfluid fermionic phase.



Consider Bertsch’s MBX challenge (1999): “Find the ground
state of infinite homogeneous neutron matter interacting with
an infinite scattering length.”

»Carlson, Morales, Pandharipande and Ravenhall,
Phys.Rev. C68 (2003) 025802 , with Green Function Monte Carlo (GFMC)

normal state

» Carlson, Chang, Pandharipande and Schmidt,
Phys. Rev. Lett. 91, 050401 (2003), with GFMC

superfluid state




How can one put in evidence a voriex
in a Fermi superfluid?

Hard to see, since density changes are not expected, unlike
the case of a Bose superfluid.

What we learned from the structure of a vortex in low density
neutron matter can help however.

If the gap is not small one can expect a noticeable density
depletion along the vortex core, and the bigger the gap the
bigger the depletion.



r)n(r) = — | s—7(r) + fn(r)*"
| m | 2m*

NS

| Ve ( r ) ‘ :

» This form is not unique, as one can have either:
(setl) or and (set ll).
» Gradient terms not determined yet (expected minor role).



The depletion along the vortex core
is reminiscent of the corresponding
density depletion in the case of a
vortex in a Bose superfluid, when the
density vanishes exactly along the axis
for 100% BEC.

Solid lines are results for parameter
set |, dashed lines for parameter set |l
(dots — velocity profile for ideal vortex)




What shall | cover in this talk?

- SLDA - Superfluid LDA

A brief introduction into the extension of the Kohn-Shall LDA to superfluid
fermion systems

* Vortices in the crust of neutron stars
* Vortices in dilute superfluid Fermi gases and some related

issues

« Density profiles of dilute normal and superfluid Fermi gases in
traps



40K (Fermi) atoms in a spherical harmonic trap

Effect of interaction, with and without weak and strong pairing correlations
with fixed chemical potential.

Mean-field and Pairing fields Particle number density

— no interaction
— mean-field + pairing
—— mean-field + no pairing

a infinite

a finite

m= 0.14u10-%V, hw=0.568 10-'%eV,
=-12.63nm (when finite)



40K (Fermi) atoms in a spherical harmonic trap

Effect of interaction, with and without weak and strong pairing correlations
with fixed particle number,

Particle number density

— no interaction |
- - - mean-field + pairing

—— mean-field + no pairing

Mean-field and Pairing field

hw=0.568 u10-12eV, a = -12.63nm (when finite)



