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Abstract: Lithic miniaturization is a key adaptive and technological feature of human popula-
tions and one of the key cultural hallmarks in the Late Pleistocene of Eastern Asia. In northern
China this form of stone tool technology is well represented, including by microblade tech-
nology. Lithic miniaturization has been identified in South China, though this technological
feature has received little research attention in comparison to the north. Here, we examine
three miniaturized lithic assemblages in South China, ranging from the terminal Pleistocene
to middle Holocene. To examine technological variations in lithic miniaturization, the three
assemblages were subject to comparative quantitative analyses, including principal compo-
nent analysis (PCA), K-means clustering and the Zingg system. The three sites were found to
exhibit varied temporal and geographic patterns of lithic miniaturization across South China,
potentially related to fluctuating climatic conditions and changes in population dynamics since
the Late Pleistocene.
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1 Introduction

During the Late Pleistocene our species dispersed into a wide variety of environments across
Asia, illustrating a range of behavioral adaptations to variable ecosystems (Bae ef al., 2017;
Roberts and Stewart, 2018; Zhang et al., 2018). The character of technological change dif-
fers greatly across this vast region both temporally and spatially (Bae, 2017; Yang et al.,
2024a). Though great strides have been made in understanding technological patterns
adopted by populations in Eastern Asia (Li et al., 2022; Wang et al., 2022; Yang et al.,
2024b), technological changes through time remain poorly understood. South China is key
for examining Late Pleistocene technological change as the region sits at the crossroads of
human migration and cultural transmission, linking North China, the Qinghai-Tibet Plateau,
and Southeast Asia (McColl ef al., 2018; Wang et al., 2021; Zhang et al., 2022). South China
is a region which appears to have had a diversity of adaptive behaviors across the Late
Pleistocene and Holocene, in part owing to its varied terrain and diverse ecosystems (Xiao et
al.,2014a, 2014b; Tian et al., 2019; Zhang et al., 2019).

Lithic miniaturization, which we define here as the systematic production and use of
small-sized lithic artifacts, including backed tools, bladelets, and small retouched tools, is a
phenomenon observed in many parts of the world during the Late Pleistocene (e.g. Elston
and Kuhn, 2002; Petraglia et al., 2009; Villa et al., 2012; Pargeter and Shea, 2019; Wedage
et al., 2019; Groman-Yaroslavski et al., 2020; Picin et al., 2022; Wang et al., 2022; Lin et al.,
2023). It is associated with the development of modern behaviors (e.g. McBrearty and
Brooks, 2000; Wang et al., 2022) and regarded as having adaptive advantages, including the
efficient utilization of raw material, functional flexibility and transportability (Elston and
Kuhn, 2002; Petraglia et al., 2009; Clarkson et al., 2018; Pargeter and Shea, 2019; Low and
Pargeter, 2020).

Research in South China has been devoted to an understanding its cobble tool assem-
blages, as it forms a distinctive technological feature (e.g. Li and Zhang, 1984; Zhang, 1999;
Ji et al., 2016; Li et al., 2019; Zhou et al., 2019; Xie et al., 2020; Wang, 2021; Li et al.,
2022). More recently, however, investigators have highlighted the presence of miniaturized
lithics in stone tool assemblages, including microblades, bladelet-like pieces, and small flake
tools (e.g. IA-CASS et al., 2015, 2017; SPCRARI and HCACR, 2020; Zhu et al., 2020;
SPCRARI and SH-CNU, 2021; Yang ef al., 2022; Deng and Liu, 2023; Huan et al., 2023,
2024a; Zhao et al., 2023), inviting reconsideration of the potential technological diversity of
this region during the Late Pleistocene. Given the limited evidence that has been reported to
date and the lack of synthesis about lithic miniaturization, key questions remain unanswered.
For example, we may ask how evident is lithic miniaturization in Late Pleistocene stone tool
assemblages in South China? How do lithic technologies change through time, and do these
correspond with changes in the environment and population of the region?

Here we examine three lithic assemblages from South China that contain miniaturized
stone artifacts dating from the Late Pleistocene to the middle Holocene. We present detailed
techno-typological analyses and inter-site comparisons to address temporal and spatial pat-
terns, providing for an assessment of miniaturized toolkits and their reduction techniques.
We discuss the implications of our findings for potentially understanding the long-term
adaptive strategies of human populations in South China.
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2 Materials and methods
2.1 Archaeological sites and lithic assemblages

Three archaeological sites were chosen for study, i.e., Fodongdi, Fulin, and Xiqgiaoshan
(Figure 1). The sites were chosen for study based on their reliable chronologies, varied geo-
graphic settings and quality of lithic assemblages. Based on stratigraphical context and da-
ting, the sites range from the Late Pleistocene to the middle Holocene, providing a long-term
diachronic picture of human occupation. The three sites are situated in different areas of
South China, each with distinct environmental settings, including tropical forests, plateau
margins, and coastal regions, providing an opportunity to examine and compare the strategy
of lithic miniaturization in different ecological contexts (Figure 1). The three lithic assem-
blages have a diverse range of technologies and tool types, resulting in the analysis of more
than 10,000 miniaturized lithic artifacts.

Fodongdi (23°44'14.38"N, 99°19'37.17"E, 593 m a.s.l.) is a Permian limestone cave site
in the tropical forest of Mengjian village, Lincang city, Yunnan province, about 60 km from
the China-Myanmar border (Figure 1). In 2017 and 2018, excavations were conducted by the
Institute of Vertebrate Paleontology and Paleoanthropology (Chinese Academy of Science),
together with the Yunnan Provincial Institute of Relics and Archaeology. Excavation of an
area measuring 20 m? resulted in the recovery of lithic artifacts, fauna, and flora (Gao et al.,
2023; Huan et al., 2024b). The stratigraphic profile shows three phases of deposit formation,
phase A (18.4-17.0 ka BP), phase B (16.5-16.0 ka BP), and phase C (15.8-13.8 ka BP).
More than 9000 lithics were identified, showing a high level of diversification, classifiable
as products of Hoabinhian, core-flake, and bipolar flaking strategies (Huan et al., 2024b).
Discovered in the tropical-subtropical area where the small stone artifacts are uncommon,
miniaturized bipolar lithics here provide a unique case.

Fulin (29°20'53.1"N, 102°40'58.0"E, 810 m a.s.l.) is an open-air site in the marginal area
of Qinghai-Tibet Plateau, situated at the Hanyuan county, Ya’an city, Sichuan province
(Figure 1). Discovered in the 1960s, the site has been excavated twice, first in 1972 and
again in 2009-2010 (Zhang, 1977; SPCRARI and HCACR, 2020). More than 5000 lithics
were recovered from an area measuring 300 m’. The lithic assemblage features unique
small-size flakes and bladelet-like pieces (Zhang, 1977; Huan et al., 2023). OSL ages indi-
cate that the deposit spans between 11.7-10.3 ka BP (SPCRARI and HCACR, 2020). A total
of 1940 lithics excavated in 1972 were analyzed, showing that the assemblage is dominated
by small sized lithics, including bladelet-like pieces (Huan et al., 2022, 2023).

Xigiaoshan Mountain (22°5527"N, 112°59'17"E), an extinct volcano, is in the Pearl Riv-
er Delta region, a coastal area in Guangdong province (Figure 1). More than 20 archaeolog-
ical localities have been discovered across the Xigiaoshan Mountain region since the 1950s.
A large quantity of lithics, including microblade products were identified from those locali-
ties, providing a new understanding of the geographical distribution of microblade assem-
blages (The Kwangtung Provincial Museum, 1959; SGSYU, 1959; Jia, 1978; Huang et al.,
1979; Zeng, 1981; Zeng and Li, 1988; Zhang, 1993; Yang et al., 2022; Zhu et al., 2024). For
this study, we observed 559 lithic artifacts from Localities 4 and 18. These sites were repre-
sentative of microblade technology at Xiqiaoshan, providing an opportunity to examine 343
microblade cores (Zeng, 1981; Zeng and Li, 1988; Li, 2013; Yang et al., 2022). Radio-
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Figure 1 Geographical setting of the sites examined in this study. The dotted areas indicate the approximate
range of the three different habitats. Colors denote different altitude zones.

carbon dates indicate that the microblade assemblages date to between 7.8-5.6 ka BP (Zeng
and Li, 1988; Li, 2013; Yang et al., 2022).

2.2 Quantitative methods

A comprehensive techno-typological analysis of three lithic assemblages was conducted. In
total, we observed and measured 12,226 lithic artifacts, selecting 1065 miniaturized lithics
as key specimens for in-depth analysis and discussion in this paper. The measured and col-
lected data of these 1065 miniaturized lithics included artifact size, weight, platform angle,
platform size, platform numbers, reduction surface numbers, scar numbers, scar size, and
other relevant attributes. To account for differences in assemblages and technological char-
acteristics, we tailored the measurement parameters to ensure that all essential proxies were
accurately recorded. To characterize their technological variability, we compiled quantifiable
data based on a series of measurements, allowing for quantitative comparative analyses.
Given the extensive number of attributes, meaningful comparison and visualization is some-
times difficult. To address this issue, we employed Principal Component Analysis (PCA)
and K-means cluster analysis to reduce data dimensionality and identify technological clus-
ters of particular artifacts. For end-products that need to be compared morphologically, we
used the Zingg classification system to yield effective visualizations.

Here, PCA was chosen as a basic solution for data processing. PCA has become one of
the most widely used statistical methods in many fields, focusing on dimensionality reduc-
tion of datasets, especially for multivariate data (Pearson, 1901; Hotelling, 1933; Jackson,
1991). In archaeological research, PCA has become an essential quantitative analysis for
high-dimensional data where numerous attributes are recorded from individual artifacts (e.g.
Wilczek et al., 2014; Braun et al., 2019; Badawy et al., 2022). To apply PCA effectively, we
first selected and measured different sets of variables according to specific artifacts and re-
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search objectives. For example, flakes were measured with fewer attributes than cores due to
their simpler technological characteristics. We then collected lithic attributes such as size,
platform angle, platform size, scar number, scar size, etc., integrating them into a dataset.
Once compiled, we applied PCA to reduce the dataset to two principal components, allowing
for clearer comparisons of technological characteristics and similarities.

With initial dimensionality reduction having been conducted through PCA, K-means
clustering was applied, serving as an effective follow-up method for uncovering hidden
characteristics within the data (Baxter, 1994; Everitt et al., 2001). By grouping data points
into distinct clusters based on their attributes, K-means reveals similarities among individu-
als and offers an alternative perspective for examining and validating characteristics beyond
those identified through techno-typological assessment.

In addition to the application of dimensionality reduction and clustering methods, Zingg
classification was conducted to describe reduction products’ morphology distribution. The
Zingg system is a shape classification method based on linear measurements, originally de-
vised for describing the shapes of geological clasts (Zingg, 1935; Uthus ef al., 2005; Szabo
and Domokos, 2010), though it has more recently been used to describe archaeological as-
semblages (Marwick et al., 2017). Any single item has three dimensions, namely the longest
axis (geometric length, denotes to a), the second longest axis (geometric width, denotes to b),
and the third longest axis (geometric thickness, denotes to ¢). The Zingg system uses two
proxies, the elongation ratio and flatness ratio, to evaluate the general form of artifacts (Fig-
ure 2). The elongation ratio is b/a (denoted by p), and the flatness ratio is ¢/b (denoted by g).
By combining two indices, a form factor (¢/p) is generated, which, when visualized on a
scatterplot, can be classified into four morphologies: blades, discs, equidimensional, and
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Figure 2 Schema of Zingg classification method (Marwick et al., 2017). The horizontal axis represents the
flatness ratio, while the vertical axis represents the elongation ratio. Two additional axes at the value of 0.66 di-
vide the space into four quadrants, corresponding to four morphological categories: blades, discs, equidimensional,
and rods.
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rods (Figure 2). Based on this classification and the Zingg diagram, we can more readily
recognize the morphological patterns of artifacts, which is useful for describing the shape
distribution of lithic assemblages.

3 Results
3.1 Fodongdi

A total of 9727 lithic artifacts were recovered from Fodongdi. Based on a comprehensive
assessment of the patterns of raw material selection, reduction techniques, and tool produc-
tion across the three phases of site occupation, the lithic artifacts were found to be variable
in type and manufactured by diverse reduction techniques (Table 1) (Huan et al., 2024b).
The techno-typological analysis shows that reduction products in the assemblage include
freehand hard hammer percussion flakes, miniaturized bipolar pieces, and large cobble
blanks made by bipolar percussion, including split cobbles and ridged hammer percussion
flakes (RHP flakes) (Huan et al., 2024b). Miniaturized bipolar pieces are differentiated from
other technique sequences through the exploitation of small quartz pebbles on the vertical
long axis to produce relatively small and elongated splinters (Huan et al., 2024).

Table 1 Artifact classification, Fodongdi lithic assemblage (revised from Huan et al., 2024b)

Phase A Phase B Phase C Total
Type
No. % No. % No. % No. %

Frechand hard hammer 270 14.2 717 170 1519 421 2506 258
percussion product

Bipolar percussion products 152 3.0 192 45 12 31 456 47
on pebbles

Bipolar reduction products 23 12 18 04 50 1.4 91 09
on cobbles

Tool 58 3.0 54 1.3 137 3.8 249 2.5
Stone hammer 11 0.6 5 0.1 12 0.3 28 0.3
Stone anvil 2 0.1 1 0.0 4 0.1 7 0.1
Chunk 554 29.2 1074 254 1285 35.6 2913 29.9
Shatter 794 41.9 2139 50.7 439 12.1 3372 34.7
Manuport 34 1.8 21 0.5 50 1.4 105 1.1
Total 1898 100.0 4221 100.0 3608 100.0 9727 100.0

A total of 456 miniaturized bipolar pieces were identified. The miniaturized bipolar pieces
are the smallest reduction products in the assemblage, with an average length and width of
23.6 mm and 16.6 mm, generally having a small and relatively elongated shape but varies
(Figure 3a). For comparison, split cobbles, the largest reduction products in the assemblage,
have an average length of 89.4 mm and width of 57.8 mm (Huan et al., 2024b); the freehand
hard hammer percussion flakes are slightly larger and show considerable size variation, with
an average length of 27.4 mm (ranging from 7.5 mm to 91.5 mm) and an average width of
31.1 mm (ranging from 5.6 mm to 132.2 mm). Among the 456 miniaturized bipolar pieces,
49.8% have a length-width ratio over 1.5, and 17.3% have a ratio over 2 (Figure 3b). Corre-
spondingly, elongated examples also have more parallel and longer effective edges.
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Figure 3 Miniaturized bipolar pieces and their length-width ratio at Fodongdi (a. selected bipolar products; b.
distribution of all bipolar products shown by length and width values)

Miniaturized bipolar pieces account for 8.9%, 4.7%, and 3.3% of the assemblage respec-
tively in the three cultural phases (A-C) (Figure 4), indicating a more important role in the
early phase of site occupation. Their frequency is highest in phases A and B, while in phase
C, which has a longer time span, their quantity decreased.

To further investigate the size distribution among different reduction products and assess
the degree to which the miniaturized bipolar lithics represent an intentional artifact type, we
performed a PCA followed by K-means clustering. The analyses were based on dimensional
attributes (length, width, and thickness) for all reduction products. Figure 5 shows that the
four most abundant types of reduction products are distinguishable within the PCA space,
with artifacts grouped into different clusters. The clustering solution was determined using
the elbow method (Tibshirani et al., 2001), supplemented by visual inspection of multiple
iterations with varying cluster numbers, with three clusters found to be the optimal number.
The loading vectors and bar charts in Figure 5 display the contribution of each variable,
showing that length predominantly influences Dim 1 (82.3%), while width is the primary
contributor to Dim 2 (15%). Although some degree of overlap exists, bipolar pieces (shown
in purple) primarily belong to cluster 1, displaying the lowest variability and forming the
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most concentrated group among all types, with their distribution mainly in the first quadrant.
This pattern may reflect their relatively uniform sizes, suggesting a potentially more con-
strained design and production system.

3.2 Fulin

More than 5000 lithic specimens were recovered from Fulin site through two excavations in
1972 and 2009-2010 (Zhang, 1977; SPCRARI and HCACR, 2020). Here we examine 1940
lithics recovered from the excavation of 1972, curated in the Institute of Vertebrate Paleon-
tology and Paleoanthropology.

Our previous study (Huan et al., 2023) identified hard hammer percussion products, bi-
polar percussion products, tools, chunks, and debris, composing a diverse lithic assemblage
(Table 2). Among the reduction products, flakes and flake cores are the dominant products,
accounting for 82.8% of the whole assemblage, including 1498 flakes and 108 cores;
bladelet-like pieces account for 11.4% of the assemblage, including 190 bladelet-like pieces
and 32 cores for bladelet-like pieces; bipolar splinters are also identified, but both the quan-
tity and quality are limited (Huan et al., 2023).

Table 2 Artifact classification, Fulin lithic assemblage (revised from Huan et al., 2023)

Class No. % Class No. %
Hard hammer percussion products 1823 94.0 Bladelet-like pieces 5 0.3
Flake cores 108 5.6 Tools 90 4.6
Flakes 1498 77.2 Stone hammer 3 0.2
Bladelet-like cores 32 1.7 Chunks 10 0.5
Bladelet-like pieces 185 9.5 Debris 3 0.2
Bipolar percussion products 11 0.6 Total 1940 100
Bipolar splinters 6 0.3

Techno-typological analysis of the bladelet-like pieces indicates that hard hammer per-
cussion and bipolar percussion could account for their production (Table 2). However, the
majority were likely produced by hard hammer percussion based on the presence of distinct
bladelet-like cores (Figure 6). The bladelet-like cores are usually in wedge-like shapes, with
a wide, plain striking platform and a primary reduction surface situated in the front, where
there is always a natural ridge for initiating reduction (Figure 6, 1-4). In contrast, normal flake
cores in the hard hammer percussion system show less standardization. Their flaking utilizes
available natural striking platforms, with reduction surfaces that are broader rather than
ridge-like, thereby lacking the control typically provided by ridged areas (Figure 6b, 12—15).

The bladelet-like pieces show an elongated shape with parallel or subparallel edges, and
some of them possess dorsal ridge which could serve as the guiding ridge during percussion.
Their sizes are extremely small with an average length and width of 16.6 and 7.8 mm, and
with an average length-width ratio of 2.19. The characteristic small sizes with their elongat-
ed shapes make them quite similar to bladelets in terms of morphology (Figure 6, 5-11). In
contrast, normal flakes are much shorter and wider with average length and width of 14.3
mm and 13.1 mm and are more random in shape and size, which makes them unqualified to
be considered as miniaturized lithics (Figure 6b, 16—19).
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Figure 6 Selected reduction products from Fulin (a) 14, bladelet-like core; 5—11, bladelet-like piece; (b) 12—15,
flake core; 16—19, flake

A key question for the Fulin assemblage is the distinction between normal flakes and
bladelet-like pieces, as both of them are the product of hard hammer percussion. To inves-
tigate this question, we carried out a PCA and K-means cluster analysis based on the di-
mensional data (length, width, thickness). The clustering was conducted using the elbow
method, and the result shows that three clusters are the optimal number based on the
characteristics of data. The bar charts display the contribution of each variable, showing
that length influences Dim 1 (82.8%), while width is the primary contributor to Dim 2
(15.3%). Flakes and bladelet-like pieces are distributed in different parts of the graphic,
and are composed of various clusters, indicating a difference between flakes and
bladelet-like pieces (Figure 7).
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To further evaluate the elongation of the bladelet-like pieces and compare the shapes of
the two different products, we applied the Zingg classification system based on intact
bladelet-like pieces and flakes to summarize the artifact form (Uthus et al., 2005; Marwick
et al., 2017). The results indicate that bladelet-like pieces and flakes exhibit distinct distri-
butions (Figures 2 and 8). In the “Blades” area of the Zingg plot 323 artifacts were identified,
including 159 bladelet-like pieces (99.4% of all bladelet-like pieces) and 164 flakes (12.1%
of all flakes). In contrast, the “Disc” area contains 678 artifacts, all of which are flakes
(50.1% of all flakes), while an additional 37.3% of flakes fall beyond the coordinate system,
above the “Disc” area. By combining these results, we visualized the distinction using red
and blue markers to represent the two types. Figure 8 shows that the bladelet-like pieces are
clearly located in the “Blades” area of the Zingg system, whereas the flakes are distributed
over a much wider area, demonstrating a disc-like shape or wide shape instead of an elon-
gated shape. This visualization supports the natural separation of bladelet-like pieces and
flakes.

3.3 Xigiaoshan

Archaeological investigations at localities 4 and 18 at Xiqgiaoshan recovered more than
20,000 lithic artifacts (Zeng and Li, 1988). Here we analyze 559 lithic artifacts from locali-
ties 4 and 18 curated at Sun Yat-sen University. The collection contains varied types, in-
cluding microblade cores, microblades, flakes, tools, chunks, and bipolar splinters (Table 3).

Microblade technique products are the major characteristic of this collection, and 343 mi-
croblade cores and 44 microblades were identified (Figure 9 and Table 3). Microblade cores
include 334 intact flaked cores, five core fragments, and four prepared blanks. The micro-
blade cores can be categorized into wedge-shaped, conical, semiconical, and irregular cores,
which are the four principal morphologies (Figure 9, 1-8). Their general size is quite
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Figure 8 Zingg classification of reduction products from Fulin. To highlight different types, we marked the
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Table 3  Artifact classification, Xiqiaoshan localities 4 and 18
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Type No. % Type No. %
Microblade cores 343 61.4 Broken microblades 2 0.4
Intact cores 334 59.8 Flakes 104 18.6
Core fragments 5 0.9 Bipolar splinter 1 0.2
Prepared blanks 4 0.7 Tools 47 8.4
Microblades 44 7.9 Chunks 20 3.6
Intact microblades 42 7.5 Total 559 100.0

small with an average height (from platform to distal bottom), width, and thickness of 30.3,
29.7, and 21.0 mm (Yang et al., 2022). Among the 44 microblades, two broken and 42 intact
ones were identified, including six crest microblades (Figure 9, 9—14). Their average length
and width are 24.0 and 9.9 mm, with a length-width ratio of 2.41. They show a small size, a
significantly elongated morphology, parallel edges, and regular dorsal ridge. This collection
contains microblade technique products from different reduction stages and exhibits a com-
plete microblade production procedure.

Techno-typological study of the collection established a microblade reduction strategy,
illustrating the production of varied core types including wedge-shaped, conical, semiconi-
cal, and irregular (Figure 10). This production begins with selecting local chunk blanks and
proceeds with one of the following three main reduction routines:

(1) Direct reduction on suitable natural platforms, in which case the irregular, conical, and
some semiconical cores are produced;

(2) Selection and preparation of a platform for consequent reduction, usually resulting in
wedge-shaped cores;
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Figure 9 Selected microblade and microblade cores excavated from Xiqiaoshan. 1, 2, 5: Wedge-shaped core
with double platforms; 3, 4, 6, 7: Wedge-shaped core; 8. irregular core; 9: Crest microblade; 10-14: Microblades

(3) Selection of suitable flakes as blanks for further reduction, resulting in microblade
cores on flakes; flake blanks may be turned into microblade cores by exploiting the
flake-platforms directly as microblade-core platforms, otherwise, new platforms need to be
prepared.

In the maintenance stage, a key feature of Xiqiaoshan microblade reduction is the exten-
sive development of multi-platforms and reduction surfaces, especially on wedge-shaped
cores. In total, 60 wedge-shaped cores bear evidence of changes or rejuvenation of platforms,
accounting for 17.5% of the microblade cores.

To evaluate microblade core features in detail, PCA and K-means clustering based on
multiple measurements were conducted (Figure 11). Each point corresponds to an individual
artifact, with colors indicating distinct clusters classified through K-means. The optimal
number of clusters was determined using the elbow method. Although some overlap is ob-
served—particularly between type B and type C—this is expected given the continuous na-
ture of lithic morphological variation. Despite this, clear distinctions can still be noted, sup-
porting the interpretation of technological differentiation. The bar chart illustrates the con-
tributions of different variables to the two dimensions, showing that multiple attributes in-
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Reducing based on suitable
natural platform

Irregular core

Changing or rejuvenating
striking platform or flaking surface

Alternating flaking Double striking platform Double flaking surface
wedge-shaped core wedge-shaped core wedge-shaped core

Figure 10 Reduction strategy schema of microblade cores from Xiqiaoshan. White bars are the name of the
products, while yellow bars are the specific processing during production.

fluenced the classification results. Type A are massive in size but with relatively few remov-
als as well as platforms; type B with more removals and platforms, but narrower in shape
and smaller in size; type C have shorter heights (from platform to the distal end) and smaller
platform angles, which mainly denote to wedge-shaped cores with extensive reduction by
changing platforms.

4 Discussion
4.1 Lithic miniaturization and technological diversity

Combining techno-typological and quantitative analysis, we have presented results from
three miniaturized lithic assemblages from South China. Although there is a disparity in the
total number of lithic specimens among the three sites, the quantities of representative min-
iaturized lithics are relatively comparable (456 in Fodongdi, 222 in Fulin, and 387 in Xiqi-
aoshan). We have identified and reaffirmed microblade technology at Xiqiaoshan,
oft-discussed in in North and northeastern China, and identified lithic miniaturization at
Fodongdi and Fulin, composed of miniaturized bipolar pieces and bladelet-like pieces.
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Figure 12 presents a comparative analysis of the dimensions of representative miniatur-
ized lithics from three sites. To account for the varying scales of different artifacts, both the
x-axis (length) and y-axis (width) are plotted on a logarithmic scale. This transformation
mitigates the effect of size differences across assemblages, allowing for a more balanced
visual comparison. The plot highlights the clustering patterns of miniaturized bipolar pieces,
bladelet-like pieces, and microblades, illustrating the variability in artifact dimensions across
different sites. As the figure shown, miniaturized bipolar pieces from Fodongdi exhibit a
larger size range, whereas bladelet-like pieces from Fulin display a more consistent distribu-
tion with generally smaller dimensions. Microblades from Xiqgiaoshan also show a con-
strained distribution and have a more elongated morphology compared to their counterparts
from Fodongdi and Fulin.
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Figure 12 Comparison of dimensions of representative miniaturized lithics from three sites in a logarithmic
scale

The three assemblages are dated to different phases of the late Pleistocene to the middle
Holocene and show distinct technological systems (Table 4). There is a tendency towards a
higher level of standardization over time. This observation is based on the presence of dorsal
ridges, increased parallel morphologies, and a higher average length-width ratio. Although
the assemblages belong to different technological systems, they share similar morphological
traits as small overall sizes, small-thin-elongated pieces, and long cutting edges (Figure 13).
In other words, the technologies of lithic miniaturization in South China included diverse
technologies to obtain similar, desirable end-products.

Table 4 Technological comparison of representative miniaturized lithics across three sites

Age Length-width

Site (ka BP) Type Dorsal ridge Morphology ratio (avg.) Technique
Fodongdi 18.4-13.8 I\'/Ilnlatur.lzed Absent  Relative unparallel 1.58 Bipolar
bipolar pieces
Fulin 11.7-10.3 Bladelet-like pieces Random Subparallel 2.19 Direct percussion

Xigiaoshan 7.8-5.6 Microblades Present Parallel 2.41 Pressure
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Figure 13 Miniaturized reduction products from the three studied lithic assemblages (Upper: Fodongdi; Middle:
Fulin; Bottom: Xiqgiaoshan)

In addition to the assemblages reported here, examples of lithic miniaturization achieved
by multiple technologies appear to be present at other sites in South China over this time
range. At Huilongwan, Shanghu, and Dabangiao, the bipolar technique was applied to pro-
duce elongated bipolar pieces, especially on the abundant vein quartz resources (Yang, 1993;
SPCRARI and SH-CNU, 2021; Zhao et al., 2023). Bladelet-like pieces produced by direct
percussion have been reported at sites such as Niupodong and Tangzigou (IA-CASS et al.,
2015, 2017; Zhu et al., 2020). Microblade assemblages have been reported recently as sev-
eral sites, such as at Guye, Liujiazhai and Zhongzipu (IA-CASS, 1991; SPCRARI et al.,
2012, 2022; Deng and Liu, 2023; Huan et al., 2024a).

4.2 Implications for ecological adaptation and population dynamics

The prevalence of lithic miniaturization has been ascribed to variables such as environmen-
tal deterioration and low ecological carrying capacity (e.g. Kuhn, 1995; Elston and Kuhn,
2002), as has been suggested for microblade technology in North China and Northeast Asia
since the Late Pleistocene (Yi et al., 2016; Wang, 2018; Yue et al., 2021; Zhu, 2023). Higher
efficiency in raw material exploitation, longer effective edges, and increased portability of
miniaturized lithics has been argued to be the product of coping mechanisms tied to harsher
habitats (Bar-Yosef and Kuhn, 1999; Eren et al., 2008; Mackay, 2008; Muller and Clarkson,
2016; Pargeter and Shea, 2019; Low and Pargeter, 2020).

The period ranging from deglaciation to the middle Holocene in South China witnesses a
general trend towards environmental amelioration (NGICP, 2004; Xiao et al., 2014a, 2014b,
2015, 2019; Zhao et al., 2021) (Figure 14a). Fodongdi, located at the tropical and
sub-tropical region, human occupations spanned three climatic periods including the Last
Glacial Maximum, Heinrich stadial 1, and Belling-Allerad warming (Figure 14b). Stone tool
technology and the quantity of bipolar artifacts changes in correspondence with these cli-
matic shifts (Figure 4). Bipolar products were especially abundant during the early phases
when the condition was relatively cool and dry. A possible decline in commonly used re-
sources, particularly edible plants that were typically available in tropical-subtropical forests,
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may have led people to rely more on animal and aquatic resources (Xiao et al., 2015, 2019;
Huan et al., 2024). In this case the occurrence of miniaturized bipolar pieces is consistent
with the interpretation of lithic miniaturization as an adaptation to harsh environment. At
Fulin, in the marginal area of the Qinghai-Tibet Plateau, miniaturized lithics, including
bladelet-like pieces, were present during the harsh period of the Younger Dryas. This ex-
treme cold event further intensified survival pressures, making the portability and efficiency
of stone tools even more critical for hunting in mountainous regions with significant altitude
variation. The contexts of Fodongdi and Fulin suggest that some of the miniaturized lithics
in South China were a response to environmental challenges across ecological niches.

After the onset of the Holocene, the climate stabilized, and microblade technology makes
its appearance in South China (Figure 14b). The increase in microblade production in this
period may be related to climatic amelioration, as a series of transitions in lifestyle occur
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Figure 14 Temporal and spatial distribution of miniaturized lithic assemblages. The grey vertical bars denote
climatic events discussed in the main text. (a) Global and local representative climatic proxies (a: NGICP, 2004; b:
Zhao et al., 2021); (b) Miniaturized lithics can be categorized into three main types including miniaturized bipolar
pieces (in yellow), bladelet-like pieces (in blue), and microblade (in red) (see detailed information of cited sites in
Supplementary materials); (c) Summed probability distribution, South China.
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during this time, such as a broader spectrum diet and increased sedentism (Liu ef al., 2010;
Cohen, 2011; Zuo et al., 2016; Deng et al., 2022). For example, in coastal zones like Xiqi-
aoshan, transportable microblade tools may be adopted to meet the daily demand for ex-
ploiting intertidal and marine resources, as suggested in other coastal regions (Carlson, 1960;
Sanger, 1968), reflecting broader patterns of coastal resource use observed worldwide
(Marean, 2014; Arniz-Mateos et al., 2024; Garcia-Escarzaga et al., 2024). Given this evi-
dence, it appears that miniaturized lithics are part of a flexible adaptive strategy, allowing
for adaptations to a variety of environmental situations.

While changes in ecological contexts can be associated with lithic miniaturization, other
factors may also have influenced technological choices. Our summed probability distribu-
tion analysis, based on 1329 radiocarbon dates from archaeological sites in South China,
suggests that population dynamics could be another potential factor (Wang et al., 2014).
Figure 14c shows that just after the middle Holocene, microblade assemblages increased as
the estimated population rose dramatically. Naturally, their relationship is complex and re-
quires further evidence, but the emerging trend suggests that population dynamics may be a
noteworthy contributing factor. Here, lithic miniaturization could be a solution to population
pressure in South China, a correlation that has been noted elsewhere (Petraglia et al., 2009;
Bousman and Brink, 2018). Moreover, as a technology long prevalent in northern China,
microblade technology provides direct evidence of cultural influence from the north. Addi-
tional evidence, such as records of ancient DNA, crops, and pottery, further supports the
southward diffusion of northern material culture and populations during this period (Yang et
al.,2020; Dai et al., 2021; Huan et al., 2022; Ren and Chen, 2022).

5 Conclusion

Miniaturized lithics in South China have long been under-played in examining technolog-
ical developments through time. The current study focused on miniaturized lithic assem-
blages of South China, shedding light on a key technological and evolutionary pattern in
this region, which is more sophisticated than previously realized. We suggest that lithic
miniaturization and its diverse technological forms associates with the adaptations of hu-
man populations over time, likely relating to fluctuating climatic conditions and popula-
tion dynamics. The current study invites us to consider the significance of this form of
technology and its role during the development of societies in South China. We look for-
ward to additional technological studies and multidisciplinary research around this note-
worthy cultural phenomenon.
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