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Part I

Preliminaries

1 Units

length 1fm = 10−15m = 10−13cm
energy 1MeV = 106eV

1eV = 1.602 · 10−19J

mass



mpc
2 = 938.2592MeV

mnc
2 = 939.5527MeV

mec
2 = 0.511MeV

Wapstra & Gove 1971

1u(amu) = 931.4812MeV
mC12 = 12u

}
velocity of light c = 2.9979 · 108m/s ≈ 3 · 1023fm/s
Planck’s constant h̄c = 197.32MeV · fm
fine structure constant α = e2

h̄c ≈
1

137
e2 = 1.44MeV · fm

cross sections 1b(barn) = 10−24cm2 = 100fm2

1mb = 10−27cm2 = 0.1fm2

radioactivity 1Ci(Curie) = 3.7 · 1010decays/sec
1rad = 10−5J/g
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2 Definition of cross section

One measures the interaction probability P which is given by

P =

# of deflected particles︷︸︸︷
∆N

I · S · τ︸ ︷︷ ︸
total# of incident particles

=
I · σ · τ
I · S · τ

=
σ

S

with

I - beam intensity (# of particles per sec per cm2)
S - cross section (transversal surface) of the beam
τ - iradiation time
σ - effective cross section.

The effective cross section σ is a measure of the interaction probability
according to P = σ

S .

Note: One does not need to know the values of ’b’ (impact parameters), i.e.
the exact position of the target. Loosley speaking, measuring effective
cross sections is analogous to some kind of Fourier analysis.

In reality one scatters particles not off a single target, but off many of them
(a small piece of material which contains many of them). Then

P =
σ

S
·

# of nuclei in the target︷ ︸︸ ︷
n ·∆V =

σ · n · S ·∆x
S

= σ · n ·∆x

with

∆V - volume of the target
n - # of nuclei per unit volume
S - transversal cross section of the piece of material (target)
∆x - length (thickness) of the target.

Note: The above formula P = σ · n ·∆x is true only iff:

1. A particle from the incident beam scatters only once, only on a
single nucleus.

2. Consequently ’n’ (# of nuclei in the target per unit volume) can-
not be large. (Large in comparison with what? - requires a
separate analysis)
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3. The effective radius R of a nucleus, given by σ = πR2, must be
small in comparison with the mean distance among nuclei (i.e.
’small’ effective σ).

4. The nuclei in the target are randomly distributed. One cannot
apply such a formula for a case like the one shown in fig. A1.2,
i.e. when the beam is parallel (or almost parallel) to a chain of
nuclei. This is a very special and physically very interesting case,
called channeling. This is a phenomenon similar to a Bragg
defraction.

3 Attenuation of the beam

How many particles in a beam survive when passing through a medium?

∆N = −P ·N = −σ · n ·∆x ·N

with

∆N - # of particles deflected from the incident beam
P - interaction probability per particle
N - total # of particles entering the medium
∆x - thickness of the target .

The same restrictions mentioned above apply. The minus sign arises since
∆N = Nfinal −Ninitial < 0.
We can rewrite the previous equation to find

dN

dx
≈ ∆N

∆x
= −σ · n ·N

hence with λ ≡ σ · n
N(x) = N0 · e−

x
λ .

Note: ∆x cannot be very large (in comparison with ’λ’) to apply
∆N = −σ · n ·∆x ·N .

What is ’n’? Answer: From ρ = n · MNA with

NA - Avogadro’s number (NA = 6 · 1023 particles/mol)
ρ - density (mass per unit volume)
M - molar mass
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we find n = ρ·NA
M .

’λ’ has the meaning of a mean free path, i.e.

λ =

∫∞
0 xN(x)dx∫∞
0 N(x)dx

with

N(x)dx∫∞
0

N(x)dx
- relative # of particles which survived at distance ’x’.

Example: Fast neutron beam in air

From ρair = 30g
22.4l (i.e. M=30g), σ = 400mb and n = 0.9 · 10−4cm−3NA we

get

λ−1 = 400 · 10−27cm2 · 0.9 · 10−4cm−3 · 6 · 1023 = 2.16 · 10−5cm−1

respectively

λ ≈ 460m

and

N(x) = N0 · e−
x

460m

If x = λ = 460m the beam has bean attenuated almost to a third of its
initial intensity N0.

Part II

Nuclear sizes

You should know that A = N + Z and R = r0A
1/3 with r0 = 1.2fm.

Experimental methods:

• electron-scattering
• muonic-atoms

}
precise

• Coulomb-energy in mirror-nuclei
• total effectiveσ

}
rough
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4 Electron-scattering

Scattering off protons and deuterons

First let us look at p(e,e’)p and d(e,e’)d experiments, i.e. elastic scattering
of fast electrons off protons (hydrogen nuclei) and deuterons.
If the proton would be a point particle then the electron elastic cross section
would be simply the Rutherford one, i.e.

dσ

dΩ
∼ 1

q4

with

dΩ = sin ΘdΘdΦ - solid angle
~q = ~p− ~p′ - transferred momentum
~p, ~p′ - initial and final electron momentum

In fig. 2.1 this corresponds to the curve labelled by rc = rm = 0. (Pay
attention only to the solid curves.) Fig. 2.2 shows the charge (upper fig.)
density distribution obtained from the analysis of p(e,e’)p and d(e,e’)d data.

Conclusion: The nucleons (protons and neutrons) are not point parti-
cles, but they have some finite dimensions - they are roughly (diffuse)
spheres of radius RN = 0.9fm - and consequently some structure.

Formal description

The scattering of a Dirac-particle is described by the Mott-formula(
dσ

dΩ

)
Mott

=

(
dσ

dΩ

)
Ruth

[
1− β2 sin2 θ

2

]
with (

dσ

dΩ

)
Ruth

=
4Z2α2(h̄c)2E2

(qc)4
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Part III

Isospin

Part IV

Independent particle model

Part V

Magnetic dipole moments

Part VI

Pairing

For A=fixed one varies Z. Fig. 6.1 shows the binding energy

B(Z,N) = Zmp +Nmn −M(Z,N)

where M(Z,N) is the mass of a A
ZXN nucleus.

Note:

1. B(A,A− Z) looks like a parabola (for A fixed).

2. The curve corresponding to odd Z and odd N is shifted upward, i.e.
less binding.

The even-even nuclei are more bound (on average by about 1-2 MeV, this
quantity varies over the periodic table smoothly) than even-odd or odd-odd
nuclei. On the energy scale this effect is small but it leads to changes of
orders of magnitude in transition rates!
To explain this effect one needs two ingredients:

1. Single particle orbitals in time-conjugated states (i.e. jz = m and
jz = −m) have a strong spatial overlap. In Fig. 6.3 you can see
it for the case l=2 (spin neglected). Let us consider an orbit with
high ’l’. The states with m = ±l have an angular part proportional
to sinlθe±ilφ. The wave functions are concentrated in the equatorial
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plane (x0y). ~l is ’parallel’ to the 0z-axis in this case. For ’high’ l the
radial part of the wave function is pushed towards the surface by the
centrifugal barrier. Consequently the m = ±l states have the shape of
a doughnut.

2. The interaction between two nucleons is short-ranged and attractive.
Consequently nucleons in such states (±m) interact all the time and
one can expect that a configuration with two nucleons outside a closed
shell with m1 = −m2 is favored in comparison with others.

If |m1| 6= |m2| then the ’orbits’ of the two nucleons lie in different planes.
Remember that ~l is perpendicular to the plane orbit since ~l = ~r × ~p. For
large ’l’ one can use the (semi-)classical notion of orbit. If ~l1 is antiparallel
to ~l2 then ~L = ~l1 +~l2 = 0. If they form an angle then the total ~L is different
from zero.
Let us couple ~j1 and ~j2 to different total ~J .

ψJMj1j2(x1, x2) =
∑

m1,m2

CJMj1m1j2m2
φn1l1j1m1(x1)φn2l2j2m2(x2)

and compute the interaction energy for a zero-range interaction, supposed
to mimick the short range character of the real one:

VI = 〈ψJM | − V0δ(r1 − r2)|ψJM 〉

The results of such a computation are shown in fig. 6.4 and 6.5. Here you
have the angular part of the wavefunction of two nucleons coupled to ~L = 0:

〈θ1φ1, θ2φ2|nljjI = 0,M = 0〉 ∝
l∑

m=−l
(−1)mYlm(θ1φ1)Yl−m(θ2φ2)

=
2l + 1

4π
Pl(cos θ12)

From the figures we also see that for Jπ = 0+ the attraction is very strong
in comparison with J 6= 0. The states with J 6= 0 are almost degenerate.

Let us consider the so called pure pairing interaction

〈j2m2j2 −m2|V |j1m1j1 −m1〉 = −V0

and all other matrix elements (involving different two particle configura-
tions) vanishing. Instead of a slater determinant we shall consider the fol-
lowing wavefunction for the ground state of an even system. (In order not

7



to complicate the matter only one kind of nucleon is explicitly considered
here.)

Φgs =

(
Ω
N/2

)−1/2 ∑
j1m1,j1−m1,...,jN/2mN/2,jN/2−mN/2

Φ(j1m1, . . . , jN/2−mN/2)

where

• the sum runs over all possible configurations

• Φ(j1m1, . . . , jN/2 −mN/2) is a slater determinant with N particles in
the single-particle states j1m1 . . . jN/2 −mN/2

• 2Ω is the total number of single-particle levels (we shall consider levels
within one shell only).

There are C ≡
(

Ω
N/2

)
terms in the sum. One typical configuration in the

sum looks like the one shown in fig. A6.3.

For simplicity we shall suppose also that all single-particle levels are degen-
erate within one shell. Now let us compute Epairing = 〈Φ|V |Φ〉 where V is
the pure pairing interaction. We get

Φgs = C−1/2
∑
〈Φ(j1m1, . . . , jN/2 −mN/2)|V |Φ(j′1m

′
1, . . . , j

′
N/2 −m

′
N/2)〉

where the sum runs over j1m1, . . . , jN/2−mN/2 and j′1m
′
1, . . . , j

′
N/2−m

′
N/2.

When acting on a Slater det. Φ(j1m1, . . . , jN/2−mN/2) the interaction V can
scatter one ’pair’ {jkmk, jk−mk} into another state {jlml, jl−ml}, leaving
the other particles unaffected. One can choose a pair {jkmk, jk − mk} in
’N/2’ different ways in one Slater determinant. The number of final states
accessible for such a pair is

Ω− (
N

2
− 1)

since Ω is the total number of states for a pair and N/2 − 1 is the number
of states already occupied by other pairs. Consequently

Epairing = −V0
N

2
(Ω + 1− N

2
) = −1

4
V0N(2Ω + 2−N)
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The normalization

(
Ω
N/2

)−1

is ’eaten up’ by the total number of ways

one can pick an initial Slater determinant.

Note:

1. Epairing is a parabola as a function of the total number of particles.

2.
d2Epairing

dN2 > 0, i.e. this parabola ’keeps water’ (convex).

Note that Pl(cos θ) for large ’l’ is peaked at θ = 0, π.

For an odd number of particles an appropriate wave-function will be

Φ = C−1/2
∑

j1m1,...,j(N−1)/2−m(N−1)/2

Φ(j0m0, j1m1, . . . , j(N−1)/2 −m(N−1)/2)

where N is odd, (N-1)/2 is the number of ’pairs’ and j0m0 is the single
particle state occupied by the odd particle. (Note that we do not sum over
j0m0.)
In a similar way one can establish that

Epairing = −V0
N − 1

2
[(Ω− 1)− (

N − 1

2
− 1)] = −1

4
V0(2Ω + 1−N)

where (N-1)/2 is the number of ways one can pick a pair and (Ω− 1) is the
total number of states for a pair.
Now let us compute the odd and even systems:

Eeven = −1

4
V0N [2Ω + 2−N ] =

1

4
V0{[N − (Ω + 1)]2 − (Ω + 1)2}

with

Eeven|min = −1

4
V0(Ω + 1)2

and

Eodd =
1

4
V0{[N − (Ω + 1)]2 − (Ω + 1)2 + 2Ω + 1}

with

Eodd|min = −1

4
V0(Ω + 1)2 +

1

4
V0(2Ω + 1)

Hence

Eodd = Eeven +
1

4
V0(2Ω + 1) > Eeven

9



Consequently, the odd systems are less bound than the even systems. Since
one can place the ’odd’ particle j0m0 on any level, the ground state for odd
systems is multiply degenerate (namely 2Ω-degenerate). This fact agrees
with the experimental evidence: odd nuclei have a dense low energy spec-
trum. Fig. 6.6 shows a typical example. (In our idealized model we consid-
ered all single particle levels in the odd system degenerate.)

I shall solve the same problem using the second quantization method. One
introduces the Fock-Space

HFock =
∞⋃
N=0

HN

where HN is the Hilbert-space for an N-particle system, i.e. the usual
Hilbert-space in quantum mechanics. H0 is the Hilbert-space for the vac-
uum, i.e. only one state denoted usually by |0〉. Besides usual operators used
in quantum mechanics one needs operators which connect different Hilbert-
spaces, corresponding to a different number of particles. Building blocks for
such operators are the creation and annihilation operators. They link the
HN with HN±1 spaces.

a†k creates a fermion in quantum state ’k’
ak annihilates a fermion in quantum state ’k’

b†k creates a boson in quantum state ’k’
bk annihilates a boson in quantum state ’k’

A wave-function for one nucleon is defined as the matrix element

φk(x) = 〈x|a†k|0〉

Properties:
Anticommutators

{ak, a†l } = aka
†
l + a†l ak = δkl

{ak, al} = akal + alak = 0

{a†k, a
†
l } = a†ka

†
l + a†l a

†
k = 0

Commutators
[bk, b

†
l ] = bkb

†
l + b†l bk = δkl

[bk, bl] = bkbl + blbk = 0

[b†k, b
†
l ] = b†kb

†
l + b†l b

†
k = 0
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Hermitian conjugation

(a†k)
† = ak

(b†k)
† = bk

Vanishing bra’s and ket’s

ak|0〉 = 0 ∀ k
〈0|a†k = 0 ∀ k

}
a2
k = (a†k)

2 = 0

bk|0〉 = 0 ∀ k
〈0|b†k = 0 ∀ k

In second quantization our schematic interaction reads 1

V̂ = −V0

Ω∑
m,m′=1

a†ma
†
−ma−m′am′

One can define the following operators

S+ =
∑
m>0

a†ma
†
−m = Sx + iSy

S− =
∑
m>0

a−mam = Sx − iSy = S†+

S0 =
1

2

∑
m>0

[a†mam + a†−ma−m − 1] = Sz

One can check that

[S+, S−] = 2S0

[S0, S±] = ±S±

Consequently these operators obey the same commutation relations as the
usual angular momentum operators J±, J0. S±, S0 are called quasispin
operators.
The operator

N̂ =
∑
m

[a†mam + a†−ma−m]

is the number operator, i.e. its average over a given state in the Fock space
gives the average number of particles.

1I use m,m′ as a shorthand notation for jm, jm′.
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One can define

~S = (Sx, Sy, Sz) = (
1

2
(S+ + S−),

1

2
(S+ − S−), Sz)

Now establish that

V̂ = −V0S+S− = −V0[~S2 − S2
0 + S0]

and
S0|0〉 = −Ω

2 |0〉
~S2|0〉 = Ω

2

(
Ω
2 + 1

)
|0〉

i.e. the vacuum corresponds to a total quasispin Ω/2 with Sz = −Ω/2.
The spectrum of V̂ is obviously characterized by S, S0 and the eigenvalues
are

ES,S0 = 〈SS0|V̂ |SS0〉 = −V0[S(S + 1)− S2
0 + S0]

Knowing that

|0〉 = |S =
Ω

2
, S0 = −Ω

2
〉

one can construct all the states with the same total quasispin

|S =
Ω

2
, S0 =

N − Ω

2
〉 = const(S+)N/2|S =

Ω

2
, S0 = −Ω

2
〉 = const(S+)N/2|0〉

S+ creates two particles, therefore (S+)N/2 corresponds to a N-particle state.
By inspection one can establish that this state corresponds to the state we
used earlier for an even system. Consequently,

Eeven(N) = −V0[
Ω

2
(
Ω

2
+ 1)− (

N − Ω

2
)2 +

N − Ω

2
]

which reproduces our earlier result.
For an odd system one has to start with a one-particle state a†m0

|0〉 = |m0〉.
One can establish that

S0|m0〉 = −Ω−1
2 |m0〉 i.e. S0 = −Ω−1

2
~S2|m0〉 = Ω−1

2 (Ω−1
2 + 1)|m0〉 i.e. S = Ω−1

2

and all other states will be const(S+)(N−1)/2|m0〉 and in this way one recovers
our previous wave-functions and energies for an odd system.
Consequently the odd and even systems correspond to different values of the
total quasispin (either Ω−1

2 or Ω
2 ). One can construct in this way also the
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excited states of an even or odd system. They will correspond to a different
quasispin. The so called Cooper-pair is the state

constS+|0〉 = const
∑
m

a†ma
†
−m|0〉

and therefore the ground state of an even N-particle system is a ’Bose’-
condensate of Cooper-pairs

const(S+)N/2|0〉

If N � 2Ω then one can define

b†0 =
1√
Ω
S+, b0 =

1√
Ω
S−

and obtain that

[b0, b
†
0] = − 2

Ω
S0 = − 2

Ω
[
N̂

2
− Ω

2
] = 1− N̂

Ω
≈ 1

i.e. b0 and b†0 are almost bosons and this exlains why people talk about a
’condensate’ of Cooper-pairs and why superconductivity and superfluidity
are ’similar’.

Part VII

Bulk properties of nuclei

Part VIII

Weizsäcker mass formula or liquid
drop formula

5 Experimental facts

The experimental binding energies (cf. fig. 7.1) can be reproduced quite
accurately with such a formula

Ebinding = B(N,Z,A) = aVA+ aSA
2/3 + aC

z2

A1/3
+ aI

(N − Z)2

A
+ δ(A)
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with
aV = −15.68MeV
aS = 18.56MeV
aC = 0.72MeV
aI = 28.1MeV

δ(A)2 =


34A−3/4 even-even
0 odd-even, even-odd

−34A−3/4 odd-odd

The first term is the volume energy, since for A → ∞ the last three terms
go to zero and B(nuclear matter) = aV < 0 and also because volume=
4π
3 R

3 = 4π
3 r

3
0A. The second term is the surface term since surface= 4πR2 =

4πr2
0A

2/3. One can extract the surface tension

Esurface = S · σ = aSA
2/3 = 4πr2

0A
2/3 · σ

hence
σ =

aS
4πr2

0

≈ 1MeV · fm−2

Since this term is positive the tendency of all nuclei is to have a spherical
shape. For a sphere the surface is minimal for a given volume and nuclei
seem to be almost incompressible (remember ρinterior ≈ const). 3 The third
term is simply the Coulomb energy of a charged sphere

ECoulomb =
3

5

Z2e2

R
=

3

5

e2

r0

Z2

A1/3
≈ 0.7

Z2

A1/3
MeV

since e2 = 1.4MeV·fm, r0 = 1.2fm and 3
5

1.4
1.2 ≈ 0.7. The forth term is

the symmetry term. Since aI > 0 nuclei tend to have an equal number of
neutrons and protons. The last term describes pairing correlations (cf. part
VII Pairing). For even-even nuclei (even Z and even N) the pairing energy
is larger than for even-odd or odd-even nuclei, which in turn is larger than
the corresponding pairing energy for odd-odd nuclei.

6 Volume term in HF approximation

One can try to estimate the volume term using the independent particle
model E = 〈T 〉+〈V 〉. For a rough estimate one can use the Fermi gas model,

2Instead of 34A−3/4MeV some people use 12A−1/2MeV .
3However see later about the role of the Coulomb energy.
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since we want to estimate a volume effect. We know that inside the nuclei the
single-particle potential is canstant and therefore F (average) ≈ −∇V ≈ 0
(i.e. the average force acting on a nucleon generated by all the other nucleons
vanishes).

〈T 〉 = Ekin = 2 · 2︸︷︷︸
spin and isospin dof

∫
k<kF

d3k

(2π)3

h̄2k2

2m
=

3

5
εFA

where εF = (h̄kF )2/(2m). Similarly

〈V 〉Hartree =
1

2

∫
dx

∫
dyρ(x)ρ(y)V (x, y)

=
1

2

∫
dxρ(x)VHartree(x) ≈ 1

2
A (−50MeV)︸ ︷︷ ︸
depth of the s.p. potential

Consequently

aV (Fermi gas) =
3

5
εF +

1

2
(−50MeV) =

3

5
· 38MeV− 25MeV ≈ −2MeV

which is significantly ’smaller’ than the ’experimental’ value -16 MeV. The
reason for this is that the two-body interaction between two nucleons in
’nuclear matter’ is ’screened’ like Coulomb-interaction in plasma and then
the formula for the binding energy is more complicated than the HF one.
The surface tension appears for reasons similar to those in case of a liquid.
A nucleon at the ’surface’ is attracted towards the interior by all nucle-
ons inside the radius of nuclear forces and so an effective surface pressure
appears.

7 Symmetry term

In the Fermi gas model we have

Ekin = 2

∫
k<kF

d3k

(2π)3

h̄2k2

2m︸ ︷︷ ︸
protons

+ 2

∫
k<kF

d3k

(2π)3

h̄2k2

2m︸ ︷︷ ︸
neutrons

=
3

5
εF (neutrons)N +

3

5
εF (protons)Z
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With N + Z = A and N ∼ k3
F (neutrons) and Z ∼ k3

F (protons) this yields

Ekin = const · [k5
F (neutrons) + k5

F (protons)].

For a given A
1

3π2
[k3
F (neutrons) + k3

F (protons)] = A

or

Ekin(N,Z) = const[N5/3 + Z5/3]

= const[N5/3 + (A−N)5/3]

≈ 3

5
εFA︸ ︷︷ ︸

this term is a volume one

+
(N − Z)2

2A

10

9
(εF

3

5
)

where in the last step we did a Taylor expansion around the minimum N =
A/2. Consequently

aI(kinetic) =
1

2

10

9

3

5
εF ≈ 12.5MeV

which is too small in comparison with the experimental value aI = 28MeV.
The reason for this is that the nucleon-nucleon interavtion V (x, y) depends
on isospin (cf. part III Isospin)

V (x, y) = V0(x, y)︸ ︷︷ ︸
isoscalar

+(~τ1 · ~τ2)V1(x, y)︸ ︷︷ ︸
isovector

In such a case VHartree is more complicated and there is a potential energy
contribution to aI . Let’s compute VHartree for such a N-N-interaction:

VHartree(r, σ, τ) =

∫
dy V (x, y)ρ(y)

=
∑
σ′τ ′

∫
V0(r, σ; r′, σ′)ρ(r′, σ′, τ ′) dr′

+
∑
σ′τ ′

∫
V1(r, σ; r′, σ′)(~τ · ~τ ′)ρ(r′, σ′, τ ′) dr′

Since

ρ(r′, σ′, τ ′) =

{
ρproton(r′, σ′) for τ ′ = −1

2
ρneutron(r′, σ′) for τ ′ = +1

2
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we get (dropping the spin)

VHartree(r, τ) =

∫
dr′ V0(r, r′)[ρp(r

′)+ρn(r′)]±
∫
dr′ V1(r, r′)[ρn(r′)−ρp(r′)]

where

+ for protons
- for neutrons.

Using 4

ρn ≈
N

A
ρ, ρp ≈

Z

A
ρ

we find

VHartree(r) =

∫
dr′ V0(r, r′)ρ(r′)± (N − Z)

∫
dr′ V1(r, r′)ρ(r′).

Since the isospin of a nucleus is Tz = (N −Z)/2 we can rewrite that setting
~t = ~τ/2

VHartree(r, τ) = U0(r) + (~t · ~τ)U1(r)

Empirically one finds (by fitting single-particle energies for protons and neu-
trons in nuclei) the depth U1 ≈ (70÷ 110MeV)/A. In such a case

aI(potential)A ≈ 1

2
T 2
z U1

and therefore

aI(potential) ≈ U1

8
≈ 9÷ 14MeV.

Consequently
aI(kin) + aI(potential) ≈ 22÷ 27MeV.

Note: I skipped some details and you should figure out every detail of such
an estimate.

Let us consider now N and Z fixed and look at the surface- and Coulomb-
energy. In such a case the volume- and symmetry-energies are constant
(more or less) if one changes only the shape of the nucleus. The pairing en-
ergy is very small and we shall neglect it here. Let us consider an ellipsoidal
shape for a nucleus, i.e.

R(θ) = R0[1 + βY20(θ, φ)]

4Note: ρn + ρp = ρ
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with β � 1 and Y20(θ, φ) =
√

15
16π (3 cos2 θ− 1). Up to terms of order β2 the

surface- and the Coulomb-energies become

ES + EC = aSA
2/3[1 +

β2

2π
] +

3

5

Z2e2

R0
[1− β2

4π
] +O(β3)

= ES(β = 0)︸ ︷︷ ︸
=aSA2/3

+EC(β = 0)︸ ︷︷ ︸
=aC

Z2

A1/3

+
1

2
β2[4R2σ − 3

10π

Z2e2

R0
]

= ES0 + EC0 +
1

2
β2C2.

By deforming the nucleus the surface increases and so does the surface en-
ergy, but the Coulomb energy decreases (since the protons prefer to be at
an infinite distance frome one another) because the average distance be-
tween two protons increases then. It is easy to estimate that C2 ≈ 0 for
Z2/A ≈ 50 and nuclei then become ’soft’. Such nuclei actually fission, i.e.
they spontaneously break into two fragments.

Part IX

β-decay

We shall be mainly interested in two types of decays: β-decay and α-decay.
There are other modes of nuclear decay: proton and neutron decay, fission,
heavy target decay (emission of nuclei like 14C, Ne etc). Before turning to
β-decay I shall study an abstract quantum mechanical problem, which has
direct relevance to β-decay.

8 How a small perturbation can change completely
the character of the spectrum

Let us consider the following one-dimensional (this is for the sake of sim-
plicity only) two-channel problem

(
h1 ∆
∆+ h2

)(
ve
ue

)
= E

(
ve
ue

)
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where, in the absence of the coupling term ’∆’, the spectrum is discrete in
the first channel, i.e.

(h1 − Ek)vk = 0, 〈vk|vl〉 = δkl

and continuous in the second channel, i.e.

(h2 − E)u0E = 0, 〈u0E |u0E′〉 = δ(E − E′)

One can ’solve’ formally the first equation

(h1 − E)vE + ∆uE = 0

using the Green function method:

vE =
1

E − h1
∆uE

If E 6= Ek then
1

E − h1
=
∑
k

|vk〉〈vk|
E − Ek

(Remember
∑
k |vk〉〈vk| = 1, i.e. the eigenstates vk form a complete set of

orthonormal vectors in the Hilbert space.)
If the coupling ’∆’ is ’small’ and E ≈ E0 then

ve(x) = v0(x)
〈v0|∆|uE〉
E − E0

≡ v0(x)n1/2(E) (1)

This means that in the first approximation, near E0, the first component of
the wave function has the same shape in space as v0(x), i.e. the wavefunction
of the bound state - but for any energy E in the vicinity of E0 not only for
E = E0. Even if ∆→ 0, i.e. the state has become ’continuous’.
The second equation is a little bit tricky. Why? The spectrum is continuous
for (h2−E)u0E = 0 and one cannot simply invert (E−h2). Let us consider
for simplicity that

h2 = − h̄2

2m

d2

dx2
+ V (x) for 0 ≤ x <∞

and
u(x)|x=0 = 0

19



for physical solutions, like in the case of the radial Schrödinger equation.
Then u0E , the regular solution, is for large x approximately (supposed
limx→∞ V (x) = 0)

u0E
x→∞≈

√
2m

h̄2πk
sin (kx+ δ0E)

where (h̄2k2)/(2m) = E and δ0E is the phase shift.
The equation (h2−E)u = 0 has an additional solution, linearly independent
from u0E . We shall call it χE(x), the irregular one, which has the asymptotic
behaviour

χE(x)
x→∞≈

√
2m

h̄2πk
cos (kx+ δ0E)

Certainly (h2 − E)χE = 0 but χE(x)|x=0 6= 0.
One can define

G(x, y) = −πu0E(x<)χE(x>)

where x< ≡ min (x, y) and x> ≡ max (x, y),
and show that

−
(
− h̄2

2m

d2

dx2
+ V (x)− E

)
G(x, y) = δ(x− y) (2)

First both u0E(x) and χE(x) satisfy the homogeneous equation(
− h̄2

2m

d2

dx2
+ V (x)− E

)
u0E(x) = 0

(
− h̄2

2m

d2

dx2
+ V (x)− E

)
χE(x) = 0

Second the Wronskian W (x) is constant (Prove it!)

W (x) = u′0E(x)χE(x)− u0E(x)χ′E(x) ≡ 2m

h̄2π

If x < y then δ(x− y) = 0 and equation (2) is obviously satisfied, since for
x < y we have G(x, y) = −πu0E(x)χE(y). Similarly the equation holds if
x > y, since then G(x, y) = −πu0E(y)χE(x). Let us integrate this equation
from x = y − ε to x = y + ε where ε is a very small positive quantity. The
RHS is ∫ y+ε

y−ε
δ(x− y)dx = 1
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while the LHS is∫ y+ε

y−ε
dx[E − V (x)]G(x, y) +

h̄2

2m

[
∂G(x, y)

∂x
|x=y+ε −

∂G(x, y)

∂x
|x=y−ε

]
If ε → 0 then the integral term tends to zero 5 but the second term is
exactly 1 if one remmbers that W (x) = (2m)/(h̄2π). Consequently if one
knows G(x, y), this is called the Green function, the solution of

(E − V (x) +
h̄2

2m

d2

dx2
)uE(x) = ∆∗(x)vE(x)

can be written as

uE(x) = C(E)u0E(x) +

∫ ∞
0

dyG(x, y)∆∗(x)vE(y) (3)

If ∆(x)
x→∞→ 0 we know that

uE ≈
√

2m

h̄2πk
sin (kx+ δE)

with N.B. δE 6= δ0E . But

uE
x→∞≈

√
2m

h̄2πk

{
sin(kx+ δ0E) + π · n1/2(E)〈v0|∆+|u0E〉 cos(kx+ δ0E)

}
uE(x) will have a right asymptotic behaviour if

C2(E) + π2n(E)
∣∣〈v0|∆+|u0E〉

∣∣2 = 1

At the same time (using eq. (1) and (3))

n1/2(E) =
〈v0|∆|uE〉
E − E0

=
1

E − E0

{
〈v0|∆|u0E〉C(E) + 〈v0|∆G∆+|v0〉

n1/2(E)

E − E0

}

and finally one obtains

n(E) =
1

π

1
2Γ(E)

(E − E0 − δE)2 + 1
4Γ(E)

with
Γ(E) = 2π |〈v0|∆|u0E〉|2

5
∫ y+ε

y−ε f(x)dx ≈ 2εf(x)→ 0
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δE = −〈v0|∆G∆+|v0〉

The only approximation made so far was in eq. (3) when we retained only

one term in the sum
∑
k
|vk〉〈vk|
E−Ek which means that∣∣∣∣〈vk|∆|uE〉E − Ek

∣∣∣∣� ∣∣∣∣〈v0|∆|uE〉
E − E0

∣∣∣∣
In this sense the coupling ∆ is weak.
One can usually consider then that Γ(E) ≈ Γ(E0) = const and δE ≈ 0.
(Those of you interested in this can try an analysis of such an approxima-
tion.) It is easy to see then that

∫∞
−∞ n(E)dE = 1 but n(E) = 〈vE |vE〉.

Consequently the probability to find the system in the first channel after
’turning on’ the coupling ∆ is spread over the whole spectrum. If ∆ → 0
then n(E)→ δ(E − E0), i.e. one obtains again the discrete level.

Let us solve now the time dependent Schrödinger equation

ih̄ ∂
∂t

(
v
u

)
=

(
h1 ∆
∆+ h2

) (
v
u

)

with the initial condition

(
v
u

)∣∣∣∣∣
t=0

=

(
v0

0

)
, (h1 − E0)v0 = 0

Obviously,

(
v(t)
u(t)

)
=
∫∞
−∞ dE A(E)e−

i
h̄
Et

(
vE
uE

)

where

A(E) = (v∗E , u
∗
E)

(
v0

0

)
= 〈vE |v0〉 = n1/2(E)
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therefore (using vE = n1/2(E)v0)

v(t) =

∫ ∞
−∞

dE e−
i
h̄
Etn1/2(E)vE =

∫ ∞
−∞

dE e−
i
h̄
Etn(E)v0

Using

n(E) =
1

2|pii

[
1

E − E0 − i
2Γ

+
1

E − E0 + i
2Γ

]
and integrating clockwise in the complex E-plane (i.e. picking up the pole
E0 − i

2Γ) yields

v(t)|t>0 = −v0e
− i
h̄
E0t− 1

2
Γt
h̄

Or, the probability to find the particle in the first channel

P1(t)|t>0 = 〈v(t)|v(t)〉 = e−
Γt
h̄

Γ gives both the ’width’ of the state (cf. fig. A9.1) and the life time of this
state τ = h̄/Γ.

9 Decay of the neutron

We know that nuclei are made up from protons and neutrons. The amazing
thing is that the neutron is not a stable particle and at the same time many
nuclei are stable. A free neutron decays

n→ p+ e− + ν̄

where e− is an electron and ν̄ is an (anti-)neutrino. The masses are

baryons 6

{
mnc

2 = 939.55 MeV
mpc

2 = 938.26 MeV

leptons 7

{
mec

2 = 0.511 MeV
mν̄c

2 = 0(?) MeV

The neutrino is a massless fermion of spin 1/2. The life time of the neutron
is about 11 minutes. The interaction responsible for such a process is called
weak interaction. If we ’turn off’ the weak interaction the neutron is stable
as the proton is. At the formal level this situation resembles the problem
we analyzed before (cf. ch. 8).

6’heavy’ in Greek
7’light’ in Greek

23



Energy balance

mnc
2 = mpc

2 + Ep +me−c
2 + Ee− + Eν̄

where Ep, Ee− and Eν̄ are the kinetic energies of the final particles (proton,
electron and antineutrino respectively). The decay is possible since

Q ≡ Ep + Ee− + Eν̄ = mnc
2 −mpc

2 −me−c
2 = 0.78 MeV > 0

Momentum balance

~pp + ~pe + ~pν̄ = 0

Spin balance

neutron 1/2 →


proton 1/2
electron 1/2
antineutrino 1/2

 couple to 1/2 or 3/2

All four particles must have half-integer spin.

From the momentum balance it is clear that ’on average’ all momenta are
of the same order:

|~pp| ∼ |~pe− | ∼ |~pν̄ |

If one momentum is much smaller than the other two, than the latter are
almost equal - but such a configuration has a small statistical weight. Any
triangle is allowed and there are much more triangles with comparable sides
than such shown in fig. A9.4’.

But since me ∼ mp
2000 � mp we find Ee � Ep and therefore

Q ≈ Ee− + Eν̄

i.e. the recoil energy of the proton is very small and all released energy is
’eaten up’ by e− and ν̄. Since proton- and electron-momentum are of the
same order

pp ∼ pe
we find that

vp ∼
ve

2000
� ve
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i.e. the proton ’remains’ in the same place where the neutron was. Since
Q ∼ 1 MeV we find for the e−- and ν̄-wavevectors (supposed that both
particles are massless)

ke ∼ kν̄ ∼
Q

h̄c
∼ 1

200
fm−1

Any other more exact estimation will give a smaller ke or kν̄ . Since the elec-
tron is very fast (even taking into account the Coulomb-interaction between
proton and electron) a good estimate for the wave functions will be plane
waves for all particles. But since

λe =
2π

ke
∼ 1200 fm ∼ λν̄

the wavefunctions can be considered constant within the neutron radius and
the weak interaction with a high accuracy is equal to

Vweak(rn, rp, re, rν) = gδ3(~rp − ~rn)δ3(~rp − ~re)δ3(~rp − ~rν)

where δ3(~rp−~rn) means that proton and neutron will be in the same place.
If instead of δ-functions one considers any other function, which is different
from zero when all coordinates are within the nucleon-volume, the effective
result will be the same. Within the nucleon volume all wavefunctions are
’constant’. The life time τ = h̄/Γ of the neutron can be obtained using
Fermi’s Golden Rule

Γ = 2π|Vfi|2Nfinal states

where Nfinal states is the number of final states (the phase-space density).
This is a generalization of the formula on pg. 20. Vfi is an ’average’ matrix
element between the initial state and a ’representative’ final state. In our
case all these matrix elements are equal since the wavefunctions are ’always’
one inside the neutron.

Nfinal states = V 323
∫

d3pp
(2π)3

d3pe
(2π)3

d3pν̄
(2π)3

δ(Q−Ep −Ee −Eν̄)δ(~pp + ~pe + ~pν̄)

where the factor of 2 arises from the spin degrees of freedom and V is the
volume 8 of the ’laboratory’, one for each particle. Since one can ’neglect’
Ep we have δ(Q − Ep − Ee − Eν̄) ≈ δ(Q − Ee − Eν̄) and the δ-function

8It drops from any formula since φ(r) = V −1/2ei
~k·~r

25



δ(~pp + ~pe + ~pν̄) can be integrated out. Since Q = Ee + cpν̄ we get after
integration over angles

Nfinal states = V 222
∫ pmaxe

0

4πp2
edpe

(2πh̄)3

4πp2
ν̄

(2πh̄)3

∣∣∣∣∣
cpν̄=Q−Ee

Consequently

Γ = const

∫
0
pmaxe dpe p

2
e(Q− Ee)2

Since the electron is relativistic its kinetic energy is Ee =
√
m2
ec

2 + p2
ec

2−m2
e.

The probability of having an electron with momentum pe is

const p2
e(Q− Ee)2

From τ ≈11 min we know Γ, which is connected to the coupling constant
g by Γ = const g2. Knowing Q = 0.78 MeV we can work out this constant
and determine g this way:

g ≈ 10−4 MeV fm3

The interaction assumed on pg. 24 does not involve spins. It is called Fermi
interaction. In such a case the spin of the nucleon remains unaffected. In a
similar way as neutron and proton form an isospin doublet the electron and
(anti-)neutrino also form an isospin doublet.(

e−

ν̄

)
− lepton isospin doublet

Taking the isospin into account the Fermi interaction reads

VFermi = gF ~τbaryons · ~τleptons δ(...)

It is possible (and it has been observed experimentally) to have a weak
coupling which involves spin.

VGamow−Teller = gGT ~σbaryons · ~σleptons ~τbaryons · ~τleptons δ(...)

In such a case a neutron flips the spin during the decay. For the neutron we
have

〈VGamow−Teller〉
〈VFermi〉

≈ 2
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Effect of the Coulomb field

I will mention one simple correction to the formula for Γ given on pg. 25. I
argued that one can use a plane wave for the electron (or posiron). In heavy
nuclei the influence of the Coulomb field of the nucleus on the electron wave
function is not anymore a negligible effect. A more precise expression for Γ
is

Γ = const

∫ pmaxe

0
dpe p

2
e(Q− Ee)2F (±Z,Ee)

where

F (±Z,Ee) =
|ψe∓(0)|2Coulomb
|ψe∓(0)|2freewave

and

ψe∓(0) =
2πη

1− e−2πη

with

η = ±Ze
2

h̄r

ψe∓(0) is the amplitude of the electron (e∓) wave function in a Coulomb
field at the origin.
In β-decay we have v ≈ c and therefore η = ±Zα ≈ ±Z/137. If Z � 137
then

ψe∓(0) =
2πη

1− e−2πη
≈ 2πη

1− (1− 2πη + ...)
≈ 1

For electrons η > 0 and ψe−(0) > 1,
for positrons η < 0 and ψe+(0) < 1.

10 β-decay of nuclei

In most of the nuclei half or more of there nucleon content are neutrons.
Why do they exist? Answer: Pauli principle. If the lowest unoccupied
proton level is 0.5 MeV (=electron rest mass) or more higher than the highest
occupied neutron level then the process n→ p+ e−+ ν̄ is forbidden. There
are no final states available for the proton. In the case of a free neutron
the number of available final states is ’infinite’. This explains also why
the reaction n → p + e− + ν̄ goes only one way. The total probability for
n → p + e− + ν̄ is proportional to the number of final states. The inverse
reaction has a vanishing relative probability. This situation is completely
similar to what happens with a sugar cube in a cup of tea or a drop of ink
ia a glass of water. The neutron is ’dissolved’. In nuclei it is possible to
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have also β+(=positron)-decay, namley if the proton level is higher than the
neutron level. The energy of the initial state is the proton rest energy minus
its binding energy, i.e.

Einitial = mpc
2 −Bp

The energy of the final state is analogously

Efinal = mnc
2 −Bn +mec

2 + Ee+ + Eν

Energy conservation means Einitial = Efinal and thus the reaction

p→ n+ e+ + ν

goes if
Ee+ + Eν = mpc

2 −Bp −mnc
2 +Bn −mec

2 > 0

respectively if

Bn −Bp > mec
2 + (mn −mp)c

2 = 0.5 MeV + 1.3 MeV = 1.8 MeV

Another possible reaction is the K-capture

p+ e− → n+ ν

where the electron is captured from the lowest atomic orbit (i.e. the K-
orbit). In such a case one does not have to create a positron or electron and
the only requirement is

Bp −Bn > 1.3 MeV.

Since nucleons in a nucleus are not exactly independent the β-stability of a
given nucleus must be decided by considering the total mass of the initial
and final nuclei. For β−-decay one finds

M(A,Z)c2 = M(A,Z + 1)c2 +mec
2 + Ee− + Eν̄

and consequently

M(a, Z)c2 −M(A,Z + 1)c2 −me−c
2 > 0 (for β−-decay)

M(a, Z)c2 −M(A,Z − 1)c2 −me+c
2 > 0 (for β+-decay)

M(a, Z)c2 −M(A,Z − 1)c2 +me−c
2 > 0 (for K-capture)

(I have neglected the recoil energy of the residual nucleons.)
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The distribution of β-stable nuclei in the N-Z plane can be found from the
Weizsäcker mass formula

B(N,Z) = aVA+ aSA
2/3 + aC

Z2

A1/3
+ aI

(N − Z)2

A

In a weak process the total number of baryons (i.e. neutrons and protons) is
conserved, i.e. A=const. Consequently only the Coulomb- and symmetry-
energies change. (I neglect pairing, though it is important.) The curve

N(Z), which is a solution of ∂B(N,Z)
∂Z

∣∣∣
N+Z=A

= 0 defines the so-called β-

stability valley:

∂B(N,Z)

∂Z

∣∣∣∣
N+Z=A

= aC
2Z

A1/3
+ 4aI

2Z −A
A

!
= 0

which implies

Z

[
2aC
A1/3

+
8aI
A

]
= 4aI

and finally yields

Z = A
4aI

8aI + 2aCA2/3
=
A

2

1

1 + 4aCaI A
2/3

For every A this formula gives the charge of the β-stable isotope. If aC = 0
(i.e. no Coulomb-interaction) then Z = A/2 = N , otherwise

Z <
A

2
< N

Pairing gives certain corrections. You can analyze them yourself.

11 Selection rules for β-decay

Fermi interaction

The nuclear part is simply ~τ , consequently

Jin = Jfin
Tin = Tfin
T zin = T zfin ± 1

parity − unchanged

These kind of transitions are called superallowed transitions.
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Gamow-Teller interaction

This operator is ∼ ~τ ⊗ ~σ = (~τnucleons ·~τleptons)(~σnucleons ·~σleptons) and implies

Jin = Jfin or Jfin − 1
Tin = Tfin
T zin = T zfin ± 1

parity − unchanged

These are called allowed transitions.

Part X

α-decay

12 Qualitative analysis of the behaviour of the
wave function

One dimensional Schrödinger equation

− h̄2

2m
φ′′(x) + (V (x)− E)φ(x) = 0

or
φ′′(x) + k2(x)φ(x) = 0

with

k2(x) =
2m

h̄2 (E − V (x)) =


> 0 classically allowed region
< 0 classically forbidden region
= 0 classical turning points

I will assume that V (x) is not singular. Singular points x = ±∞ and x = 0
if there is a centrifugal barrier.

1. All zeros of φ(x) are simple. If φ(x0) = φ′(x0) = 0 then φ′′(x0) = 0
from the Schrödinger equation and therefore all derivatives vanish and
φ(x) ≡ 0.

2. For k2(x) > 0 we have

if φ(x) > 0 then φ′′(x) < 0
if φ(x) < 0 then φ′′(x) > 0

Consequently the profile of the wave function looks like the one shown
in fig. A9.6.
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3. For k2(x) < 0 we have

if φ(x) > 0 then φ′′(x) > 0
if φ(x) < 0 then φ′′(x) < 0

Possible profiles are shown in fig. A9.7 and A9.8. The wave function
can have at most one simple zero in the region where k2(x) < 0.

Square well

We consider the potential

V (x) =

{
−V0 (x < x0)
0 (x > x0)

and assume φ(0) = 0 as in the case of the radial Schrödinger equation. Since
the phase of the wave function can be chosen arbitrarily, I further assume
that φ′(0) > 0. Let 0 > E0 > E be the energy of the lowest bound state.
We consider the three cases

V0 < E < E0

E = E0

E > E0

which are shown in fig. A9.10 to A9.12.
How does one solve numerically this equation? For h ’small’ enough we have

φ′(x) = lim
h→0

φ(x+ h/2)− φ(x− h/2)

h
≈ φ(x+ h/2)− φ(x− h/2)

h

φ′′(x) = lim
h→0

φ′(x+ h/2)− φ′(x− h/2)

h
≈ φ(x+ h)− 2φ(x) + φ(x− h)

h2

One defines a mesh h and computes the wave function only at the points
xi = ih = 0, h, 2h, . . .. That yields φ(ih) = φi and k2(ih) = k2

i . Then the
Schrödinger equation becomes

φi+1 − 2φi + φi−1

h2
+ k2

i φi = 0

or
φi+1 = 2φi − φi− 1− h2k2

i φi

At x = 0 we have φ0 = 0. At x = h we choose φ1 = 1. (That is possible
since the equation is homogeneous.) Then

φ2 = 2φ1 − φ0 − h2k2
1φ1
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and so on. One ’integrates’ in this way the equation up to ’infinity’, i.e.
to a point x � x0 (the radius of the potential well). Then one counts the
number of modes (zeros) and makes sure that the wave function does not
grow exponentially. If it does then depending on the behaviour of the wave
function at ’infinity’ one increases or decreases the energy until one finds the
bound state. A good approximation is to require that the wave function has
a zero at a very large distance x ≈ 3÷ 5x0 which for all practical purposes
can be identified with ’infinity’ (i.e. ∞ ≈ 3 ÷ 5x0). This is not the best
method but it works.

Potential barrier

Now we consider the potential

V (x) =


−V0 (x < x0)
V1 (x0 < x < x1)
0 (x > x1)

Let E = E0 > 0 be the energy of a bound state in the case when x1 → ∞
and φ0(x) its wave function (cf. fig. A9.14). Let us analyze the three cases

E < E0

E = E0

E > E0

for the above potential. The results are shown in the fig. A9.15 to A9.17.

Lesson: If E = E0 the amplitude inside of V (x) is much greater than the
amplitude outside. If E > E0 or E < E0 the reverse holds.

Qualitatively: The amplitude (probability) of finding the particle inside
the potential well is a strongly energy dependent function of energy
when there is a potential barrier (cf. fig. A9.18).

It can be shown that the probability of finding the particle in the well has
the following energy dependence:

P (E) =
1

π

1
2Γ

(E − E0)2 + 1
4Γ2

where

P (E) =

∫ x0

0
|φE(x)|2dx, with

∫ ∞
−∞

P (E)dE = 1
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and

− h̄2

2m
φ′′E(x) + (V (x)− E)φE(x) = 0

If E = E0 then we get for x < x1

φE0(x) ≈
√

2

πΓ
φ0(x)

since ∫ x0

0
|φ0(x)|2dx ≈

∫ ∞
0
|φ0(x)|2dx = 1

I shall estimate roughly Γ using the WKB-approximation-method.

1. For x < x0 we have

φ0(x) ≈ A0 sin(kinx)√
kin

with ∫ x0

0
|φ0(x)|2dx ≈ 1

and
h̄2k2

in

2m
= E0 − V0

On the other hand ∫ x0

0
sin2(kinx)dx ≈ 1

2
x0

and therefore

A2
0 =

2kin
x0

We already know that

φE0(x) =

√
2

πΓ
φ0(x)

2. For x0 < x < x1 we find

φE0(x) ≈ B√
kB
e
−
∫ x
x0
kB(x)dx

with
h̄2k2

B

2m
= V1 − E0
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3. For x > x1 we finally get

φE0(x) ≈ 1√
k0

sin(k0x+ δ0)

with
h̄2k2

0

2m
= E0

Now matching the wave function at x0 and x1 (all this must be done in the
complex x-plane): Since

e
−
∫ x
x0
kB(x)dx

= 1

we get

B =

√
2

πΓ
A0

or

Γ =
2A2

0

πB2
=

4kin
πx0

e
−2
∫ x1
x0

kB(x)dx

Now x0/kin is practically x0/vin, i.e. the time the particle needs to reach
the barrier starting at the origin. The preexponential factor is proportional
to the frequency of ’hits’, the exponent gives the probability to penetrate
the barrier.
Now let us ’create’ a particle inside the potential well at t = t0 with the
wave function φ(x, t = 0) = φ0(x). The time evolution is given by

ih̄φ̇(x, t) = Ĥφ(x, t)

with the general solution

φ(x, t) =

∫ ∞
−∞

e−
i
h̄
EtC(E)φE(x)dE

where φE(x) is a solution to the stationary equation

(H − E)φE(x) = 0

and the weight function C(E) is given by

C(E) = 〈φE |φ0〉 =
√
P (E)

As in the situation analyzed previously (cf. pgs. 21-22) one obtains finally∫ x0

0
|φ(x, t)|2dx ≈ e−

Γt
h̄

i.e. the particle leaves eventually the ’nucleus’.
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13 Penetration of the Coulomb barrier by α-particle
(Gamow)

For many nuclei one has that

M(N,Z)c2︸ ︷︷ ︸
parent nucleus

− M(N − 2, Z − 2)c2︸ ︷︷ ︸
daughter nucleus

− M(2, 2)c2︸ ︷︷ ︸
mass of 4He (α -particle)

> 0

If this condition is fullfilled, the nucleus (N,Z) can emit an α-particle. Such
a process is slowed down due to two reasons:

1. The emitted α-particle has to penetrate a strong Coulomb-barrier.

2. Two protons and two neutrons inside the parent nucleus have to come
together in a relatively small volume (α-particle) and leave the nucleus.

Our potential is shown in fig. A9.19 with

Q = M(N,Z)c2 −M(N − 2, Z − 2)c2 −M(2, 2)c2

The penetration factor is

P = exp (−2

∫ R1

R0

√
2mα

h̄2 (VC(r)−Q)dr)

where mα is the mass of the α-particle. 9

We have
(Z − 2)2e2

R1
= Q and

(Z − 2)2e2

R0
= B

It is easy to do the integral. With

x =
Q

B
=

QR0

(Z − 2)2e2

we find

P = exp (−2

√
2mα

h̄2Q
(Z − 2)2e2(arccos

√
x−

√
x(1− x))

9To be exact one has to use the reduced mass mr, but

mr =
mαM(N − 2, Z − 2)

mα +M(N − 2, Z − 2)
≈ mα
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i.e.

P = exp(−const√
Q

)

which yields the Geiger-Nuttal law

Γ ∼ e−const/
√
Q

For Z = 82 the exponent is roughly

2

√
2 · 4 · 103

4 · 104Q
80 · 2 · 1 · 4 · (1) ≈ 200√

Q

which yields
for Q = 1MeV ⇒ P ≈ e−200 ≈ 10−70

for Q = 10MeV ⇒ P ≈ e−64 ≈ 10−20

i.e. a very strong variation with Q.

Formation of α-particle

Denoting
Vα −volume of α-particle
V −volume of the parent nucleus

we find the relative probability to find one nucleon inside the volume Vα

P1 =
Vα
V

and thus the relative probability for formation of an α-particle

P4 =

(
Vα
V

)4

With
Vα = 4π

3 r
3
0 · 4

V = 4π
3 r

3
0 ·A

that yields for A ≈ 200

P4 =

(
4

A

)4

≈ 1

604
≈ 10−7

Role of pairing
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If there is pairing nucleons are strongly correlated. One has to put together
then only a neutron pair with a proton pair. Let V0 denote the volume of
pairing correlations, i.e. with r0 ≈ 1fm

V0 =
4π

3
r3

0 ≈ Vα

Then with

P2 =
V0

V

we get

P4 ≈ P 2
2 ≈

1

602
≈ 3 · 10−4

The relative enhancement is about 2÷3000.

Role of deformation

If a nucleus is not spherical but elipsoidal, then the Coulomb barrier is
thinner at the ’nose’ and this results in increased penetrability (cf. fig.
A9.21).

14 Proton and neutron decay

If
Qn = M(N,Z)c2 −M(N − 1, Z)c2 −mnc

2 > 0

then the nucleus (N,Z) can emit a neutron.
Similarly if

Qp = M(N,Z)c2 −M(N,Z − 1)c2 −mpc
2 > 0

the nucleus (N,Z) can emit a proton.
In fig. A9.22 the resulting area of stable nuclei in the N-Z-plane is shown.
The lines Qn = 0 and Qp = 0 are determined from the Weizsäcker mass
formula.

37


