© 2010 No reproduction or distribution of these copyrighted materials is allowed without the advance approval of the author, Denise Anderson. For information, contact <u>bugsda@u.washington.edu</u>

Microbiology 301 Spring Quarter 2010 First Midterm Name _____

Version A - Make sure your name is on both the question and answer sheet. You are responsible for the <u>correct transfer</u> of your answers to the computer answer sheet. The exam will be returned along with an individual student score report in a room in the laboratory area (number to be announced). If you wish to have your exam returned privately, give the proctor a note to that effect.

Choose the <u>ONE</u> best answer.

- 1. In classification, there are two Domains—prokaryotes and eukaryotes.
 - A. True
 - B. False
- 2. Which of the following is FALSE:
 - A. Archaea are often extremophiles.
 - B. Bacillus anthracis belongs to the species Bacillus.
 - C. Prions are composed of only protein.
 - D. Viroids are composed of nucleic acid only.
 - E. Algae are photosynthetic.
- 3. All of the following are reasons why studying bacteria is important EXCEPT:
 - A. They are an important cause of morbidity.
 - B. They are essential to life on this planet.
 - C. They provide a model for understanding prions.
 - D. They provide a model for understanding human cells.
- 4. *Staphylococcus aureus* is a Gram-positive coccus. Which of the following describes the appearance of a properly stained *S. aureus* cell?
 - A. pink and spherical
 - B. pink and elongated
 - C. purple and spherical
 - D. purple and elongated
- 5. Which of the following about the bacterial cytoplasmic membrane is TRUE?
 - A. Water enters the cell via transport proteins.
 - B. The membrane is composed of a triple layer of phospholipids.
 - C. ATP is able to diffuse across the membrane.
 - D. The membrane is located just outside the cell wall, anchored to the wall's outer surface.
 - E. Protein complexes within the membrane eject protons from the cell.

- 6. You are working with a pharmaceutical company interested in developing an antibacterial drug that targets a transport protein. Interfering with which group of transporters is most likely to affect the bacterium without harming the patient?
 - A. facilitated diffusion
 - B. active transport
 - C. group translocation
- 7. All of the following describe components of peptidoglycan EXCEPT....
 - A. NAG (*N*-acetylglucosamine)
 - B. NAM (*N*-acetylmuramic acid)
 - C. LPS (lipopolysaccharide)
 - D. glycan
 - E. peptide side chain
- 8. All of the following are matching pairs EXCEPT...
 - A. penicillin enzyme that degrades peptidoglycan
 - B. lysozyme targets peptidoglycan
 - C. Gram positive cell wall teichoic acids
 - D. general secretory pathway exports proteins
 - E. porin proteins Gram negative cells
- 9. All of the following about bacterial structures/processes are matching pairs EXCEPT....
 - A. flagella rotation propeller-like
 - B. energy for flagella rotation ATP
 - C. peritrichous flagella arrangement that surrounds cell
 - D. sex pili prelude to DNA transfer
 - E. flagellin structural subunit of flagella
- 10. Two bacterial isolates have significant difference in the nucleotide sequences of their 16S ribosomal RNA genes. Based on this information, you can conclude that...
 - A. only one is susceptible to antibiotics that target the ribosome.
 - B. one has 80S ribosome and the other has 70S ribosomes.
 - C. one has a 30S ribosomal subunit and the other has a 50S ribosomal subunit.
 - D. they aren't members of the same species.
 - E. one is a rod and the other a coccus.
- 11. A bacterial cell moving towards which of the following is an example of chemotaxis?
 - A. a magnet
 - B. a warm heating element
 - C. a cold heating element
 - D. glucose

- 12. Which of the following about endospores is FALSE? They can....
 - A. multiply.
 - B. germinate.
 - C. withstand high temperatures
 - D. withstand antibacterial chemicals
 - E. withstand dryness.
- 13. All of the following are matching pairs EXCEPT....
 - A. endocytosis pinocytosis
 - B. endocytosis phagocytosis
 - C. actin cell movement
 - D. rickettsia ancestor of a nucleus
 - E. cyanobacteria photosynthesis
- 14. An experiment began with 6 cells and ended 2 hours later with 96 cells. How many generations did the cells go through during the 2-hour experiment?
 - A. 48
 - B. 24
 - C. 8
 - D. 6
 - E. 4
- 15. With respect to bacterial growth, the intestinal tract could best be described as..
 - A. an open system with defined media
 - B. a closed system with defined media
 - C. an open system with complex media
 - D. a closed system with complex media
- 16. All of the following are matching pairs EXCEPT...
 - A. thermophile human body
 - B. mesophile leaf of an indoor plant
 - C. psychrophile glacier-fed lake
 - D. psychrotroph refrigerator
 - E. hyperthermophile hydrothermal vent
- 17. A bacterium that grows on MacConkey agar is a....
 - A. chemoorganoheterotroph
 - B. chemolithoautotroph
 - C. chemolithoheterotroph
 - D. photoautotroph
 - E. photolithotroph

- 18. All of the following are matching pairs EXCEPT?
 - A. fastidious requires many growth factors
 - B. fastidious Neisseria gonorroheae
 - C. MacConkey agar selective and differential
 - D. MacConkey agar *Neisseria gonorrhoeae*
 - E. Blood agar differential
- 19. All of the following are matching pairs EXCEPT...
 - A. biosynthesis anabolism
 - B. energy released exergonic
 - C. oxidation loss of electrons
 - D. oxidation loss of hydrogen
 - E. NAD^+ reducing power
- 20. With respect to fate of their electrons, which pair is most similar?
 - A. NADH NADPH
 - B. NADH FADH₂
 - C. NADPH FADH₂

Use the following to answer questions 21 - 23. Answers can be used more than once or not at all.

- A. glycolysis
- B. TCA cycle
- C. pentose phosphate pathway
- D. A and C
- E. electron transport chain
- 21. Glucose is the starting compound
- 22. Produces the most reducing power
- 23. Consumes reducing power
- 24. All of the following are matching pairs EXCEPT....
 - A. niacin coenzyme
 - B. NAD coenzyme
 - C. active site binding site of allosteric inhibitor
 - D. mercury non-competitive enzyme inhibitor
 - E. lipase enzyme
- 25. Adding large quantities of a substance that has a high BOD to a small lake would....
 - A. make the water clearer.
 - B. kill fish due to its toxicity.
 - C. decrease the amount of dissolved O_2 in the water.
 - D. precipitate the phosphates so they're easily removed from the water.
 - E. promote the growth of algae.

Use the following to answer questions 26 - 28. Answers can be used more than once or not at all.

- A. aerobic respiration
- B. anaerobic respiration
- C. fermentation
- D. A and C
- E. B and C
- 26. Can occur in aerobic environments
- 27. Can occur in anaerobic environments
- 28. Results in the production of only six of the precursor metabolites
- 29. Which of the following is TRUE?
 - A. Fermentation can create a commercially valuable food product.
 - B. Fermentation can spoil an otherwise commercially valuable food product.
 - C. A and B
- 30. Which of the following will lower the a_w of a food most significantly?
 - A. adding high concentrations of sugar
 - B. adding high concentrations of acetic acid (vinegar)
 - C. adding high concentrations of grape juice
 - D. exposing the food to UV light
 - E. exposing the food to gamma rays.
- 31. Which fermentation end product is responsible for the tart taste of yogurt and sour cream?
 - A. CO_2
 - B. pyruvic acid
 - C. lactic acid
 - D. ethanol
 - E. A and D
- 32. Which of the following statements is TRUE?
 - A. To avoid Staph. food poisoning, ham should be heated immediately before it is consumed.
 - B. To avoid Staph. food poisoning, home canned green beans should be heated immediately before they are consumed.
 - C. To avoid botulism, ham should be heated immediately before it is consumed.
 - D. To avoid botulism poisoning, home canned green beans should be heated immediately before they are consumed.
 - E. A and B are both true.

- 33. Which describes the early symptoms of the most life-threatening form of foodborne illness?
 - A. vomiting and abdominal cramps
 - B. diarrhea
 - C. blurry vision and the feeling of a thick tongue
 - D. none of the above; foodborne illness is not life threatening

Use the following key to answer questions 34 through 40 (answers may be used more than once, or not at all).

- A. transcription
- B. translation
- C. replication
- D. A and B
- E. A and C
- 34. The final product is a component of ribosomes.
- 35. Involves Okazaki fragments.
- 36. Expression of the β -galactosidase gene requires this process.
- 37. Diphtheria toxin, which interferes with a eukaryotic elongation factor, would prevent this process in eukaryotic cells.
- 38. RNA interference destroys the product of this process.
- 39. Uses subunits that have a 3'OH.
- 40. A sequence called a terminator halts this process.
- 41. Based on the sequence of mRNA below, where did transcription start? (the letter indicates the position on the template strand)

³'UACGACUAAUAGGCGCAUCCUCGAUC⁵'

- 42. Which of the following statements is FALSE?
 - A. Cells of some types of bacteria can sense the density of cells within their own population.
 - B. Cells of some types of bacteria randomly alter their gene expression.
 - C. Once the DNA of a protein-encoding region has been sequenced, the "plus" strand is used to determine the amino acid sequence of the protein.
 - D. Alternative sigma factors are used to direct transcription of the central metabolic pathways.
 - E. Enzymes involved in amino acid synthesis are typically repressible.

- 43. All of the following are matching pairs EXCEPT...
 - A. bacterial mRNA monocistronic and polycistronic
 - B. bacteria mRNA intron are removed by splicing
 - C. bacteria translation begins before transcription is complete
 - D. eukaryotic mRNA poly A tail
 - E. eukaryotic mRNA translation usually begins at the first AUG
- 44. All of the following are matching pairs EXCEPT:
 - A. phenotype observable characteristics of an organism
 - B. genotype the sequence of nucleotides in the DNA of an organism
 - C. wildtype strain for which the phenotype corresponds to the genotype
 - D. prototroph strain that grows on minimal medium
 - E. auxotroph strain that lacks the ability to synthesize a nutrient.
- 45. Using the genetic code (illustrated below), what is the consequence of the first nucleotide in the codon AGA being converted to a U?

			U		C		A		G			
	missense nonsense silent frameshift real sense	First Letter	Reading frame 5' 3'		Reading frame 5' 3'		Reading frame 5' 3'		Reading frame 5' 3'		Last Letter	
A. B. C. D. E.		u	UUU UUC	Phenylalanine Phenylalanine	UCU UCC	Serine Serine	UAU UAC	Tyrosine Tyrosine	UGU UGC	Cysteine Cysteine		U C
			UUA UUG	Leucine Leucine	UCA UCG	Serine Serine	UAA UAG	(Stop) (Stop)	UGA UGG	(Stop) Tryptophan		A G
		c	CUU CUC	Leucine Leucine	CCU	Proline Proline	CAU CAC	Histidine Histidine	CGU CGC	Arginine Arginine	I	U C
			CUA CUG	Leucine Leucine	CCA CCG	Proline Proline	CAA CAG	Glutamine Glutamine	CGA CGG	Arginine Arginine		A G
		A	AUU AUC	Isoleucine Isoleucine	ACU ACC	Threonine Threonine	AAU AAC	Asparagine Asparagine	AGU AGC	Serine Serine	I	U C
			AUA AUG	Isoleucine Methionine (Start)	ACA ACG	Threonine Threonine	AAA AAG	Lysine Lysine	AGA AGG	Arginine Arginine	l	A G
		G	GUU GUC	Valine Valine	GCU GCC	Alanine Alanine	GAU GAC	Aspartate Aspartate	GGU GGC	Glycine Glycine	I	U C
			GUA GUG	Valine Valine	GCA GCG	Alanine Alanine	GAA GAG	Glutamate Glutamate	GGA GGG	Glycine Glycine		A G

- 46. Which of the following statements is FALSE?
 - A. Proofreading by a cellular enzyme that synthesizes DNA would be more important than proofreading by a cellular enzyme that synthesizes RNA.
 - B. Transposons cause spontaneous mutations as well as induced mutations.
 - C. X-rays can introduce single- and double-stranded breaks in DNA.
 - D. Intercalating agents chemically modify purines and pyrimidines.
 - E. Ultraviolet radiation can cause thymine dimers to form.
- 47. Which would be the easiest to do in the laboratory?
 - A. Isolate a prototroph from a population of auxotrophs.
 - B. Isolate an auxotroph from a population of prototrophs

- 48. Which type of DNA repair is the most error prone?
 - A.
 - B.
 - Excision repair Light repair Mismatch repair Proofreading SOS C.
 - D.
 - E.