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Why would one study vortices in neutral 
Fermi superfluids?

They are perhaps just about the only 
phenomenon in which one can have  
a true stable superflow! 



What shall I cover in this talk?

• SLDA - Superfluid LDA
A brief introduction into the extension of the Kohn-Shall LDA  to superfluid

fermionic systems  (A. Bulgac and Y. Yu, Phys. Rev. Lett. 88, 042504 (2002)
Y. Yu and A. Bulgac, Phys. Rev. Lett. 90, 222501 (2003))

• Vortices in the crust of neutron stars 

• Vortices in dilute superfluid Fermi gases and some related    
issues

• Density profiles of dilute normal and superfluid Fermi gases in 
traps



Density Functional Theory (DFT) 
Hohenberg and Kohn, 1964

Local Density Approximation (LDA) 
Kohn and Sham, 1965 

Normal Fermi systems only!
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Nonsense!

Assume that there are two different many-
body wave functions, corresponding to the 
same number particle density!
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LDA (KohnLDA (Kohn--Sham) for Sham) for superfluidsuperfluid fermifermi systemssystems
((BogoliubovBogoliubov--de de GennesGennes equations)equations)

There is a little problem! The pairing field There is a little problem! The pairing field DD diverges.diverges.

MeanMean--field and pairing field are both local fields!field and pairing field are both local fields!
(for sake of simplicity spin degrees of freedom are not shown)(for sake of simplicity spin degrees of freedom are not shown)
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Why would one consider a local pairing field?Why would one consider a local pairing field?

Because it makes sense physically!Because it makes sense physically!
The treatment is so much simpler!The treatment is so much simpler!
Our intuition is so much better also.Our intuition is so much better also.
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Nature of the problemNature of the problem

It is easier to show how this singularity appears 
in infinite homogeneous matter (BCS model)
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Solution of the problem in the case of the homogeneous matter 
(Lee, Huang  and Yang and others)

Gap equation 
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the divergence is (magically) removed!
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How people deal with this problem in finite 
(nuclei) systems?

Introduce an explicit energy cut-off, which can vary from 
5 MeV to 100 MeV (sometimes significantly higher) from 
the Fermi energy.
Use a particle-particle interaction with a finite range, the 
most popular one being Gogny’s interaction. 

Both approaches are in the final analysis equivalent in principle, as a  potential 
with a finite range r0 provides a (smooth) cut-off at an energy Ec =ħ2/mr0

2

The argument that nuclear forces have a finite range is superfluous, because 
nuclear pairing is manifest at small energies and distances of the order of the 
coherence length, which is much smaller than  nuclear radii. 

Moreover, LDA works pretty well for the regular mean-field.

A similar argument fails as well in case of electrons, where  the radius of the 
interaction is infinite and LDA is fine.



PseudoPseudo--potential approach potential approach 
(appropriate for very slow particles, very transparent(appropriate for very slow particles, very transparent
but somewhat difficult to improve)but somewhat difficult to improve)

Lenz   (1927), Fermi  (1931), Lenz   (1927), Fermi  (1931), BlattBlatt and and WeiskopfWeiskopf (1952)(1952)
Lee, Huang and Yang  (1957)Lee, Huang and Yang  (1957)

[ ]

[ ] Brrr
r

rB
r
Ar

rr
r

rgrrVkr

ikam
agikkr

a
f

krO
r
a

r
fikr

r
frkir

RrrVrErrVr
m

r

)()()(  ...)(   :Example

)()()()(      then  1  if

...
)1(

 4        ,
2
11

)(1...  1)exp()exp()(

 if 0)(    ),()()()(

0

2
2

0
1

2

rrrr

rrrr

h

rrr

rrrrrh r

δψδψ

ψδψ

π

ψ

ψψψ

=
∂
∂

⇒++=

∂
∂

⇒<<

+
+

=−+−=

+−≈++≈+⋅=

>≈=+
∆

−

−



How to deal with an inhomogeneous/finite system?
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There is complete freedom in choosing  the Hamiltonian h
and we are going to take advantage of this!
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SLDA equations for SLDA equations for superfluidsuperfluid Fermi systems:Fermi systems:

Typo: replace m by m(r)

Energy Density (ED) describing the normal phase
Additional contribution to ED due to superfluid correlations

Y.Yu and A. Bulgac, PRL 90, 222501 (2003)



Andreev reflection

Peculiarity of the finite systems:
deep hole states are continuum states.

outside inside
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Let me backtrack a bit and summarize some of the SLDA ingredientLet me backtrack a bit and summarize some of the SLDA ingredients.s.
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ED contribution due to ED contribution due to superfluidsuperfluid correlationscorrelations

IsospinIsospin symmetry  symmetry  
((Coulomb energy and other relatively small terms not shown here.)Coulomb energy and other relatively small terms not shown here.)
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Let us consider the simplest possible ED compatible with nuclearLet us consider the simplest possible ED compatible with nuclear symmetriessymmetries
and with the fact that nuclear pairing and with the fact that nuclear pairing corrrelationscorrrelations are relatively weak.are relatively weak.



In the end one finds that a suitable superfluid
nuclear EDF has the following structure:
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Let us now remember that there are more neutron rich nuclei and let me estimate
the following quantity from all measured nuclear masses: 

1473.0=
−
A

ZN

Conjecturing now that Goriely et al, Phys. Rev. C 66, 024326 (2002) have as a
matter of fact replaced in the “true” pairing EDF the isospin density dependence 
simply by its average over all masses, one can easily extract from their pairing 
parameters the following relation:
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How can one determine the density dependence How can one determine the density dependence 
of the coupling constant g?  I know two methods.of the coupling constant g?  I know two methods.

In homogeneous low density matter one can compute the pairing gaIn homogeneous low density matter one can compute the pairing gap as a p as a 
function of the density. function of the density. NB this is not a BCS or HFB result!NB this is not a BCS or HFB result!

One compute also the energy of the normal and One compute also the energy of the normal and superfluidsuperfluid phases as a function phases as a function 
of density, as was recently done by of density, as was recently done by Carlson et al, Phys. Rev. Lett. Carlson et al, Phys. Rev. Lett. 9191, 050401 (2003), 050401 (2003)
for a Fermi system interacting with an infinite scattering lengtfor a Fermi system interacting with an infinite scattering length (h (Bertsch’sBertsch’s MBXMBX
1999 challenge) 1999 challenge) 
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In both cases one can extract from these results the In both cases one can extract from these results the superfluidsuperfluid contribution to thecontribution to the
LDA energy density functional in a straight forward manner. LDA energy density functional in a straight forward manner. 



What shall I cover in this talk?

• SLDA - Superfluid LDA
A brief introduction into the extension of the Kohn-Shall LDA  to superfluid

fermion systems

• Vortices in the crust of neutron stars
(Y. Yu and A. Bulgac, Phys. Rev. Lett. 90, 161101 (2003))

• Vortices in dilute superfluid Fermi gases and some related    
issues

• Density profiles of dilute normal and  superfluid Fermi gases in 
traps



Borrowed from http://www.lsw.uni-heidelberg.de/~mcamenzi/NS_Mass.html, author Dany Page 

“meat balls”

“lasagna”



BCS

from Lombardo and Schulze
astro-ph/0012209

““Screening effects” are significant!Screening effects” are significant!

ss--wave pairing gap in infinitewave pairing gap in infinite
neutron matter with realisticneutron matter with realistic
NNNN--interactionsinteractions

These are major effects beyond the naïve HFB when it comes to deThese are major effects beyond the naïve HFB when it comes to describingscribing
pairing correlations.pairing correlations.
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from  Heiselberg et al 
Phys. Rev. Lett. 85, 2418, (2000)

An additional factor ofAn additional factor of 1/1/(4(4ee))1/3 1/3 ≈≈ 0.450.45 is due is due 
to induced interactionsto induced interactions
GorkovGorkov and and MelikMelik--BarkhudarovBarkhudarov in 1961.in 1961.

BCS/HFB in error even when the interaction BCS/HFB in error even when the interaction 
is very weak, is very weak, unlike HFunlike HF!!

Let us check a simple example, homogeneous dilute Fermi gas withLet us check a simple example, homogeneous dilute Fermi gas with a weaka weak
attractive interaction, when pairing correlations occur in the gattractive interaction, when pairing correlations occur in the ground state.round state.

BCS resultBCS result
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Landau criterion for superflow stability
(flow without dissipation)

Consider a superfluid flowing in a pipe with velocity vs:
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Vortex in neutron matter
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Fayans’s FaNDF0
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from  Heiselberg et al 
Phys. Rev. Lett. 85, 2418, (2000)

An additional factor of 1/(4e)1/3 

is due to induced interactions
Again, HFB not valid.



Distances scale with lF

Distances scale with x>>lF

Y. Yu and A. Bulgac, PRL 90, 161101 (2003)



[ ]

[ ]

 well.as affected
tly significan  toexpected are properties  transportheat, Specific 

)()(
L

E         

by estimates, previous  tocomparedwhen 
ly dramatical changed be  togoing islength unit per energy  The

)()(           

:0energy   pinning-anti large a  toleads which thus

)()(region density  lowIn 

           

motion, calfast vortiextremely     0.12,     
2

       
v
v 

2vortex

F

F

maxFF

S

•

−≈
∆

•

−=

>

>•

∆
∝

≈
∆

≤•

R

VE

E

   

ininoutout

ininoutout
V
pin

V
pin

ininoutout

πρρερρε

ρρερρε

ρρερρε
εξ

λ

ε

Dramatic structural changes of the vortex state naturally lead Dramatic structural changes of the vortex state naturally lead 
to significant changes  in the energy balance of a neutron starto significant changes  in the energy balance of a neutron star

Some similar conclusions have been reached recently also by 
Donati and Pizzochero, Phys. Rev. Lett. 90, 211101 (2003).



What shall I cover in this talk?

• SLDA - Superfluid LDA
A brief introduction into the extension of the Kohn-Shall LDA  to superfluid

fermion systems

• Vortices in the crust of neutron stars

• Vortices in dilute superfluid Fermi gases and some related    
issues

(A. Bulgac and Y. Yu, Phys. Rev. Lett. 91, 190404 (2003))

• Density profiles of dilute normal and  superfluid Fermi gases in 
traps



Regal and Jin 
Phys. Rev. Lett. 90, 230404 (2003)

Feshbach resonance
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Reagal, Ticknor, Bohm and Jin, Nature 424, 47 (2003)

a) Loss of atoms |9/2,-9/2> and |9/2,-5/2> as a function of final B. The initial value of 
B=227.81 G.

b)  Scattering length between hyperfine states |9/2,-9/2> and |9/2,-5/2> as a function
of the magnetic field B.

Number of atoms after ramping B from  
228.25 G to 216.15 (black dots) and for 
ramping B down (at 40 ms/G) and up at 
various rates (squares).



BCS  →BEC crossover

If a<0 at T=0 a Fermi system is a BCS superfluid

Leggett (1980), Nozieres and Schmitt-Rink (1985), Randeria et al. (1993)
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What do we know about dilute normal Fermi systems?

g – spin degeneracy, as  - s-wave scattering length, 
ap – p-wave scattering length, rs – s-wave effective range 

kinetic energy HF energy correlation energy

( )∑ −
i

HF
i

RPA
i ωω

2
1

effective range corrections 
appears at this order

(For a recent review see Hammer and Furnstahl, Nucl. Phys. A678, 277 (2000))



Lessons:

The first type of correction to be accounted for in both Bose and Fermi 
systems is the Lee & Yang, Huang, Luttinger (1957) correlation energy, 
which is still determined by the scattering length.

Effective range corrections appear only much later.

More importantly, the corrections to mean-field are always controlled by 
the parameter na3

When the parameter na3 becomes large, other methods are required.



“Fundamental” and “effective” Hamiltonians

If one is interested in phenomena with momenta p = ħk << ħ/r0 , ,where r0 
is the typical range of the interaction, the “fundamental” Hamiltonian is too complex.

Working with contact couplings requires regularization and renormalization,
which can be done in several different, but equivalent ways. 

We will show that Heff is over-determined.



Explicit introduction of “Feshbach molecules”

After introducing contact couplings

Example: open channel    — two 85Rb  atoms in f = 2, mf = -2 state each
closed channel  — two 85Rb  atoms in f = 3 each and total Mf = -4

Lesson:
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Köhler, Gasenzer, Jullienne and Burnett, cond-mat/0305028.

Feshbach resonance
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NB The size of the “Feshbach molecule”
(closed channel state) is largely B-independent
and smaller than the interparticle separation. 



Some simple estimates in case a > 0 and a ≫ r0
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Most of the time the two atoms spend at large separations, 
y1(r) — open channel (dimer), y2(r) — closed channel (Feshbach molecule) 



So far we discussed only interaction between atoms and one needs 
to include molecules.

If atoms and molecules coexist, it makes sense to introduce molecules
as independent degrees of freedom.

Previously various authors, starting with Timmermans et al. (1998) 
introduced explicitely the “Feshbach molecules” for several reasons: 

There was hope to overcome the restriction na3 á 1 close to a 
Feshbach resonance, when |a|≫r0, and replace it hopefully 
with the milder condition nr0

3 á 1 and thus still be able to use
the many-body tools developed for dilute systems.

Develop a formalism for a mixture of atoms and molecules.



In order to decide whether a given program is feasible one has to          
construct the  ground state properties of the system under consideration 
within the framework of the formalism of choice and then consider higher 
order corrections. This aspect was largely ignored in previous works.

It is relatively easy to convince oneself that corrections to the energy of a 
system of either Bose atoms and molecules, or Fermi atoms and Bose
molecules (bound state of two Fermi atoms) are always controlled by the 
parameter na3 and never by the parameter nr0

3.

(Essentially one has to repeat the old Lee, Young and Huang 1957
calculations and compute the correlation energy.)

One can develop a theoretical framework to describe atoms and dimers
(not Feshbach molecules) for the case a>0, a≫r0 and na3Ü1 and one can
show that in this regime  a mixture of atoms and dimers can be described
by one coupling constant, the scattering length a.

The regime a > 0 and na3≫1 (strong coupling) can be studied as well, but 
using different methods (ab initio).

The regime a<0 and |a|≫r0, n|a|3Ü1 is also universal and a new class of 
truly quantum liquids (not gases) appears, see AB Phys. Rev. Lett. 89, 050402 (2002).
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In order to develop our program we have at first to have a well defined 
procedure for constructing an effective Hamiltonian for interacting atoms 
and dimers starting from  the “fundamental” Hamiltonian describing bare 
interacting atoms.    

Ha is a low energy reduction of the “fundamental” Hamiltonian, l2 and l3 are 
determined by the scattering length a and a three-body characteristic (denoted 
below by a3’). Interaction terms with derivatives are small as long as kr0á1.

Ham is determined by the matching” to be briefly described  below.



Matching between the 2--, 3-- and 4--particle amplitudes computed with Ha and Ham.
Only  diagrams containing l2--vertices are shown. 

The effective vertices thus defined (right side) can then be used to compute the 
ground state interaction energy in the leading order terms in an na3 expansion, 
which is  given by the diagrams after the arrows.

atom-atom vertex
(Lippmann-Schwinger eq.)

atom-dimer vertex
(Faddeev eqs.)

dimer-dimer vertex
(Yakubovsky eqs.)

Ha Ham E/V



In medium the magnitude of the relevant momenta are determined by estimating
The quantum fluctuations of the mean-field. One thus easily can show that
p = ħk ≈ ħ(na)1/2/m. As long as kr0 µ ka µ (na3)1/2 Ü1 one can use contact couplings.

The accuracy of the mean-field approximation can be ascertained by estimating 
the magnitude of the quantum fluctuations to the energy density µn (na3)3/2ħ2/ma2.

We shall consider the regime when a ≫ r0 when the relevant momenta satisfy
p = ħk ≈ ħ/a ¥ (na3)1/2 Ü ħ/a Ü ħ/r0.

Note that both Hamiltonians Ha and Ham are appropriate for kaÜ1 and kr0Ü1.

However, while perturbation theory is not valid for Ha when p ≈ ħ/a, all the 
non-perturbative physics at this scale (dimers of size ≈ a and the Efimov effect)
Have been encapsulated in the couplings of the Hamiltonian Ham.

The “matching” described here was performed in vaccum, at length scales of 
order O(a) and this matching is not modified by the many-body physics, which
occurs at scales O(a/(na3)1/2) ≫ O(a).



Fermi atoms
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aam was first computed first by Skornyakov and Ter-Martirosian (1957) 
who  studied neutron-deuteron scattering. 

amm was computed by Petrov (2003) and Fonseca (2003) .
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Consider now a dilute mixture of fermionic atoms and (bosonic) dimers
at temperatures smaller than the dimer binding energy (a>0 and a≫r0)

Induced fermion-fermion interaction

Bardeen et al. (1967), 
Heiselberg et al. (2000), 
Bijlsma et al. (2000)
Viverit (2000), 
Viverit and Giorgini (2000) 
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coherence/healing length 
and speed of sound

One can show that 
pairing is typically weak!



a = nb
-1/3/2.5  (solid line)

a = nb
-1/3/3   (dashed line)
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The atom-dimer mixture can potentially be a system 
where relatively strong coupling pairing can occur. 
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Vortices in dilute atomic Fermi 
systems in traps

1995 BEC was observed.
2000 vortices in BEC were created, thus BEC confirmed 
un-ambiguously.
In 1999 DeMarco and Jin created a degenerate atomic 
Fermi gas.
2002 O’Hara, Hammer, Gehm, Granada and Thomas observed 
expansion of a Fermi cloud compatible with the existence of a 
superfluid fermionic phase.

Observation of stable/quantized vortices in Fermi systems  would provide the 
ultimate and most spectacular proof for the existence of a Fermionic superfluid
phase. 



Consider Bertsch’s MBX challenge (1999): “Find the ground 
state of infinite homogeneous neutron matter interacting with 
an infinite scattering length.” 

Carlson, Morales, Pandharipande and Ravenhall, 
Phys.Rev. C68 (2003) 025802 , with Green Function Monte Carlo (GFMC) 
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Carlson, Chang, Pandharipande and Schmidt,
Phys. Rev. Lett.  91, 050401 (2003), with GFMC
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normal state

superfluid state

This state is half the way from BCS→BEC crossover, the pairing 
correlations are in the strong coupling limit and HFB invalid again.



How can one put in evidence a vortex
in a Fermi superfluid?

Hard to see, since density changes are not expected, unlike   
the case of a Bose superfluid.

What we learned from the structure of a vortex in low density
neutron matter can help however.

If the gap is not small one can expect a noticeable density 
depletion along the vortex core, and the bigger the gap the 
bigger the depletion. 

One can change the magnitude of the gap by altering the 
scattering length between two atoms with magnetic fields
by means of a Feshbach resonance.



Now one can construct an SLDA functional to describe 
this new state of Fermionic matter 

This form is not unique, as one can have either:
b=0 (set I)  or b≠0 and  m*=m (set II).
Gradient terms not determined yet (expected minor role).
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Solid lines are results  for parameter 
set I, dashed lines  for parameter set II
(dots – velocity profile for ideal vortex) 

The depletion along the vortex core
is reminiscent of the corresponding
density depletion in the case of a 
vortex in a Bose superfluid, when the 
density vanishes exactly along the axis
for 100% BEC.

Extremely fast quantum vortical motion!



What shall I cover in this talk?

• SLDA - Superfluid LDA
A brief introduction into the extension of the Kohn-Shall LDA  to superfluid

fermion systems

• Vortices in the crust of neutron stars

• Vortices in dilute superfluid Fermi gases and some related 
issues

• Density profiles of dilute normal and superfluid Fermi gases in 
traps



m= 0.14µ10-10eV, ħw=0.568 µ10-12eV, 
a = -12.63nm (when finite)
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40K (Fermi) atoms in a spherical harmonic trap

Effect of interaction, with and without weak and strong pairing correlations 
with fixed chemical potential.



ħw=0.568 µ10-12eV, a = -12.63nm (when finite)

40K (Fermi) atoms in a spherical harmonic trap

Effect of interaction, with and without weak and strong pairing correlations 
with fixed particle number, N = 5200.
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