Dilute atomic gases with large
positive scattering length

Aurel Bulgac

collaborator Paulo F. Bedaque (LBL)



Atom-Molecule Coherence in a Bose-Einstein Condensate
Donley, Clausen, Thompson and Wieman, Nature, 417, 529 (2002).
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The difference DN=N, ..., =(Ny TN ) is likely the number of molecules

remnant

formed. DN/N, ..., changes widely with the pulse length and the cloud density.



Creation of ultracold molecules from a Fermi gas of atoms
Regal, Ticknor, Bohm and Jin, cond-mat/0305028

»>Atomic cloud of 4K at T = 0.13 ... 0.33 T initially in hyperfine state |9/2,-9/2>.
> Prepare a nearly equal incoherent mixture of |9/2,-9/2> and |9/2,-5/2> states
at B=227.81 G.

> Use a new Feshbach resonance between |9/2,-9/2> and |9/2,-5/2> states at
B=224.21 G.

» Ramp the magnetic field across the resonance (from high to low B) at rates
of (40 ms/G)-"-

» Observe the number of atoms left from absorption image of the cloud after
expansion. The light is resonant with atomic transitions only and thus only
atoms but not molecules (dimers) are observed.

» The molecules/dimers temperature is below the BEC transition temperature.

» Using radio frequency (rf) spectroscopy with photon energy near the
|9/2,-5/2> and |9/2-7/2> atomic energy splitting populate the |9/2,-7/2> state
at various B, .

» Use a Stern-Gerlach imaging to separate various hyperfine states.



Reagal, Ticknor, Bohm and Jin, cond-mat/0305028
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Number of atoms after ramping B from
228.25 G to 216.15 (black dots) and for
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a) Loss of atoms |9/2,-9/2> and |9/2,-5/2> as a function of final B. The initial value of
B=227.81 G.

b) Scattering length between hyperfine states |9/2,-9/2> and |9/2,-5/2> as a function
of the magnetic field B.




Reagal, Ticknor, Bohm and Jin, cond-mat/0305028

Symmetric peak is near the atomic |9/2,-5/2>
to |9/2,-7/2> transition. The total number of
|9/2,-5/2> and |9/2,-7/2> atoms is constant.

Asymmetric peak corresponds to dissociation
of molecules into free |9/2,-5/2> and |9/2,-7/2>
atoms. The total number of |9/2,-5/2> and |9/2,-7/2>

atoms increases.
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FIG. 4: Absorption images of the quantum gas using a Stern-
Gerlach technique. We start with ultracold fermionie atoms in
the 9/2, ~5/2) and [9/2, —9/2) states of ""K. A magnetic field
ramp through the Feshbach resonance causes 509 atom loss,
due to adiabatic conversion of atoms to diatomic molecules.
To directly detect these bosonic molecules we apply an rf pho-
todissociation pulse; the dissociated molecules then appear in
the |9/2 —7/2) and 9/2 —0/2) atom states. The shaded bar
indicates the optical depth.

Dimer/molecule binding energy




What have we learned from this experiment?

v" A rather stable and cold mixture of fermionic atoms and bosonic molecules
(dimers), the latter likely in a BEC state can be formed.

v The ratio of atoms to dimers can apparently be varied almost at will.
v The formation of dimers and their dissociation by undoing the change in the

magnetic field is likely a reversible process, entropy does not seem to be
created at a noticeable rate and heating is apparently small. Oris it?

What is the nature of this new object?
Can we describe it?



What else is there theoretically?
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where fyu ( fm) denotes the fraction of atoms {molecules).
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FIG. 2. Ground state energy per atomic particle as a func-
tion of the density at different detunings. e. The curves
were calculated using realistic values: a reference density

ng ~ 10" em™ . and interaction strengths A, = a fwm Am =
2a/ /g, and A = 0.2/ /ng. The densities at which the min-
ima occur for the two curves of lowest detuning are the sell-
determined densities that a ~ condensate would adopt in
the ground state.
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Signatures of Resonance Superfluidity in a Quantum Fermi Gas
M. L. Chiofalo,* §.1.J. M. F. Kokkelmans, J. N. Milstein. and M. J. Holland
Feshbach resonance between the lowest hyperfine states of 49K
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FIG. 1. Real (solid line) and imaginary (dashed line) compo-
nents of the T matrix for collisions of the lowest two spin states

at a detuning of 20E,, shown in length dimensions. i.e.,
T,/ 47k /m). The scattering length is the intercept at zero scat-
tering energy which for this case is approximately —10000aq.
where ay is the Bohr radius. The large variation in the 7" matrix

over the relevant energy range indicates that a quantum field the-

O s microscopic basis will In general need
5 i ength approximation.

s the scattering length as a function of detun-
ing, 1:.-'itl .HE..— detuning indicated by the dash- dn[ted line. This
curve obeys the followi ing form: a = apll = x/w). where

, g and x = 0.657 mK ["‘[]] The qnaupn[eu[j Is to
be renormalized are then Uy = 47 k- (lng / 'm and go = /&

With goods accuracy over the entire
energy range, no effective range
corrections appear necessary on this plot!

<4— Really this means only that
ka = O(1).



What do we know about dilute Bose systems?
For details see Braaten, Hammer and Hermans Phys. Rev. A 63, 063609 (2001)
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na® << 1 _ Effective range corrections appear
a>0 - s-wave scattering length only at this order!

r. - s-wave effective range
ce - potential dependent parameter (three-body collisions)
b - universal constant



What do we know about dilute normal Fermi systems?

(For a recent review see Hammer and Furnstahl, Nucl. Phys. A678, 277 (2000))
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Lessons:

v The first type of correction to be accounted for in both Bose and Fermi
systems is the Lee & Yang, Huang, Luttinger (1957) correlation energy,
which is still determined by the scattering length.

v The next type of correction for Bose systems (Hugengoltz & Pines, Wu,
Sawada & Brueckner and Sawada, 19359) is a little bit more complicated,
but it is still largely controlled by the scattering length and additionaly by
a three-body characteristic (Braaten & Nieto, 1999)

v’ Effective range corrections appear only much later.

v When the parameter na® becomes large, other methods are required.



“Fundamental” and “effective” Hamiltonians

EE‘FE
Hema = Efdai‘wr ﬁ!’ r)

+ 3 f-:i rid @l (r)9] (ra) 0o, (r2) s, (1) Vags, (|1 — 72),

-5'1 22

Since one is interested in phenomena with momenta p = hk << h/ry, where r
is the typical range of the interaction, the “fundamental” Hamiltonian is too complex.

Working with contact couplings requires regularization and renormalization,
which can be done in several different, but equivalent ways.

We will show that H_; is over-determined.




A) Pseudo-potential approach

(appropriate for very slow particles, very transparent
but somewhat difficult to improve)

Lenz (1927), Fermi (1931), Blatt and Weiskopf (1952)
Lee, Huang and Yang (1957)
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B) Momentum cut-off regularization
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C) Dimensional regularization (DR)
't Hooft and Veltman, Nucl. Phys. B44, 189 (1972)

< def
jd&”:@ iff  n=-—1

def
G, 7\ E) g = i

r=r —O 4 hz
70 Practical consequences:

v most loop diagrams vanish
identically

v" coupling constants do not run
anymore with cut-offs




Explicit introduction of “Feshbach molecules”

Example: open channel — two 8°Rb atoms in f =2, m.= -2 state each
closed channel — two 8°Rb atoms in f = 3 each and total M, = -4
0.0 - [ h2 — — — — = —
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After introducing contact couplings



Kohler, Gasenzer, Jullienne and Burnett, cond-mat/0305028.

Energy

Atomic
seperation

B =16.0 mT

]
evolve

()05

N [LI ; Ehznhr]

Feshbach resonance



Some simple estimates in case a > 0 and a >>r,

wi 1n open channel atr > 1 wisinregionr <,

o

”//1(7”):14’”0|:1+0( ry(r)=ry,(r)=nA

a
Probability to find two atoms :
2A32r03 [Or A

if oscillate)

P(r<r)= Jgrzdr[l//l (r) +y, (r)z]z

2 2
A”ar,

ridry, (r)” = 5

P(r<r) 4r

Most of the time the two atoms spend at large separations,
y,(r) — open channel (dimer), y,(r) — closed channel (Feshbach molecule)




» So far we discussed only interaction between atoms and one needs
to include molecules.

> If atoms and molecules coexist, it makes sense to introduce molecules
as independent degrees of freedom.

» Previously various authors, starting with Timmermans et al. (1998)
introduced explicitely the “Feshbach molecules” for several reasons:
%  There was hope to overcome the restriction na® & 1 close to a
Feshbach resonance, when |a|>>r,, and replace it hopefully
with the milder condition nr,2>a 1 and thus still be able to use
the many-body tools developed for dilute systems.

s Develop a formalism for a mixture of atoms and molecules.



> It is relatively easy to convince oneself that corrections to the energy of a
system of either Bose atoms and molecules, or Fermi atoms and Bose molecules
(bound state of two Fermi atoms) are always controlled by the parameter na® and
never by the parameter nr°.

(Essentially one has to repeat the old Lee, Young and Huang 1957 calculations
and compute the correlation energy.)

» In order to decide whether a given program is feasible one has to
construct the ground state properties of the system under consideration within
the framework of the formalism of choice and then consider higher order
corrections. This aspect was largely ignored in previous works.

» We shall develop a theoretical framework to describe atoms and dimers
(not Feshbach molecules) for the case a>0, a>r, and na3a 1. We shall
show that in this regime a mixture of atoms and dimers can be described

by one coupling constant, the scattering length a.

> The regime a > 0 and na3>>1 (strong coupling) can be studied as well, but
using different methods (ab /nitio).

a<0 |al>r, nlal3a 1



In order to develop our program we have at first to have a well defined
procedure for constructing an effective Hamiltonian for interacting atoms
and dimers starting from the “fundamental” Hamiltonian describing bare
interacting atoms.
n’v? 1 1
+ +.  + S
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H, is a low energy reduction of the “fundamental” Hamiltonian, I, and I, are
determined by the scattering length a and a three-body characteristic (denoted
below by a,’). Interaction terms with derivatives are small as long as krya 1.

H,,, is determined by the matching” to be briefly described below.



H, Ham E/N

atom-atom vertex
(Lippmann-Schwinger eq.)

atom-dimer vertex
(Faddeev eqgs.)

dimer-dimer vertex
(Yakubovsky eqgs.)

Matching between the 2--, 3-- and 4--particle amplitudes tomputed with H_and H_ .
Only diagrams containing I.--vertices are shown.

The effective vertices thus defined (right side) can then be used to compute the
ground state interaction energy in the leading order terms in an na® expansion,
which is given by the diagrams after the arrows.



v In medium the magnitude of the relevant momenta are determined by estimating
The quantum fluctuations of the mean-field. One thus easily can show that
p = hk = h(na)2/m. As long as kr, 1 ka |1 (na®)2U 1 one can use contact couplings.

v The accuracy of the mean-field approximation can be ascertained by estimating
the magnitude of the quantum fluctuations to the energy density |in (na®)32h?/maZ.

v We shall consider the regime when a > r, when the relevant momenta satisfy
p="hk=h/a¥ (na®'"2U h/aU hir,

v Note that both Hamiltonians H_ and H__ are appropriate for kaU 1 and kr,U 1.

v However, while perturbation theory is not valid for H, when p = h/a, all the
non-perturbative physics at this scale (dimers of size = a and the Efimov effect)
Have been encapsulatted in the couplings of the Hamiltonian H_...

v The “matching” described here was performed in vaccum, at length scales of
order O(a) and this matching is not modified by the many-body physics, which
occurs at scales O(a/(na3)'2) > O(a).



The atom-molecule scattering length a_, (bosons)

er binding energy

Efimov plot



Bose atoms

2 2
3zha,  37h°a a
= = ¢, + ¢, cot| s, In—-
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_ 2mh’a,, 4nh’a
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Efimov derived the analytical form (1979). Simenog and Sytnichenko (1981) and
Braaten, Hammer and Kusunoki (2003) computed the numerical constants c, and c..
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Fermi atoms

 3ah’a,, 3.5377h’a

m m

A

am

3 27zh2am

m m

. 4rh’a
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This amplitude was first computed first by Skornyakov and Ter-Martirosian (1957) who
studied neutron-deuteron scattering. Randeria (and others) estimated c; (1993).




Role of effective range corrections on fermion-boson scattering length

kcoto(k)= —i+lr0k2 +...
a 2

a
if 0 isvaried from 0.0 to 0.3 then —2 =1.179 changes by less than 1%.
a a




BCS —BEC crossover
Leggett (1980), Nozieres and Schmitt-Rink (1985), Randeria ef a/. (1993)

If a<0 at T=0 a Fermi system is a BCS superfluid

If |a|]=c0 and nry*a 1 a Fermi system is strongly coupled and its properties
are universal. Carlson ef al. nucl-th/0302041 and Carlson ef a/. physics/0303094
E 3 3

FE .
—nomal ()54 = ¢, —werlid 2 0.44= ¢, and & =O0(A

If a>0 (a>>r,) and na’*a 1 the system is a dilute BEC of tightly bound dimers

()

n [ ]
and n,a’<<1, where n, =7f and a,,=2a >0




H, Ham E/N

atom-atom vertex
(Lippmann-Schwinger eq.)

atom-dimer vertex
(Faddeev eqgs.)

dimer-dimer vertex
(Yakubovsky eqgs.)

Matching between the 2--, 3-- and 4--particle amplitudes tomputed with H_and H_ .
Only diagrams containing I.--vertices are shown.

The effective vertices thus defined (right side) can then be used to compute the
ground state interaction energy in the leading order terms in an na® expansion,
which is given by the diagrams after the arrows.



Consider now a dilute mixture of fermionic atoms and (bosonic) dimers
at temperatures smaller than the dimer binding energy (a>0 and a>>r)

ﬂhza n’ +3.5377zh2a n.n +27zh2a n; + &,n, + corrections
! m T om0 We shall show that

pairing is weak!

Induced fermion-fermion interaction

Bardeen ef al. (1967),
Heiselberg ef a/l. (2000),
Bijlsma ef al. (2000)
Viverit (2000),

Viverit and Giorgini (2000)

U, 1
Uﬂ’f(r) = U 4 2 . cX
s A7,

coherence/healing length
and speed of sound




The overall fermion-fermion intercation is a sum of
a short range repulsion + weak long range attraction

repulsion weak attraction

milal 3.128
U EeRd kil g B
ﬁ(Q) m { 1+q2~§f}

Calogero's criterion for existense of a bound state

?

—m U ,.(r) _ 2U;bmf
n’ 7°h°U 8,

cannot be satisfied for dilute systems, when &, >> a

Consequently, weak coupling BCS pairing is thus expected.



In(l +4k2&;

i
2k, & =0.62|

n,

If fermions are superfluid,
otherwise s:is greater than the Fermi velocity (Landau’s zero sound).




a=n,"3/2.5 (solid line) The value of the gap depends
a=n,"3/3 (dashed line) Strong|y on abb!




The same thing using an unpublished result from Dmitry Petrov and G.
Shlyapnikov for the dimer-dimer scattering length 0.6a

instead of the approximate old value of 2a. Pieri and Strinati,

Phys. Rev. B 61, 15730 (2000) quote a value of 0.75a for this quantity.

a=n,"3/2.5 (solid line) The value of the gap depends
a=n,"3/3 (dashed line) Strgng|y on a,, |



The density distribution in a trap can be determined rather accurately in
the Thomas-Fermi approximation and since the pairing field is rather weak
one can neglect the influence of the pairing field.

Trapping potentials for fermions and bosons respectively

U
_U—ﬂ)Jnf(F) =ty =V, ()=, — &, =V, (7)]

ﬂhz ? : 72'722
2-3.128| = —-1.128




Atomic-Molecular BEC (amBEC)

E 27xh* , 37k’ a 27h’
— = n.+=——1|c +c,cot| s,In— | |n,n, + =——cyn; +&,n,
V m m a,' i

5, =1.00624, ¢ =146, ¢,=2.15, c¢,=1, & =-

m m

27ah* , 3k’ { ( a ﬂ 27h°
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Reactions:

v A+tA+A—A+A, — rate 0O ha*n,?/m
v A+A, -A+A+A — suppressed (large activation energy)

These reactions lead to slow heating and slow chemical equilibration

v A+A, -A*+AF — A*and A,* are fast atom and dimer
A,+A,—A*HAT+HAT

»The kinetic energies of these fast particles are O(h?/mry2)>>(h?/ma2) >0O(3T/2)
and momenta O(h/ry) > O(h/a)
and have an interaction cross section O(r,2)a O(a?).

»Similarly to neutrinos in the Sun, the products of these reactiosn react weakly
with the medium and can in principle be used to monitor the amBEC

» The rates of these reaction are also controlled by the parameter oOry/a



The atom-molecule scattering length a_, (bosons)

er binding energy

Efimov plot



Another interesting reaction: A,tA, A +AL"
if a_,>0 (if trimer exists)

» Ifa,,>>a the trimer is loosely bound and not very stable

e;~e,— 3h?/4ma,, >

» Phase separation is most likely also in this case.

» If 0<a,,<a this reaction leads to a significant heating.

» If a,,<0 and|a,|<a there are no shallow trimers and
this reaction does not occur. T

Apparently this is the best regime for an amBEC



Conclusions

v There is a new universal regime in which one can describe atom-

dimer mixtures (both Bose and Fermi constituents) in terms of a
single parameter, the atom-atom scattering length, if this is relatively

large and positive. The properties of these systems are widely
tunable.

The systems one can study under these conditions are:
v" Normal Fermi gas + Bose superfluid

v Superfluid Fermi gas + Bose superfluid
v Atomic Bose superfluid + molecular Bose superfluid



