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Technological innovations and hafted
technology in central China
~160,000–72,000 years ago

Jian-Ping Yue1,17, Guo-Ding Song2,17, Shi-Xia Yang 1,3 , Shu-Gang Kang 4 ,
Jing-Ya Li5, Ben Marwick 6, Andreu Ollé 7,8,
Juan Luis Fernández-Marchena 7,9, Pei-Xian Shu 4,10, Hao-Yu Liu11,
Yu-Xiu Zhang11, Fa-Xiang Huan1,11, Qing-Po Zhao12, Bao-Tong Qiao13,
Zhong-Shan Shen14, Cheng-Long Deng11,14 & Michael Petraglia 3,15,16

Technological innovations in Africa and western Europe in the later part of the
Middle Pleistocene signal the behavioural complexity of hominin populations.
Yet, at the same time, it has long been believed that hominin technologies in
Eastern Asia lack signs of innovation and sophistication. Here, we report on
technological innovations occurring at Xigou, in the Danjiangkou Reservoir
Region, central China, dating to ~160,000–72,000 years ago. Technological,
typological, and functional analyses reveal the presence of advanced techno-
logical behaviours spanning over a 90,000-year period. The Xigou hominins
used core-on-flake and discoid methods to effectively obtain small dimen-
sionalflakes tomanufacture a diverse range of tool forms. The identification of
the hafted tools provides the earliest evidence for composite tools in Eastern
Asia, to our knowledge. Technological innovations revealed at Xigou andother
contemporary sites in China correspond with increasing evidence for Late
Quaternary hominin morphological variability, including larger brain sizes,
such as demonstrated at Lingjing (Xuchang) in central China. The complex
technological advancements recorded at Xigou indicate that hominins devel-
oped adaptive strategies that enhanced their survivability across fluctuating
environments of the late Middle Pleistocene and middle Late Pleistocene in
Eastern Asia.

The late Middle Pleistocene to the middle Late Pleistocene,
~300,000–50,000 years ago (ka), was a key period in the evolutionary
history of our genus. This period witnessed the rise and development
of our species and our interactions with sister taxa, such as the
Neanderthals, Denisovans, and perhaps newly reported species, such
as Homo longiand H. juluensis1–12 (Supplementary Note 1). In Africa and
western Eurasia, demographic dynamics are associated with a series of
behavioural innovations that typify the Middle Palaeolithic, such as
Levallois and other predetermined stone tool reduction methods,

hafting technology, formal bone tools, personal ornaments, and pig-
ment use13–18. However, cultural developments in Eastern Asia have
long been regarded as part of a conservative tradition based primarily
on the view that stone tool assemblages were simple, with major
technological changes only occurring after ~40 ka19–24. Based on these
interpretations, a two-stage model, namely, the Early and Late
Palaeolithic, was proposed. In recent years, however, archaeological
evidence has revealed the presence of a series of technological inno-
vations in lithic assemblages, including complex flake tools and pre-
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determined core preparation methods dating to between ~300 and
50 ka25–28 (Supplementary Data 1), though our knowledge about the
nature of this behavioural complexity remains limited.

Here we report on Xigou, a newly excavated archaeological site
in Henan Province of central China, with a stratigraphic sequence
dating to between ~160 and 72 ka. Xigou occurs in the Danjiangkou
Reservoir Region, along the southern edge of the Qinling Mountain
range which serves as the dividing line between temperate northern
China and subtropical southern China, and the boundary between
the Palaearctic and Oriental biogeographic realms (Fig. 1a and b,
Supplementary Note 2). The lithic assemblages at Xigou demon-
strate significant technological advancements in comparison to
earlier regional technologies, exemplified by well-organised core
reduction strategies (core-on-flake and discoid technologies),
diverse small flake-based tools, and hafted implements. Xigou shows
technological innovations during the late Middle Pleistocene to
middle Late Pleistocene, shedding light on technological complexity
during a period when large-brained hominins were present in East-
ern Asia.

Results
Site setting, stratigraphy, and ages
Xigou (32°56′9.23″N, 111°29′7.83″E, 175–180m a.s.l., Supplementary
Note 2) is situated along the Laoguanhe River which flows into the
Danjiang River (now the Danjiangkou Reservoir) around 300m
southwest of the site (Fig. 1b). Xigou was discovered in 2017 and
subsequently excavated from2019–2021. An areaof 243 squaremetres
was excavated during the year of 2021 (Fig. 1c), exposing six strati-
graphic units labelled Layers 1–6, and further with test trench to 5m in
depth (Fig. 1d). Layers 2–5 are the primary cultural horizons, and the
sediments are composed mainly of silty clay with varied colours ran-
ging from yellowish-brown (Layer 2), bright reddish-brown (Layer 3),
yellowish-brown with a red tinge (Layer 4), and dark reddish-brown
(Layer 5). The sedimentary provenance of the Xigou section primarily
comprises far-source and near-source aeolian materials, with a minor
contribution from fluvial components (Supplementary Note 2).

Six luminescence dating samples were collected from the Xigou
section (Fig. 1d, Supplementary Fig.3). We applied both the single-
aliquot regenerative-dose (SAR) optically stimulated luminescence
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Fig. 1 | Location, stratigraphy and chronologyof theXigou site. aDistribution of
key hominin fossil locations and archaeological sites in China between ca.
300–50 ka (See Supplementary Data 1 for site details, made with GeoMapApp85

(www.geomapapp.org) /C / CC BY). b The position of Xigou in the Danjiangkou

Reservoir Region. c Aerial view of the Xigou site showing excavation location.
d Lithology, quartz ReOSL ages and mean grain size (Mz) of the Xigou profile at
different depth intervals (Supplementary Notes 2 and 3).
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(OSL) and the multiple-aliquot regenerative-dose (MAR) recuperated
OSL (ReOSL) dating protocols29–32 (Supplementary Tables 1–2) to
quartz fine-grains (4–11μm), and the SAR post-infrared infrared sti-
mulated luminescence (post-IR IRSL) dating protocol33,34 (Supple-
mentary Tables 3) to polymineral fine-grains from all of these samples
(Supplementary Note 3). Our dating results show that the quartz
ReOSL ages are generally larger than that of quartz OSL for all the six
samples, and are systematically smaller than that of polymineral post-
IR IRSL for the upper three samples (Supplementary Fig. 20 and Sup-
plementary Data 2). Due to signal saturation, all the quartz OSL ages
are believed to be underestimated (Supplementary Note 3.4.2 and
Supplementary Fig. 20). Moreover, because of possible large residual
doses contributed by near-source aeolian sediments and particularly
fluvial components, it is suggested that the post-IR IRSL ages of the
upper three samples are possibly overestimated (Supplementary
Note 3.4.4 and Supplementary Fig. 20). In contrast, given the good
performance of luminescence characteristics of ReOSL signal (e.g.,
dose-response curves with high saturation levels) (Supplementary
Note 3.4.3) and its previous robustdating applications into loesson the
CLP31,32, we recommend the use of ReOSL dating results to constrain
the chronology of the Xigou section. The ReOSL dating results indicate
that the bottom of the sediment column dates to 285.4 ± 15.7 ka and
Layers 2–6, ranging in depth from 2.65 to 0.75m, accumulated
between 191.6 ± 13.3 to 71.9 ± 4.0 ka (Fig. 1d, Supplementary Data 2).
The ReOSL chronology dates the cultural horizons (Layers 2–5)
between ~160 and 72 ka.

Expedient and well-organised core reduction strategies
The lithic assemblages are composed of 2601 artefacts, including 528
fromLayer 2, 550 from layer 3, 1084 fromLayer 4, and439 fromLayer 5
(SupplementaryNote 4).Most of the artefacts (69.5–78.7%) are smaller
than 50mm. Quartzite and quartz, originating from local riverbeds or
gravel layers of the terraces, are the main raw materials (Supplemen-
tary Note 4.1). Detached pieces, including flakes, flake fragments,
bipolar splinters, and angular fragments and debris dominate the
assemblage of each layer (72.4–78.9%), followed by cores, tools,
unmodified pieces and hammer stones (Supplementary Table 4).

Freehand hard-hammer percussion (FHHP) constitutes the pre-
dominant technique for core reduction across the four phases of
Xigou (Supplementary Note 4.2). Both simple and predetermined
debitage technologies were employed for the FHHP. Cores of simple
debitage without preparation comprise the majority of core types,
ranging from 65.2 to 73.7% in Layers 2–5. Among simple debitage
cores, unidirectional and multidirectional cores are most common,
followed by bidirectional and opposed platform types, along with a
few tested and polyhedral types (Supplementary Fig. 22). Pre-
determined methods are represented by core-on-flake and discoid
technologies, both of which showplanned technological organisation.

Core-on-flakes play a significant role in the assemblages, with
frequencies ranging between 20.8 and 25.8% in each layer. Relatively
larger and thicker flake blanks (Mann–Whitney U-test, p < 0.001), were
selected for these cores, indicating a systematic pattern for initial
blank selection. Most of the cores show an exploitation of the dorsal
face of flake blank (50.9%), followed by the use of ventral surfaces
(41.8%) and the flaking of both dorsal and ventral surfaces (7.3%)
(Fig. 2a, Supplementary Fig. 23). The striking platforms are rarely
prepared. Two pieces have a facetted platform, and one shows a
truncation on onemargin of the flake blank, which serves as a platform
for the removal of small flakes fromthedorsal surface. Considering the
high availability of knappable rawmaterials and the fact that cores-on-
flakes are not smaller thanother core types (Fig. 2c), the ubiquitous use
of this technology likely represents a noteworthy behavioural choice,
i.e. a tendency for smaller dimensional flakes with sharp edges.

Discoid cores occur in relatively low frequencies, totalling 19
pieces, while the proportion increased continuously from2.6% in Layer

5, 8.3% in Layer 4, 10.4% in Layer 3, to 10.8% in Layer 2. Both unifacial
and partially bifacial exploitation of discoid cores are present (Fig. 2b,
Supplementary Fig. 23). Cobbles are exclusively selected asblanks, and
exploitation proceeds bymaintaining a stability of the core employing
the volumetric concept, with little specific preparation of striking
platforms andflaking surfaces (Fig. 2d), resulting in anoval shape and a
biconvex asymmetric section of the core. In comparison to simple
debitage cores, discoid cores are usually smaller in dimension and
negative scar size, while negative numbers (mean = 6.44) are sig-
nificantly greater, suggesting a higher core reduction degree (Fig. 2c).

Flakes, which occupy a significant portion of the Xigou assem-
blages through time, are generally small in size, and the metric and
techno-typological attributes are consistent with what would be
expected based on the nature of the cores (Supplementary Note 4.3).
In addition to the FHHP, bipolarpercussion on an anvil was applied as a
supplementary reduction technique (Supplementary Note 4.4). Gen-
erally, the reduction technology employed at Xigou was geared
towards the intentional production of small-sized flakes from cobbles
and large flake blanks by means of the FHHP. Flexible technical
repertoires which range from expedient to well-organised were used
for core reduction, with core-on-flake and discoid technologies
showing planned organisation and standardised operational schemes,
technologically and statistically different from simple debitage.

Diverse toolkits and advanced hafting technology
A diversity of specialised stone tools is present at Xigou across the
cultural layers and includes two different sequences of tool produc-
tion, i.e. retouching and shaping (Supplementary Note 4.5 and 4.6).
The former is devoted to turning flakes into tools by retouching
working edges (Fig. 3a); the latter is manufacturing tools by sculpting
the rawmaterial in line with the desired form, which is represented by
the presence of Large Cutting Tools (LCTs), including three handaxes
and two picks (Fig. 3b). As would be expected, remarkable disparities
in size, weight, raw material and blank selection exist between retou-
ched tools and LCTs (Supplementary Fig. 33).

Retouched tools arepredominant in the toolkits (86.8–93.9%) and
include scrapers, borers, notches, denticulates, points, basal retou-
ched tools, a burin, and casually retouched pieces (Fig. 3a, Supple-
mentary Table 6). Statistical analysis of metric and technological
attributes indicates that the differences in size, raw material, blank
selection and retouch pattern are not significant across the four layers
(Supplementary Fig. 27). Retouched tools are generally small-sized
(mean= 38.1–45.5mm) andmainly based on flake blanks (73.9–90.9%).
The retouch on some tools is elaborate and standardised. Especially
for borers, a delicate tip was formed by continuous retouching on the
distal and lateral edges mostly by direct retouch from the ventral to
dorsal face of flake blanks, and some pieces show comparable shapes
(Fig. 3: 1–2 and 7–8, Supplementary Fig. 29).

Alongside artefacts where only the cutting edge was retouched,
other tools show more complicated retouching patterns, with clear
basal modifications. A total of 22 pieces of basal retouched tools,
indicative of potential hafting35–37, were identified across all five layers,
accounting for 8.7% of the toolkits. Among the assemblages, there are
13 tanged or shouldered tools, which are with a projection, or a width-
reduced base created by flanking notches or continuous retouch
removals (Fig. 3c, Supplementary Fig. 31). In addition, 9 pieces show
backing modifications on the proximal end of the artefacts (Fig. 3d,
Supplementary Fig. 32), forming an abruptly backed base which could
help its handling or even to join a handle or a shaft for use38. The
cutting edge opposite to the baseof tanged andbacked tools is usually
continuously retouched and shows a pointed, denticulated or straight
morphology.

The microwear results obtained on quartz tools resulted in the
identification of different functional activities (Supplementary
Note 5). Two tanged borers show both boring actions and hafting
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evidence. In the first case, the wear marks are concentrated at the tip
(Fig. 3c, Supplementary Fig. 35), and include edge macro and micro
scars with a distribution consistent with a rotational movement,
likely on a hard plant material. The scarring is accompanied by

pronounced edge rounding, abundant striations in the form of
transverse fine furrows, and a well-developed smooth polish
restricted to the crystal ridges at the tip. Such a combination of wear
features has been experimentally reproduced on a boring action on

Fig. 2 | Core metric and techno-typological variables. a Cores on flakes. b Discoid cores. c Core length, mass and negative scar size by core type, showing the
Mann–Whitney U-test results. d Blank type, platform type and negative scar number by core type, showing the Fisher’s exact test results.
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Fig. 3 | Stone tools from Xigou including use-wear observations. a Formal
retouched tools: 1, 2, 7 and8borer, 3 notch, 4denticulate, 5 burin, 6 bifacial pointed
tool. b LCTs. c Image of the active part of the tanged borer (SEM micrograph)
showing macro- and micro-scarring, intense edge polishing at the tip (optical

microscope, 50x lens), and a fracture, edge rounding and furrow-like striations on
the side (scanning electron microscope) consistent with a rotational movement.
dBackedborers. (4&9 fromLayer 2; 1, 3, 6, 11 & 12 fromLayer 3; 7, 8& 10 fromLayer
4; 2, 5 & 13 from Layer 5).
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reed (Supplementary Figs. 49 and 50). Its proximal end shows a large
bending fracture and a generally fresher surface, but on the mesial
part there is evidence of hafting in the form of slightmodifications by
retouching and linear frictionmarks (furrows), together with patches
of well-developed polish and isolated striations in the interior of the
piece (Supplementary Figs. 36 and 51). Consequently, the hypothe-
sised mode of hafting involves covering of the proximal and medial
thirds of the piece. The second one is a flake with backing of both
laterals in a kind of tang arrangement. Microtraces of hard-hammer
retouching are visible from the proximal end to 2/3 of its length
(Supplementary Fig. 37). Use-wear is concentrated on the tip of the
tool, with a wear pattern similar to the former one, with more pro-
nounced scarring, striations and polish (Supplementary Fig. 38).
While in the first case the type of hafting could imply the insertion of
the piece into a haft, i.e. a male terminal hafting39, the second piece
suggests a juxtaposed terminal haft, with part of the lateral scarring
possibly related to the binding, as we reproduced experimentally
(Supplementary Fig. 49).

Among the actions, boring activities stand out, including exam-
ples where plantmaterial (probably wood or reed) has been identified.
Piercing actions on an unidentified soft material were also identified.
There are 2 pieces that show more than one activity and in both cases
plant material is involved. The first is a burin; its tip was used for
engraving, and the lateral natural plane was used for whittling (Sup-
plementary Figs. 45 and46). The second is a pointedpiece, classified as
a borer, that was used to saw what was probably reed, combining a
rotary movement on its distal part portion, accompanied by com-
plementary whittling actions on both mesial edges (Supplementary
Figs. 42–44).

In summary, small flake tools were the primary targeted products
of the reduction sequence. The tool types are specialised and diverse,
and the significant component consists of tanged and backed tools
that were produced for the purpose of hafting. Two different handle
types: juxtaposed and male, were documented in the traceological
analysis. The functional results provide support the hypothesis of an
advanced technological management of quartz, a raw material that is
widely used but still evokes certain negative connotations with regard
to the production of stone tools40. Also noteworthy is the versatility of
pointed morphologies, which can perform a variety of actions such as
piercing, sawing, cutting, perforating, etc.

Discussion
Early technological innovations from the Middle to Late Pleis-
tocene in China
Though stone tool technologies in China have long been regarded as
simple and conservative, recent years have witnessed profound
changes in our view of the Pleistocene record. Early and Middle
Pleistocene lithic assemblages are now known to have prepared core
technologies41, innovative retouched tools42, and LCTs43,44. Conse-
quently, lithic classifications which tend to categorise Pleistocene
stone-tool assemblages using terms such as simple core-and-flake
industries, Oldowan-like andMode 1 technologies, are questionable. A
re-assessment of Pleistocene assemblages based on technological and
functional analysis is therefore required.

Considering the complexities of the sedimentary history and the
limitations of ReOSL dating caused by multiple factors during
equivalent dose and environmental dose rate determination at Xigou
(Supplementary Notes 2 and 3), our ReOSL ages represent the best
available estimate to frame the appearance of technological innova-
tions, despite their uncertainties. Xigou therefore documents the
appearance of technological innovations dating between ~160–72 ka
(Fig. 4a). The frequent application of core-on-flake and discoid meth-
ods reveals advanced technological organisation and constitutes a
noticeable behavioural choice to produce small-sized flakes. The
toolkits show a diversity of tool types, and a high degree of

standardisation and complexity especially represented by basal mod-
ified tools. Elaborate mental templates, flexible technical repertoires
and high level of manual precision are indicated throughout the stone
tool reduction sequence. Such a technical system was either unknown
or exceedingly rare at earlier archaeological sites in the Danjiangkou
Reservoir Region45–47. In particular, hafting technology, demonstrated
by technological and use-wear approaches from Xigou, to our knowl-
edge, provides the earliest known evidence of this kind for stone tool
assemblages in Eastern Asia.

In examining the evidence more widely, lithic technological
innovations and behavioural complexity appear to be more apparent
in the late Middle Pleistocene to middle Late Pleistocene (ca.
300–50ka) than heretofore realised (Fig. 4b and c, Supplementary
Note 1). The organised reduction methods and tool retouch skills
observed at Xigou were particularly well-developed in central and
northern China, such as at the sites of Zhoukoudian Loc. 15
(~284–155 ka or 140–110 ka)48,49, Lingjing (~125–90 ka)26, Salawusu
(~100–90 ka)27, Banjingzi (~89–80 ka)50, andWulanmulun (~65–50ka)51.
At Lingjing, for example, biconical discoid cores constitute the most
standardised core type and lithic toolkits are featured by discrete
small-sized tools (e.g. backed tools, basally retouched points) and the
possible use of pressure flaking26. The presence of hafting technology
has been verified by use-wear analysis at the sites of Salawusu and
Wulanmulun back to at least 65–50ka27,52. In southern China, there is a
marked decline in the use of LCTs in the Middle Pleistocene and an
increase in the production of small flaking technologies in the middle
and lower Yangtze River53. Lithic assemblages showing some features
of Levallois and Quina technologies occur in the Yunnan-Guizhou
Plateau25,28,54. Simultaneously, bone/antler/wooden tools were used in
a variety of activities, including as bone retouchers for pressure
flaking55,56, as billets for soft-hammer flaking56,57 and as digging equip-
ment for exploiting underground storage organs57. Finds fromLingjing
also show the presence of ochre residues on an engraved bone dating
to ~125–90 ka, providing the earliest evidence of such use behaviours
in Eastern Asia58.

On the whole, a transition towards the use of cores for detaching
small flakes with both expedient and well-organised core reduction
strategies (i.e. core-on-flake, discoid and Levallois technologies) and
the increased presence of diverse and refined small flake tools,
including hafted implements, have been documented from the late
Middle Pleistocene tomiddle Late Pleistocene in China. This coincides
with a decline in the use of LCTs and the emergence of bone tool
technology, symbolic engravings and ochre use (Fig. 4b and c).
Though it has been repeatedly asserted that major changes in lithic
technologies tended to be clustered at the Upper Palaeolithic in China,
after ~40 ka20,22,23, earlier records, such as the evidence from Xigou,
challenge this dominant paradigm and show that hominins in China
from the Middle to Late Pleistocene possessed the cognitive and
technical abilities toproducecomplex anddiversified itemsofmaterial
culture, compatible with their counterparts from other regions of
Africa and Eurasia.

Implications for hominin adaptations in Eastern Asia
Xigou represents a series of precocious behaviours during the late
Middle Pleistocene to middle Late Pleistocene of Eastern Asia,
including significant changes and innovations in lithic technology
between 300 and 50ka (Fig. 4a–c). The fossil record of China also
shows notable changes during this time frame, with the potential
presence of multiple species, including the Denisovans, H. longi, H.
juluensis and H. sapiens, with brain sizes ranging from 1200 to
1800 cc3–12,59 (Fig. 4d and e, Supplementary Note 1). Discoid and core-
on-flake technologies can be found throughout the entire 300,000-
year time period, indicating that flake technologies were a standard
toolkit for multiple hominin species. LCTs technologies lasted for a
long time, and then disappeared gradually at around 70–50 ka44,60,
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Fig. 4 | Lithic technological change, hominin history and climatic background
from the late Middle Pleistocene to middle Late Pleistocene (ca. 300–50ka)
in China. a Xigou stratigraphic layers. b Lithic technology. c Other cultural ele-
ments including the bone tools and the symbolic related cultural remains. d Fossil

hominin site record (orange lines indicate potential H. sapiens fossils; green lines
indicate other Homo species). e Hominin fossil endocranial volumes10,59. f LR04
benthic stack δ18O records62 and 10Be-based rainfall for the Baoji loess section in
northern China64.
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corresponding with evidence for H. sapiens in southern China. More
complex forms of lithic manufacture, including Levallois reduction,
occurs by ca. 180 ka in Southwest China, and corresponds with fossil
evidence which shares derived features that align with H. sapiens such
as at Panxian Dadong61. Innovations such as bone tool and hafting
technologies occur much earlier in the end of Middle Pleistocene than
previously understood andmay reflect the presence of hominins such
as that found at Lingjing (Xuchang)4, with the largest knownbrain sizes
in China outside of H. sapiens.

With respect to climatic variability and hominin behaviours, some
broad observations are possible (Fig. 4f). LCTs are introduced by at
least the mid-Pleistocene transition in southern China, and they con-
tinue to be present in MIS 6–543,44. LCTs decline in MIS 6–5, corre-
spondingwith the increased development of discoid and core-on-flake
since MIS 7, and later accompanied by Levallois reduction MIS 6. The
technological transformation occurs during the transition to MIS 6,
potentially related to the harsh glacial climate and the strengthened
winter monsoon62–64. Overall, the appearance of technological inno-
vations throughout the late Middle Pleistocene to middle Late Pleis-
tocenemay signal behavioural responses to ecosystemchange65. In the
more amelioratedwarm andhumidperiod ofMIS 5, hominin sites tend
to occur in higher density along with more in-migrations of early
modern humans, and technological diversity is at its greatest, exem-
plified by the presence of predetermined core reduction strategies,
hafting technology, bone tools, deliberate engraving and pigment use.

The archaeological record of Xigou indicates complex technolo-
gical advancements in China between ~160 and 72 ka. The site occu-
pants aimed at producing small-sized flakes with core reduction
strategies ranging fromexpedient towell-organised (core-on-flake and
discoid technologies). The dominant small tool retouching patterns
evidence a great degree of technological standardisation and com-
plexity, especially in the early occurrence of hafting technology (tan-
ged and backed tools), indicative of elaborate mental templates and
advanced technical abilities among the toolmakers. Xigou and other
archaeological sites between 300 and 50 ka demonstrate the com-
plexity and diversity of lithic technologies and challenge the long-
standing view of the Chinese Palaeolithic as a conservative entity from
the Middle and Late Pleistocene, with cultural advancements only
occurring after ~40 ka. The period between 300 and 50 ka also wit-
nesses the presence of multiple large-brained hominin species and an
increase of human populations in a fluctuating climate background.
Thoughmanyof the details of this evolutionary story are yet to be told,
and much additional data is required, the picture that is emerging is
that changes in technology and behaviour likely reflect taxonomically-
linked cognitive changes and responses to strong environmental
variability across Eastern Asia.

Methods
All the field excavations and sample extractions were permitted by the
National Cultural Heritage Administration. The archaeological exca-
vation of the Xigou Site is one of the cultural preservation and
archaeological excavation projects under the South-to-North Water
Diversion Water Supply Project in Henan Province, with project num-
ber No. B-201807. The research work was permitted by Institute of
Vertebrate Palaeontology and Palaeoanthropology(Chinese Academy
of Sciences), College of Applied Arts and Science (Beijing Union Uni-
versity), Institute of Earth Environment (Chinese Academy of Sciences)
conducted the analysis of the al. Results of this study will be shared
with Henan Provincial Institute of Cultural Heritage and Archaeology
and Nanyang Institute for the Preservation of Cultural Heritage.

Luminescence dating
Luminescence dating samples were collected by hammering stainless
steel cylinders, eachwith a diameter of 5 cmand a length of 20 cm, into
freshly cleaned section. A total of six samples were obtained, with one

sample located at a depth of 5m and the other five ones spanning the
depth interval of 2.65–0.75m (Fig. 1d). Considering the silty-clay
dominated nature of the Xigou section (Fig. 1d; Supplementary
Note 2.3), the fine fraction of quartz and polymineral (4–11μm) was
used for luminescence dating. Details of luminescence dating sample
preparation, instruments, and environmental dose rate determination
can be found in Supplementary Note 3.1, 3.2, and 3.3, respectively. For
cross check, we applied multiple luminescence dating protocols into
the Xigou section to obtain equivalent dose, including quartz single-
aliquot regenerative-dose (SAR) optically stimulated luminescence
(OSL), quartz multiple-aliquot regenerative-dose (MAR) recuperated
OSL (ReOSL), and polymineral SAR post-infrared infrared stimulated
luminescence (post-IR IRSL).

Lithic techno-typological and functional analysis
A techno-typological approach together with attribute analysis was
applied to reconstruct lithic reduction sequences and to investigate
debitage and toolmaking strategies66–69. From this, raw material pro-
curement, core reduction, and tool production strategies are exam-
ined across the four phases of site occupation. Three-dimensional
reconstructionwith Shining 3D andmagnified observationwith a Leica
DVM6 are applied for more detailed examinations of a selection of
retouched tools, which permit a higher level of analytical interactions
with the samples.

Use-wear was documented using a multi-technique approach
combining the use of optical microscopy (OM), Scanning Electron
Microscopy (SEM) and 3D digital microscopy (3DDM). Themicrowear
traces were interpreted using the experimental collection of the
Laboratory of Technology of the IPHES-CERCA70,71, where raw materi-
als from the Danjiangkou Reservoir Region and the Nihewan Basin are
currently being included.

Detailed methodology for functional analysis
The approach followed in this preliminary study applies criteria
established experimentally70,72,73 according to a multiscale and multi-
technique microscopic approach74–77. The artefacts were cleaned and
prepared according to the protocols established in previous works78,79.
This process, once the label on the pieces was removed, involved
successive ultrasonic baths in neutral soap, 130-vol hydrogen per-
oxide, and pure acetone. When necessary, we resorted to a 10%
HCL bath.

Microwear was documented with the combined use of optical
microscopy (OM), Scanning Electron Microscopy (SEM) and 3D digital
microscopy (3D DM). First, a systematic observation was carried out at
different magnifications using different 3D digital microscopes. We
used a Hirox KH8700, with an MXG-5000REZ dual illumination
revolver zoom lens (allowing for magnifications ranging from 35 to
5000x; Horizontal Field of View -HFOV- 8.6mm–60μm), a Keyence
VHX 7000, with a High- Performance Zoom lens VH-20R (20-200x,
HFOV 15.24–1.52mm), and occasionally a Leica DVM6 (PlanAPO 12.55,
up to 675x). Detailed observations of use-wear traces weremade using
aWide-Range Zoom Lens VH-Z100UR (100-1000x, HFV 3.05–300μm)
in the Keyence, and an optical microscope (Zeiss Axioscope A.1, with
differential interference contrast -DIC- prisms and a Nomarski inter-
ference contrast filter, with 10x oculars and EC Epiplan objectives
ranging from5x/0.13 to 50x/0.5HDDIC, giving nominalmagnifications
of 50 to 500x; HOFV 2.9mm–295μm).

Some artefacts were subsequently observed using Scanning
Electron Microscopes. We mainly used an environmental SEM {FEI
Quanta 600 ESEM, with an EDX-EXL System Analytical Oxford energy
dispersive X-ray spectrometer, and a combination of Large-field
detector (LFD) and Back-scattered electron detector (dual BSD)}.
These SEM observations were all made in low vacuum mode, which
does not require a conductive coating of the sample.We also observed
some samples with high vacuum SEM equipment (a tabletop SEM
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COXEM EM-30 and an EMCRAFTS), but with a low voltage (10 Kv) to
avoid coating the samples.

To interpret the use-wear traces, apart from existing literature80,81,
we resorted to experimental collection of the Laboratory of Technol-
ogy at the IPHES-CERCA (TraceoIPHES). The collection includes a wide
variety of samples resulting from experiments (i.e., butchery, hide
work, woodwork, vegetal tissues, projectiles, hafting, technological
traces, etc.) in which the main types of raw material are well
represented70–73,77,82. For the assessment of post-depositional surface
modifications, we considered their distribution on the surface of the
artefacts, the results of our own experiments77,83, as well as others
involving different depositional environments84.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All study data are included in the article and/or Supplementary Infor-
mation. Data used to generate for Fig. 1 canbe found in Supplementary
Data 1 and 2; Data for Fig. 2 can be found Supplementary Note 4. All
artifacts referred to in this study are curated in the Institute of Verte-
brate Palaeontology and Palaeoanthropology, Chinese Academy of
Sciences, Beijing, and Nanyang Institute for the Preservation of Cul-
tural Heritage. If anyone what to have access to the original materials
(lithics) from this work, please contact Shi-Xia YANG,
yangshixia@ivpp.ac.cn.
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