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‘ Duke

Why Study Fermi Gases ? 22"

* Fermions are the building blocks of matter

» Strongly-interacting Fermi gases are stable
* Link to other interacting Fernmu systems:

— High-T superconductors — Neutron stars
— Lattice field theory

— Quark-gluon plasma of Big Bang
— String theory!
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O’Hara et al., Science 2002

From a talk of J.E. Thomas (Duke)



Outline

»> What is the unitary regime?

» The two-body problem, how one can manipulate
the two-body interaction? Feshbach resonance

» Brief overview of existing theoretical understanding

» Path integral Monte Carlo for many fermions on the lattice at
finite temperatures

> Conclusions



What is the Holy Grall of this field?

Fermionic superfluidity!



Superconductivity and superfluidity in Fermi systems

v Dilute atomic Fermi gases

v' Liquid 3He
v'  Metals, composite materials
v Nuclei, neutron stars

e QCD color superconductivity
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» What is the unitary regime?

A gas of interacting fermions 1s 1n the unitary regime
if the average separation between particles 1s large
compared to their size (range of interaction), but
small compared to their scattering length.

The system is very dilute, but strongly interacting!

nr, < 1 n fa’ > 1

n - number density

< n'? = N/2 < |a
N\

r, - range of interaction a - scattering length




Feshbach resonance
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Phys. Rev. Lett. 90, 230404 (2003)




Bertsch Many-Body X challenge, Seattle, 1999

What are the ground state properties of the many-body system composed of

spin ¥z fermions interacting via a zero-range, infinite scattering-length contact
interaction.

Why? Besides pure theoretical curiosity, this problem is relevant to neutron stars!

In 1999 it was not yet clear, eithe

cally or experimentally,

ot! A number of people argued th
under such conditions fermionic ma IS unstable.

whether such fermion matter is sta D
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Strong interaction

weak Interaction

1/a

no 2-body bound state shallow 2-body bound state
halo dimers




Early theoretical approach
Eagles (1969), Leggett (1980) ...

4_l(uk+VkaZ¢afk¢)|Vacuum> BCS wave function

j gap equation

number density equation

pairing gap

quasi-particle energy




Consequences:

* Usual BCS solution for small and negative scattering lengths,
with exponentially small pairing gap

* For small and positive scattering lengths this equations describe
a gas a weakly repelling (weakly bound/shallow) molecules,
essentially all at rest (almost pure BEC state)

Foens) = A[0(F)0(Fy).. ]

In BCS limit the particle projected many-body wave function
has the same structure (BEC of spatially overlapping Cooper pairs)

* For both large positive and negative values of the scattering
length these equations predict a smooth crossover from BCS to BEC,

from a gas of spatially large Cooper pairs to a gas of small molecules



What is wrong with this approach:

°* The BCS gap (a<0 and small) is overestimated, thus the critical temperature
and the condensation energy are overestimated as well.

* In BEC limit (a>0 and small) the molecule repulsion is overestimated

* The approach neglects of the role of the “meanfield (HF) interaction,”
which is the bulk of the interaction energy in both BCS and
unitary regime

* All pairs have zero center of mass momentum, which is
reasonable in BCS and BEC limits, but incorrect in the

unitary regime, where the interaction between pairs is strong !!!
(this situation is similar to superfluid “He)

Fraction of non-condensed
pairs (perturbative result)!?!




Two-body density matrix and condensate fraction
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BCS theory

From a talk of Stefano Giorgini (Trento)



Fixed-Node Green Function Monte Carlo approach at T=0

GFMC: cosh

Pairing gap (A) = 0.99(3) E .
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Carlson et al. PRL 91, 050401 (2003)
Chang et al. PRA 70, 043602 (2004)




Finite Temperatures

Grand Canonical Path-Integral Monte Carlo

2 2

i T v :jdw{w;(z)(—h v uicn| - Ajm)}—gjd% RCILRES

2m 2m

N = [d*x [A,(0)+n,(%)], AR =y ! Ry, (), s=T

Trotter expansion (trotterization of the propagator)

Z(B)=Tr exp| ~p(H - uN ) |=Tr {exp[—r(l—] —,uI\IA)}}NT, ﬁ:%: N 7

E(T)= 1 Tr H exp
Z(T)

N(T)= Z(lT)Tr N exp

No approximations so far, except for the fact that the interaction is not well defined!




How to implement the path integral?

Put the system on a spatio-temporal lattice!



A short detour

Let us consider the following one-dimensional Hilbert subspace
(the generalization to more dimensions is straightforward)

P*=P projector in this Hilbert subspace

sin [% (x — y)}

m(z —y)

)

f
dk
(z|Ply) = f2—xpzkx y)] =
=

= P[&(x—xa)],

a=1

c, = I dx KL A (z)y(z)
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Littlejohn et al. J. Chem. Phys. 116, 8691 (2002)



Schroedinger equation

P .
Area of Strip = 2zh
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Recast the propagator at each time slice and put the system on a 3d-spatial lattice,
in a cubic box of side L=N_l, with periodic boundary conditions

Running coupling constant g defined by lattice



n(k)

2n/L . L — box size

| - lattice spacing

k_ . =nll

max

How to choose the lattice spacing and the box size




Momentum space



= j HDG(@', ) TrU({c})

One-body evolution
=T
H exp{~r[h({c}) - ul} operator in imaginary time

l;IDO'(aT:, 7)TrU({c}) e[ A0({o})]
Z(T) TrU({o})

TrU({o}) = {detl1+ U{o})]Y = expl-S{o})] > 0

ny(Z,7) = n,(%,7) = Z 0.( { U({c}) )} ¢l( ), 0.() = exp\(/zé.f)

1+U({0'}

All traces can be expressed through these single-particle density matrices

kl<k,




PHYSICAL REVIEW B 69, 184501 (2004)

Critical temperature for the two-dimensional attractive Hubbard model

Thereza Paiva.! Raimundo R. dos Santos.! R. T. Scalettar.” and P. J. H. Denteneer”

with FIG. 4. (Color online) Helicity modulus as a function of tem-

perature for {n}= 0.5 and different lattice sizes L. The straight line
corresponds to 27/ .




PHYSICAL REVIEW B 66, 140504(R) (2002)

Quantum Monte Carlo study of the three-dimensional attractive Hubbard model
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FIG. 1. Main, temperature and size dependences of the pair-pair
correlation function (2) for the case U=6¢ and n=0.5. Inset, linear
extrapolation to the thermodynamic limit of the size-dependent
critical temperatures T,(N) and T(N). same U and ».
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FIG. 3. Pauli susceptibility yp. Top, T dependence for various
values of U (size N=6"). Bottom, T and N dependence close to the

transition temperature and separation of T, and T*, same symbols
as mn Fig. 1 (n=0.5 for both cases).




More details of the calculations:

* Lattice sizes used from 63 x 300 (high Ts) to 63 x 1361 (low T's)
83 running (incomplete, but so far no surprises) and larger sizes to come

 Effective use of FFT(W) makes all imaginary time propagators diagonal (either in
real space or momentum space) and there is no need to store large matrices

» Update field configurations using the Metropolis importance
sampling algorithm

* Change randomly at a fraction of all space and time sites the signs the auxiliary

fields o(x,T) so as to maintain a running average of the acceptance rate between
0.4 and 0.6

* Thermalize for 50,000 — 100,000 MC steps or/and use as a start-up
field configuration a o(x,7)-field configuration from a different T

» At low temperatures use Singular Value Decomposition of the
evolution operator U({0}) to stabilize the numerics

* Use 100,000-2,000,000 o(x,7)- field configurations for calculations

* MC correlation “time” = 250 — 300 time steps at T= T



Superfluid to Normal Fermi Liquid Transition

E(T) [0.6e N], u[e]

Bogoliubov-Anderson phonons
contribution only (little crosses)
People never consider this 777

Quasi-particles contribution only
(dashed line)

u - chemical potential
(circles)

(2.43 in BCS)




fa

iy
Sy

-

Z,
w
T
M
=,
Z
W
W
O
C,
=
L
=
L

=
on




Conclusions

v Fully non-perturbative calculations for a spin % many fermion
system in the unitary regime at finite temperatures are feasible

(One variant of the fortran 90 program, version in matlab, has about 50(
lines, and 1t can be shortened also. This 1s about as long as a PRL!)

v Apparently the system undergoes a phase transition at
T.=0.22 (3) g

v Below the transition temperature both phonons and (fermionic)
quasiparticles contribute almost equally to the specific heat



