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Atom-Molecule Coherence in a Bose-Einstein Condensate
Donley, Clausen, Thompson and Wieman, Nature,  417, 529 (2002).

Burst atoms (T≈150 nK)Remnant atoms (T≈3 nK)

Ninitial

Nburst+Nremnant

The difference DN=Ninitial –(Nburts+Nremnant) is likely the number of molecules 
formed. DN/Ninitial changes widely with the pulse length and the cloud density.



Creation of ultracold molecules from a Fermi gas of atoms
Regal, Ticknor, Bohm and Jin, cond-mat/0305028

Atomic cloud of 40K at T = 0.13 … 0.33 TF initially in hyperfine state |9/2,-9/2>.
Prepare a nearly equal  incoherent mixture of |9/2,-9/2> and |9/2,-5/2> states 
at B=227.81 G.
Use a new Feshbach resonance between |9/2,-9/2> and |9/2,-5/2> states at
B= 224.21 G. 
Ramp the magnetic field across the resonance (from high to low B) at rates
of (40 ms/G)-1.

Observe the number of atoms left from absorption image of the cloud after 
expansion. The light is resonant with atomic transitions only and thus only 
atoms but not molecules (dimers) are observed.
The molecules/dimers temperature is below the BEC transition temperature.
Using radio frequency (rf) spectroscopy with photon energy near the
|9/2,-5/2> and |9/2-7/2> atomic energy splitting populate the  |9/2,-7/2> state
at various Bhold.
Use a Stern-Gerlach imaging to separate various hyperfine states.



Reagal, Ticknor, Bohm and Jin, cond-mat/0305028

a) Loss of atoms |9/2,-9/2> and |9/2,-5/2> as a function of final B. The initial value of 
B=227.81 G.

b)  Scattering length between hyperfine states |9/2,-9/2> and |9/2,-5/2> as a function
of the magnetic field B.

Number of atoms after ramping B from  
228.25 G to 216.15 (black dots) and for 
ramping B down (at 40 ms/G) and up at 
various rates (squares).



Dimer/molecule binding energy

Symmetric peak is near the atomic  |9/2,-5/2>
to |9/2,-7/2> transition. The total number of 
|9/2,-5/2> and |9/2,-7/2> atoms is constant.

Asymmetric peak corresponds to dissociation
of molecules into free |9/2,-5/2> and |9/2,-7/2>
atoms. The total number of |9/2,-5/2> and |9/2,-7/2> 
atoms increases. EEhh bindingatomrf ∆−−= νν

Reagal, Ticknor, Bohm and Jin, cond-mat/0305028



What have we learned from this experiment?

A rather stable and cold mixture of fermionic atoms and bosonic molecules 
(dimers), the latter likely in a BEC state can be formed.

The ratio of atoms to dimers can apparently be varied almost at will.

The formation of dimers and their dissociation by undoing the change in the 
magnetic field is likely a reversible process, entropy does not seem to be 
created at a noticeable rate and heating is apparently small.   Or is it?

What is the nature of this new object? 
Can we describe it?



What else is there theoretically?



Feshbach resonance between the lowest hyperfine states of 40K
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With goods accuracy over the entire 
energy range, no effective range 
corrections appear necessary on this plot!
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Really this means only that
ka = O(1). 



What do we know about dilute Bose systems?
For details see Braaten, Hammer and Hermans Phys. Rev. A 63, 063609 (2001)
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na3 << 1
a>0 - s-wave scattering length
rs - s-wave effective range
cE - potential dependent parameter (three-body collisions)
b’ - universal constant

Bogoliubov (1947) Lee, Huang and Yang (1957)

Effective range corrections appear 
only at this order!



What do we know about dilute normal Fermi systems?

g – spin degeneracy, as  - s-wave scattering length, 
ap – p-wave scattering length, rs – s-wave effective range 

kinetic energy HF energy correlation energy

( )∑ −
i

HF
i

RPA
i ωω

2
1

effective range corrections 
appears at this order

(For a recent review see Hammer and Furnstahl, Nucl. Phys. A678, 277 (2000))



Lessons:

The first type of correction to be accounted for in both Bose and Fermi 
systems is the Lee & Yang, Huang, Luttinger (1957) correlation energy, 
which is still determined by the scattering length.

The next type of correction for Bose systems (Hugengoltz & Pines, Wu, 
Sawada & Brueckner and Sawada, 1959) is a little bit more complicated, 
but it is still largely controlled by the scattering length and additionaly by 
a three-body characteristic (Braaten & Nieto, 1999)

Effective range corrections appear only much later.

More importantly, the corrections to mean-field are always controlled by 
the parameter na3

When the parameter na3 becomes large, other methods are required.



“Fundamental” and “effective” Hamiltonians

Since one is interested in phenomena with momenta p = ħk << ħ/r0 , ,where r0 
is the typical range of the interaction, the “fundamental” Hamiltonian is too complex.

Working with contact couplings requires regularization and renormalization,
which can be done in several different, but equivalent ways. 

We will show that Heff is over-determined.



A)  Pseudo-potential approach 
(appropriate for very slow particles, very transparent 
but somewhat difficult to improve)

Lenz   (1927), Fermi  (1931), Blatt and Weiskopf (1952)
Lee, Huang and Yang  (1957)
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B)  Momentum cut-off regularization
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C) Dimensional regularization (DR)
‘t Hooft and Veltman, Nucl. Phys. B44, 189 (1972)  
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identically
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Explicit introduction of “Feshbach molecules”

After introducing contact couplings

Example: open channel    — two 85Rb  atoms in f = 2, mf = -2 state each
closed channel  — two 85Rb  atoms in f = 3 each and total Mf = -4

Lesson:
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Köhler, Gasenzer, Jullienne and Burnett, cond-mat/0305028.

Feshbach resonance

Atomic
seperation 

Energy 

E
res

 

E
th

 

NB The size of the “Feshbach molecule”
(closed channel state) is largely B-independent
and smaller than the interparticle separation. 



Some simple estimates in case a > 0 and a ≫ r0
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Most of the time the two atoms spend at large separations, 
y1(r) — open channel (dimer), y2(r) — closed channel (Feshbach molecule) 



So far we discussed only interaction between atoms and one needs 
to include molecules.

If atoms and molecules coexist, it makes sense to introduce molecules
as independent degrees of freedom.

Previously various authors, starting with Timmermans et al. (1998) 
introduced explicitely the “Feshbach molecules” for several reasons: 

There was hope to overcome the restriction na3 á 1 close to a 
Feshbach resonance, when |a|≫r0, and replace it hopefully 
with the milder condition nr0

3 á 1 and thus still be able to use
the many-body tools developed for dilute systems.

Develop a formalism for a mixture of atoms and molecules.



In order to decide whether a given program is feasible one has to          
construct the  ground state properties of the system under consideration within 
the framework of the formalism of choice and then consider higher order 
corrections. This aspect was largely ignored in previous works.

It is relatively easy to convince oneself that corrections to the energy of a 
system of either Bose atoms and molecules, or Fermi atoms and Bose molecules 
(bound state of two Fermi atoms) are always controlled by the parameter na3 and 
never by the parameter nr0

3.

(Essentially one has to repeat the old Lee, Young and Huang 1957 calculations 
and compute the correlation energy.)

We shall develop a theoretical framework to describe atoms and dimers
(not Feshbach molecules) for the case a>0, a≫r0 and na3á1. We shall
show that in this regime  a mixture of atoms and dimers can be described
by one coupling constant, the scattering length a.

The regime a > 0 and na3≫1 (strong coupling) can be studied as well, but 
using different methods (ab initio).

The regime a<0 and |a|≫r0, n|a|3á1 is also universal and a new class of 
truly quantum liquids (not gases) appears, see A.B. Phys. Rev. Lett. 89, 050402 (2002)
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In order to develop our program we have at first to have a well defined 
procedure for constructing an effective Hamiltonian for interacting atoms 
and dimers starting from  the “fundamental” Hamiltonian describing bare 
interacting atoms.    

Ha is a low energy reduction of the “fundamental” Hamiltonian, l2 and l3 are 
determined by the scattering length a and a three-body characteristic (denoted 
below by a3’). Interaction terms with derivatives are small as long as kr0á1.

Ham is determined by the matching” to be briefly described  below.



Matching between the 2--, 3-- and 4--particle amplitudes computed with Ha and Ham.
Only  diagrams containing l2--vertices are shown. 

The effective vertices thus defined (right side) can then be used to compute the 
ground state interaction energy in the leading order terms in an na3 expansion, 
which is  given by the diagrams after the arrows.

atom-atom vertex
(Lippmann-Schwinger eq.)

atom-dimer vertex
(Faddeev eqs.)

dimer-dimer vertex
(Yakubovsky eqs.)

Ha Ham E/V



In medium the magnitude of the relevant momenta are determined by estimating
The quantum fluctuations of the mean-field. One thus easily can show that
p = ħk ≈ ħ(na)1/2/m. As long as kr0 µ ka µ (na3)1/2 Ü1 one can use contact couplings.

The accuracy of the mean-field approximation can be ascertained by estimating 
the magnitude of the quantum fluctuations to the energy density µn (na3)3/2ħ2/ma2.

We shall consider the regime when a ≫ r0 when the relevant momenta satisfy
p = ħk ≈ ħ/a ¥ (na3)1/2 Ü ħ/a Ü ħ/r0.

Note that both Hamiltonians Ha and Ham are appropriate for kaÜ1 and kr0Ü1.

However, while perturbation theory is not valid for Ha when p ≈ ħ/a, all the 
non-perturbative physics at this scale (dimers of size ≈ a and the Efimov effect)
Have been encapsulatted in the couplings of the Hamiltonian Ham.

The “matching” described here was performed in vaccum, at length scales of 
order O(a) and this matching is not modified by the many-body physics, which
occurs at scales O(a/(na3)1/2) ≫ O(a).
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3→ 2+1 

4→2+2 

The atom-molecule scattering length aam (bosons)

trimer binding energy

dimer binding energy

Efimov plot



Bose atoms

(?)   1         

  ,42

15.2   ,46.1         

   ,lncot33

                   ,4

3

3

22

21

'
3

021

22

2

2

2

2

≅

==

≅≅

















+==

−==

c

c
m
a

m
a

cc

a
ascc

m
a

m
a

mam
a

mm
mm

am
am

aa

hh

hh

hh

ππλ

ππλ

επλ

Efimov derived the analytical form (1979). Simenog and Sytnichenko (1981) and 
Braaten, Hammer and Kusunoki (2003) computed the numerical constants c1 and c2.



Fermi atoms
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This amplitude was first computed first by Skornyakov and Ter-Martirosian (1957) who 
studied neutron-deuteron scattering. Randeria (and others) estimated c3 (1993).



Role of effective range corrections on fermion-boson scattering length
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BCS  →BEC crossover

If a<0 at T=0 a Fermi system is a BCS superfluid

Leggett (1980), Nozieres and Schmitt-Rink (1985), Randeria et al. (1993)
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Matching between the 2--, 3-- and 4--particle amplitudes computed with Ha and Ham.
Only  diagrams containing l2--vertices are shown. 

The effective vertices thus defined (right side) can then be used to compute the 
ground state interaction energy in the leading order terms in an na3 expansion, 
which is  given by the diagrams after the arrows.

atom-atom vertex
(Lippmann-Schwinger eq.)

atom-dimer vertex
(Faddeev eqs.)

dimer-dimer vertex
(Yakubovsky eqs.)

Ha Ham E/V
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Consider now a dilute mixture of fermionic atoms and (bosonic) dimers
at temperatures smaller than the dimer binding energy (a>0 and a≫r0)

Induced fermion-fermion interaction

Bardeen et al. (1967), 
Heiselberg et al. (2000), 
Bijlsma et al. (2000)
Viverit (2000), 
Viverit and Giorgini (2000) 
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We shall show that 
pairing is weak!
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The overall fermion-fermion intercation is a sum of
a short range repulsion + weak long range attraction

Consequently, weak coupling BCS pairing is thus expected.
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a = nb
-1/3/2.5  (solid line)

a = nb
-1/3/3   (dashed line)

The value of the gap depends 
strongly on abb!



a = nb
-1/3/2.5  (solid line)

a = nb
-1/3/3   (dashed line)

The value of the gap depends 
strongly on abb !
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The same thing using an unpublished result from Dmitry Petrov and G. 
Shlyapnikov for the dimer-dimer scattering length 0.6a 
instead of the approximate old value of 2a. Pieri and Strinati,
Phys. Rev. B 61, 15730 (2000) quote a value of 0.75a for this quantity.
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The density distribution in a trap can be  determined rather accurately in 
the Thomas-Fermi approximation and since the pairing field is rather weak
one can neglect the influence of the pairing field.

Trapping potentials for fermions and bosons respectively



How this atomic-molecular cloud really looks like in a trap?

After sorting among various possibilities one arrives at the following solution: 

• At the center of the trap there is a pure molecular component alone in a BEC 
state – core

• This is followed by a mantle formed by atoms and molecules, the atoms  form  a 
Fermi superfluid and the molecules a in BEC state – mantle

• The last outer layer consists of atoms alone, forming a nomal Fermi gas - crust

• The boundary of each of these regions is an equipotential surface of the trapping 
potential



All this follows by solving the Thomas-Fermi equations:
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The core, the central region.
Molecular BEC  

The crust, the outside layer.
Normal Fermi gas

The mantle, the layer between the core and the crust.
Molecular BEC + Fermi BCS



Atomic-Molecular BEC   (amBEC)
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Reactions:

A+A+A→A+A2        — rate   ∂ ħa4na
2/m

A+A2 →A+A+A    — suppressed  (large activation energy)
A2+A2 →A2+A+A

These reactions lead to slow heating and slow chemical equilibration

A+A2 →A*+A2*        — A* and A2* are fast atom and dimer
A2+A2→A*+A*+A2*

The kinetic energies of these fast  particles are O(ħ2/mr0
2)≫(ħ2/ma2) ≫O(3T/2)

and momenta O(ħ/r0)≫ O(ħ/a)
and have an interaction cross section O(r0

2)á O(a2).
Similarly to neutrinos in the Sun, the products of these reactiosn react weakly 
with the medium and can in principle be used to monitor the amBEC
The rates of these reaction are also controlled by the parameter ∂r0/a
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Another interesting reaction:        A2+A2 →A*+A3*   
if aam>0 (if trimer exists)

If aam ≫a the trimer is loosely bound and not very stable

e3≈e2 – 3ħ2/4maam
2

Phase separation is most likely also in this case.

If   0< aam< a this reaction leads to a significant heating.

If   aam< 0  and |aam|< a  there are no shallow  trimers and
this reaction does not occur. 

Apparently this is the best regime for an amBEC



Conclusions
There is a new universal regime in which one can describe 

atom-dimer mixtures (both Bose and Fermi constituents) in 
terms of a single parameter, the atom-atom scattering length, if 
this is relatively
large and positive. The properties of these systems are widely
tunable.

The systems one can study under these conditions are:

Normal Fermi gas + Bose superfluid
Superfluid Fermi gas + Bose superfluid
Atomic Bose superfluid + molecular Bose superfluid
In a trap the spatial structure of atomic-molecular cloud has
a structure reminiscent of the structure of a planet or star, with 
a core, mantle and a crust having different natures.


