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Signalling systems for individual recognition: an information theory approach

MICHAEL D. BEECHER
Department of Psychology, University of Washington, Seastle, Washingion 98195, U.S.A.

Abstract. This paper develops a quantitative method for measuring the information capacity of an
animal’s ‘signature sysiem’, i.e. the set of cues by which individuals are identified. The information measure
(H) is derived by applying Shannon’s measure for the information in a continuous variable to a simple
linear model. The model is essentially the analysis of variance model II (random effects), and is implicit in
the many ANOVAs and discriminant function analyses that have been done on the signature systems of
animals. For multivariate measurements, a principal components transformation of the data permits the
information in the independent components to be added to give the total information. An analysis of
iHlustrative data sets reveals a close correlation between H, and the probability of a correct classification of
an individual (P) obtained by discriminant function analysis. H, has the advantage, however, that itisa
population estimate whereas the value of P is tied to the number of individuals in the sample. The
information analysis approach may prove valuable for comparative analyses where evolutionary

hypotheses predict one species to have a better developed signature system than another.

There has been considerable interest in individual
recognition in recent years (see, e.g. reviews in Falls
1982; Colgan 1983). To date, however, most studies
have not gone beyond suggesting that individual
recognition is possible because sufficient variation
exists in presumptive cues such as calls or visual
markings, or showing that recognition occurs, via
cross-fostering, playback or other type of experi-
ment. While comparisons have sometimes been
made between one species and another, they have
typically been confined to present-absent compari-
sons, as in the well-known generalization that
parent-offspring recognition occurs in herring
gulls but not in kittiwakes (Cullen 1957). What has
been lacking in these studies is quantitative descrip-
tion of the recognition system. Quantitative de-
scription would be valuable because evolutionary
logic dictates that natural selection will act to
differing degrees on recognition systems. For
example, in a colonial species such as the Mexican
free-tailed bat, Tadarida brasiliensis mexicana, in
which parents must find their offspring among
hundreds of young of similar age (McCracken &
Gustin 1987), we would expect to find a more
highly developed system than in a less colonial
species in which parents do not face a recognition
problem of such magnitude (Beecher 1982; Jouven-
tin 1982; Colgan 1983).

In this paper, I develop a method for analysing
the signals by which animals are recognized. The
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method is based on information theory (Shannon
& Weaver 1949) and it has the following features.
(1) 1t quantitatively describes the signal (or signa-
ture) system. (2) It has inherent meaning in the
recognition context. For example, it is directly
translatable into the size of the group in which a
particular individual could be recognized with a
given degree of accuracy. (3) As is true of informa-
tion measures generally, it allows ‘apples and
oranges’ comparisons. Thus we can make compari-
sons across species and across recognition cue
modalities. This is the key characteristic, for it
makes possible a truly comparative approach. A
preliminary version of this analysis has been pre-
sented in Beecher (1982).

Some recent studies have used discriminant
function analysis to quantify the extent to which
individuals can be classified on the basis of signal
measurements (e.g. Hafner et al. 1979; Smith et al.
1982; Gelfand & McCracken 1986). Although the
discriminant function technique can give an overall
measure of classification success, this measure has
no general meaning, being tied to the sample size of
the data set. The discriminant function analysis is
logically very similar to the information analysis
described in this paper, however, and I discuss their
relationship below.

The model developed in this paper applies to
signatures that are multivariate in nature, i.e.
consist of several, intercorrelated variables, and
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that vary within individuals. I will first develop the
argument, however, in the simpler context of
discrete, wunitary signatures that are invariant
within individuals.

THEORY

Biological Context and General Perspective

Consider the imposing rccognition problem
found in the ‘maternity caves’ of Mexican [ree-
tailed bats (McCracken 1984; Gelfand &
McCracken 1986; McCracken & Gustin 1987). A
mother leaves her pup in a mass of similarly aged
young (‘creche’) and returns twice a day to nurse.
As she searches for her offspring, she encounters
many unrelated pups which will attempt to nurse
from her. Although the caves contain 1-20 million
bats, the magnitude of her recognition problem is
reduced by the pup’s fidelity to a relatively circum-
scribed area. Once the mother has homed to this
limited area, she must still screen some 1500 pups
on average, according to estimates of McCracken
& Gustin (1987). Thus, in the absence of signature
cues, the chance of a mother finding her pup would
be approximately 1/1500. Our general prediction is
that in species such as free-tailed bats, signature
systems will have evolved to facilitate recognition.
Observational and experimental studies of species
with strong selection for recognition have generally
revealed recognition based on signature cues (in the
case of free-tailed bats, olfactory and acoustic; see
reviews in Falls 1982; Colgan 1983). These studies
do not permit us, however, to evaluate the relative
contributions of signature, perceptual and beha-
vioural adaptations to the recognition process. As
part of an effort to dissect out the specific actions of
selection in the evolution of recognition systems, I
developed the model to be described in this paper.
Its purpose is to quantify the extent to which a
signature system reliably identifies individuals
within a recognition group such as a creche.

Recognition will be treated here as a communi-
cation problem. The sender provides cues, ‘signa-
ture’ cues, which identify it, uniquely in the ideal
case. Although senders may not always be
favoured to identify themselves (sce Beecher 1988;
Beecher & Stoddard, in press), this paper considers
only the general case where reliable identification is
favoured. The receiver processes these signature
cues, presumably comparing them to some expec-
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tation, and behaves in accordance with some
decision rule, either accepting or rejecting the
individual as its mate, offspring or whatever.
Selection could act on such a recognition system in
three general ways: {1) by elaborating the signature
cues, (2) by elaborating the sensory-perceptual
system, and/or (3) by modifying the decision rules
and behaviours by which recognition is expressed.
This paper focuses on the first type of adaptation,
and the information measure derived herein de-
scribes only the signature system. I wilt consider the
implications of the sensory-perceptual system for
this analysis in the Discussion.

The communication perspective just outlined
contains rather specific meanings for several terms
that are sometimes used interchangeably. The key
distinction is between the process of the sender
signalling its identity (‘identification’), and the
process of the receiver exiracting information
about identity (‘discrimination’ or ‘recognition’).
That is, T use ‘identification’ as does a guard
requesting an unknown individual to identify him-
self. I define ‘recognition” as discrimination
between individuals or classes of individuals based
on signature information. That is, T use ‘recogni-
tion’ in the conventional, operational sense, and
‘not as a theoretical term for some process inde-
pendent of stimulation and subsequent response’
(Colgan 1983, page 2). Recognition varies from
simple discrimination of one or a few individuals
(e.g. offspring) from all other individuals, to discri-
mination of each individualin the group from every
other individual: 1 reserve ‘individual recognition’
for the latter extreme.

The distinetion between identification (focus on
senders) and discrimination/recognition (focus on
receivers) is critical for this paper, as the method
described herein applies only to identification
systems. On the other hand, this focus on the
identification system means that the distinction
between simple discrimination (i.e. one individual
discriminated from all the rest) and true individual
recognition is not critical for this paper, for
however different these tasks may be for the
receiver, they impose the same minimal require-
ments on an identification (signature) system. For
example, a particular mother looking for her
offspring in the creche needs only to discriminate
her offspring [rom all other young; she need not
discriminate among unrelated young. From the
recognition perspective this discrimination of one
versus many is certainly simpler than true indi-
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vidual recognition. From the perspective of the
identification system, however, every mother with
an offspring in the creche must make her own
particular discrimination of one versus many.
Thus, the requirement for the signature system that
any individual in the group be distinguishable from
all others is equivalent to the requirement that cach
individual in the group be distinguishable from
every other: both requirements could be met,
minimally, by N distinct signatures for N indi-
viduals.

As a final note, this discussion of the require-
ments of the signature system ‘as a whole’ is not
intended to imply group selection. If individuals
benefit by having distinctive signhatures, natural
selection should give us a signature ‘system’ which,
when viewed as a whole, appears to have ‘solved
the requirement of providing distinctive signatures
for alt individuals’. As the method described in this
paper is essentially independent of these theoretical
considerations, 1 refer the reader elsewhere for
further discussion of them (Beecher 1982, 1988;
Beecher & Stoddard, in press).

Discrete Signature Model

Since identification and recognition are inher-
ently quantitative concepts, they can be readily
analysed from the perspective of information
theory. The application is particularly straightfor-
ward in the discrete signature model considered
first. For a general treatment of information theory
see Shannon & Weaver (1949), Quastler (1958) or
Attneave (1959). The application of information
theory to animal communication is well described
in Wilson (1975), Hailman (1977) and Losey
(1978).

The information quantity examined in this paper
is the information capacity of the signature system,
by which I mean its ability to identify
individuals uniquely, expressed in terms of how
many individuals it can identify under certain fixed
assumptions about the receiver, error levels and so
forth. Our goal is to be able to compare the
signature systems of different species or popula-
tions, or even different signature systems within
one group of amimals (e.g. the olfactory and
acoustic signature systems of Mexican free-tailed
bats). To make these comparisons, we need a
method for estimating the information capacity of
a signature system from measurements in real
populations. At the outset, I should emphasize that
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the information measure describes only the signa-
ture system, and in no way implies that this amount
of information is actually extracted by any particu-
lar receiver. Indeed, it is highly unlikely that any
receiver extracts all of the information in a signa-
ture system, since the receiver generally is in-
terested in only a small portion of it {¢.g. in whether
the signaller is its offspring or not).

In the discussion that follows, I simplify by
assuming recognition is purely one-way (e.g. par-
ents searching for offspring, with offspring indiffer-
ent as to who feeds them), and that each receiver
has a single target individual within the group (as in
a free-tailed bat creche, where each mother has a
single offspring). Both two-way recognition and
multiple target individuals could be added to the
model without affecting the general argument (for
a discussion of the complications of reciprocal
parent-offspring recognition, see Beecher et al.
1985; Beecher 1988).

1 begin by characterizing the recognition group
in terms of its effective size, N, which is the number
of individuals that, on average, are equally likely to
be confused with the target individual. The effec-
tive size of the group will inevitably be smaller than
the actual size of the group (creche, troop, colony,
etc.). Consider a parent searching for its youngin a
creche. 1 suppose that the parent first applics a
‘preliminary screen’ using non-signature cues. For
example, the parent goes to a location where its
young is likely to be, rejects individuals that are
much younger or much older than its offspring, and
so forth. When all the non-signature evidence has
been exhausted, the parent is left with N indi-
viduals, one of whom is the target individual. In
practice, N can be estimated at least crudely from
careful observational studies (e.g. the 1500 estimate
for Mexican free-tailed bat creches given above).

I next suppose that each individual in the
recognition group is identified by a signature, not
necessarily unique. The signature set is conceived
as existing independently of the particular indi-
viduals in the recognition group. That is, it is the set
of the S possible signatures, each with its associated
relative frequency. Attention is restricted to the
case where S> N, for the following reason. It is
unlikely that there is a biologically realistic mecha-
nism of signature determination (such as a simple
genetic mechanism) which could guarantee unique
signatures (contrasted with, say, the mechanism of
assigning jersey numbers to members of an athletic
team). Therefore, if individuals ‘select’ their sig-
natures independently, S would have to be con-
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siderably larger than N or signature duplications
within the group would be common.

1 define three information measures: (1) Hy, the
inherent uncertainty as to identity within the group
of N individuals; (2) Hg, the potential signature
information present within the set of M signatures
observed within a particular group of N indi-
viduals; and (3) Hs, the potential signature infor-
mation present in the entire set of § signatures
(M<N<S).

Ho, the initial or inherent uncertainty as to
identity, is defined purely in terms of the number of
individuals in the recognition group, i.e. the
number of individuals requiring identification

Hyp=log N €]
where the log here and throughout is to the base 2
and is measured in bits (here bits/individual). Hy is
the minimum number of binary decisions the
recognizer would need to narrow the search down
to the target individual (assuming that all indi-
viduals are uniquely identified).

Considering either the larger pool of S signatures
or the smaller set of M observed signatures, the
information value of a given signature in a set is

hi= —log pi

where p; is the probability of the ith signature
within the set. Here, A is the minimum number of
binary decisions the recognizer would need to
narrow the search down to the ith signature. The
lower case h indicates that our information
measure pertains to a single signal (signature), and
not the entire signal set. Some authors refer to the
information value of a particular signal as its
‘surprisal’, and reserve the term ‘information’ for
the full signal set (see Attneave 1959, page 6;
Hailman 1977, page 32).

The average information value of a signature is
then the sum of the #;, weighted by their relative
frequencies of occurrence, or

A)
Hg = —Z[’i log p; 2
bits/signal, if we are evaluating the entire signature
set or

M
Hg = —}plogp,
bits/signal if we are evaluating only the Af sigha-
tures of the N individuals in a particular group.
Note that where signatures within the full set are
equiprobable, Hs=1log S and when M =N, Hg=
Hoy. Figure 1 provides a simple example illustrating
calculation of Hy, Hs and Hg.
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(A} Recognition group (V=16 individuals}

0! 02 03 04 05 06 O7 08
H0:4
Q9 10 11 12 13 14 15 |6

{B) Signature system (S5 = 26 signatures)

a ihrough z (equiprobable} He=4-70

(C) Observed signatures in the group
(V=16 individuals, M=12 signatures)

Hg =345

(D) Re-classification of group info one
farget individual and oli others

H2= 156

X X X X X X X X _]

Figure 1. Simple example to illustrate meanings of the
different information measures. Individuals 01 through
16 (A) can have signatures a through z, each of which is
equiprobable (B). One random draw of signatures is
shown in C. Note the duplications in C: two individuals
share ‘a’, two individuals share ‘c’, three individuals share
‘k’. One ‘egocentric’ re-classification of signatures (with
respect to individual 01} is shown in D.

I advanced the argument earlier that selection
will favour larger Hs in species {or populations)
with greater identification/recognition needs
(larger Hy). I now use our discrete signature model
to demonstrate a second relationship relating iden-
tification needs to the information capacity of the
signature system. For simplicity, the S signaturesin
the set are assumed to be equiprobable. Then
Hs=log S and since S>N=M, Hs> Hy> Hg.

If each of the N individuals within the group
draws its signature randomly from the pool of §
equiprobable signatures, then we can specify the
value of Hs that would allow discrimination at a
certain error level. Receivers are assumed to be
“ideal receivers’, with an error arising only when
two individuals have drawn duplicate signatures. If
signatures are equiprobable and drawn at random
(with replacement), then the probability of the
same signature being drawn more than once is

1\N—1
p-l—(l~—§)
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(see Beecher 1982). For N/S < 0-1, this simplifies to
N
P=3

approximately. Rearranging, we see that
Hs—Ho=—logp

That is, for relatively error-free identification (and
recognition), the information capacity of the sig-
nature system must be considerably greater than
the initial uncertainty. Note that we have not cven
considered the additional problems posed by non-
ideal receivers, which should favour signature
redundancy and further increase the necessary
Hs— H, difference.

A cautionis in order here. None of the equations
above imply that any receiver actually individually
recognizes each individual in the group. As men-
tioned above, in the most common case, the
recognizer has an interest only in discriminating the
target individual from all other individuals in the
group, and none in discriminating among the
remaining individuals (for an exception, see Che-
ney & Seyfarth 1980). One can conceptualize the
signature system from the narrow perspective of
one particular recognizer by reducing the signature
set to two classes of signatures, the signature of the
target individual and the class of signatures of the
remaining individuals. Then M =2, the reference
signature has the information value (surprisal) of
log N and the remaining N—1 signatures have the
information value of log (N/N—1) and so the
average signature has the information value of

1 N—-1 N
Hl_ﬁlogN—i- N log—N_] A 3)

That ‘2’ subscript denotes that we have arbitrarily
re-classified signatures into two categorics. This
perspective is useful primarily when the focus is on
information transmitted to a particular receiver.
For example, discussing an analogous problem in
species recognition, Hailman (1977, page 30) has
pointed out that a particular duck undoubtedly
extracts less information from the plumage traits of
the different duck species on a lake than does an
experienced bird-watcher, in that the duck is
concerned only with distinguishing its species from
all the others. Qur focus here, however, is not on
the information extracted by one receiver from the
system, but on the information available to all
receivers. In the case of this duck analogy, we are
interested in the signature system that would
permit a mallard, or a goldeneye, or an individual
of any of the other species, to discriminate correctly
among species. In the case of our context of
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interest, we are interested in the signature system
that would permit any receiver (not one particular
receiver) to discriminate its target individual from
all the rest. Thus for our purposes, equation 2,
referring to the average signal, is more appropriate
than equation 3, which refers, by implication, to the
perception of one particular receiver. As a final
note, it is instructive to compare the general
meaning of equations 2 and 3. Equation 2 indicates
that uncertainty concerning which individual in the
group is the target individual increases with N.
Equation 3 gives the other side of the coin:
uncertainty concerning whether or not a given
individual is the target individual decreases with N.

Continuous Signature Model: One Variable Case

Shannon has shown that the average informa-

tion in a continous variable is
H(x)= —fp(x) log p(x) dx

where p(x) is the probability density function of x
(Shannon & Weaver 1949). Note the analogy to
equation 2. Again, this information measure refers
to the average value of a signal in the set. Shannon
has shown further that

H(x)=log ca 4)
where o is the standard deviation and ¢ is a constant
given by the form of the distribution (¢ ranges from
3-46 for a rectangular distribution to 4-13 for a
normal distribution). Note that if we use a rec-
tangular (uniform) distribution to approximate the
discrete equiprobable case, equation 4 reduces to
log §. In this approximation each signature is
assigned a number 1, 2, ..., S (i.e. the width of a
category=1). Thus, S is equivalent to the range of
the distribution. Since for a rectangular distribu-
tion o=range/3-46, substitution into equation 4
gives log S.

Unlike the discrete variable H, the continuous
variable H is a relative, not an absolute measure,
the value of H depending on the units of measure-
ment (c.g. it would depend on whether our variable
were measured in inches or cm). Related to this
problem, zero in this scale of measurement is
totally arbitrary; it simply occurs when o=1/c.
This means that the information in two continuous
variables could not be compared unless they were
measured on the same scale. Both of these prob-
lems are eliminated, however, when we use the
simple linear model to be described next.

The linear model [ will develop here is essentially
identical to the analysis of variance model I or
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random effects model (¢.g. Sokal & Rohlf 1981). As
we shall see, this model has been used many times in
the past in analysing signature traits, although to
my knowledge this has never been explicitly recog-
nized. Rather, the model is implicit in the many
analyses that have used either linear discriminant
functions to classify individuals or have carried out
ANOVAS on these data.

Suppose we are measuring a single variable trait,
such as the duration of a call, and have n obser-
vations each on k individuals. Then by the model a
particular observation, Xj;, is assumed to be com-
posed of two independent components: a com-
ponent B;, reflecting true differences between indi-
viduals, and a ‘within-individual’ or ‘error’
component, Wj. I treat this last component as
originating within the signaller (hence its name) but
in fact it could equally well be considered as
originating within the receiver (this alternative
viewpoint is taken up in the Discussion). Therefore,

Xij =B+ Wij (5)

assuming that the means are zero. Because B, and
W; are independent, the variances have the simple
relationship

olr=0%s+ 0w (6)
where o2 is the total variance in X and 623 and 0w
are the variances in B and W, respectively.

Hs is then defined as the amount of information
needed to reduce the total uncertainty to the
within-individual uncertainty, i.e. by equation 4.

Hs=log cr or—log cw ow

Hence, assuming ¢ is the same for total and within
distributions

T
H,=log—
Eow %)
Thus from equation 6
7’ + 07
Hg = log _Bz,,.ﬂ (8)
07w

H; so defined has all the properties an information
measure should have (see Shannon & Weaver
1949), including the following. (1) Signature infor-
mation increases directly with o and inversely with
ow. (2) H3=0 when g3=0. (3) Hs is an absolute
measure with a non-arbitrary zero, the unit of
measure being the within-individual uncertainty.
The original units of measurement are immaterial.
We can compare, say, the amount of signature
information conveyed by the amount of dark
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feathering on the face with that conveyed by the
average frequency of a call.

Because the linear model leading to equation 8 is
formally identical to the ANOVA Model 11, we
immediately have an appropriate statistical test for
the presence of signature information. Note that
between ‘groups’ here is between individuals and
within ‘groups’ is within individuals. The expec-
tations for the between mean square and within
mean square are then

MSg=n % +ay )

MSw=0 (10)

The null hypothesis is that there is no source of
variation beyond thc inherent within-individual
‘noise’, ow, i.6. Ho:o3 =0. By hypothesis, then, the
ratio
MSg
MSy, (11
should equal 1. As mentioned in the introduction, it
has been common practice to test for signature
variation by precisely this statistical test, which
implies the assumption of this particular linear
model. None of these studies, however, after
rejecting the null hypothesis, has proceeded to the
next step of evaluating how much signature infor-
mation is present. In the method I describe here, the
same data are used to estimate the available
information via equation 8. From equations §-11
we have the convenient computational formula

MSp + [n— 1M Sy

F=

Hg =1 12
s = I08 n MSy, (12)
and see that F and Hg are closcly related:
F+n—1
Hy=log [—— (13)
]

Continuous Signature Model: General Multivariate
Case

The signature traits typically measured by in-
vestigators, usually vocal or visual signals, are
inherently multivariate. That is, they can be ana-
lysed into a number of intercorrelated variables.
Studies in this area have generally overlooked the
intercorrelations, doing a separate ANOVA on
each variable. It is sometimes assumed that the
larger the number of significant Fs obtained in such
an analysis, the greater the potential signature
information. Such an assumption is incorrect, of
course, since much of the information may be
shared by variables, i.e. may be redundant.
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Consider first the hypothetical case where the
variables are not intercorrelated. Then the total
information Hs is simply the sum of the informaton
H; in each of the independent variables, and

Hs=Y H=Y log =& (14)

Owi

where g; is the standard deviation of the ith trait.

In the typical case, however, the variables will be
intercorrelated in varying degrees, and equation 14
would be inappropriate for such data. The most
direct solution to this problem is to transform the
original variables to give a second set of variables
which meet the following two criteria: (1) that they
be independent, and (2) that they contain the
precise amount of non-redundant variance con-
tained in the original set. These criteria are met by a
principal components transformation (e.g. Pi-
mentel 1979; Manly 1986). In a principal com-
ponents transformation, the original variance-
covariance matrix V is transformed into a vari-
ance-covariance matrix L in which all covariances
are zero (criterion 1). The product of the variances
(eigenvalues, A;) of the transformed matrix is equal
to the determinant or generalized variance of the
original variance-covariance matrix, i.e.

M A=|L|=|V]| (13)

where |L} and [V| are the determinants of the
respective variance—covariance matrices. Since the
generalized variance is the total non-redundant
variance of the original variables, the principal
components transformation meets our second cri-
terion. The variance estimates from the principal
component data are thus the independent vari-
ances we wish to substitute into equation i4.

Before submitting the data to the principal
component analysis, the variables X, X3, . . . must
be reduced to comparable form. In the present case,
our theory dictates that we transform the raw
scores by the within-individual standard deviation
ow. That is, we obtain

X
i=Gu (16)
so that
,_OT
ar —-a
and
O'wI:]

where primes designate ow-transformed scores.
Thus if %1 is say twice o%y,’ then it will be so
weighted in the principal components transfor-
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mation. (Note that the principal components trans-
formation is done on the variance-covariance
matrix, not the correlation matrix, which would
weight all variables equally.) That is, the variables
are weighted according to the amount of informa-
tion they contain when considered separately.
Without this step, the unit of measurement would
be the main determinant of the weighting variables
received in the principal components transforma-
tion.

The variables X”| X", . . . are then submitted to a
principal components transformation to give the
new, independent variables Ui, Us, ... which can
then be analysed in separate ANOVAs. Mean
square estimates of o’r and ¢%w are obtained as
described above from equations 9 and 10 and the
total information is computed from equation 14.

A few points should be made about the relation-
ship between the transformed U variables (princi-
pal components) and the original X” variables.
First, the numerator of equation 14 could be
obtained directly from the original total variance-
covariance matrix since the product of the eigenva-
lues will equal the determinant of the variance—
covariance matrix from which they were obtained
(equation 15). In general, however, this same
relationship will not apply to the denominator of
equation 14, since the principal components trans-
formation is based on the total scores, not on the
components B or W. Thus although the total
variance—covariance matrix based on principal
components scores will have zero covariances, the
between variance-covariance matrix (based on
individual means) and the within variance-covari-
ance matrix (based on residuals) will not.

Two further points may be made about the
relationship of the original and transformed vari-
ances by considering two special cases. The first
case is when all correlations equal zero. While the
calculation of the determinant of a matrix is
generally complicated, it is the sum of the product
of the diagonal elements (variances in a variance-
covariance matrix), plus or minus various products
involving off-diagonal elements (covariances).
Thus, when all correlations equal zero, all covari-
ances equal zero, and the determinant is simply the
product of the variances and |V|=log I1o?.

The second instructive case is the two-variable
case. For a 2 x 2 matrix, the determinant is simply
the product of the two diagonal elements (vari-
ances, ¢%) minus the product of the two off-
diagonal elements (covariances, pag,as), or
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|Vl =O'21 0'22—'p2 0'21 0'22

=(1—p?) 0% d%
where p is the correlation coefficient. In this two-
variable case it is readily apparent that the genera-
lized variance is simply the product of the variance
in variable 1 and the variance in variable 2 which is
not explainable by the correlation between the two
variables (the residual variance).

AN TILLUSTRATIVE EXAMPLE

Introduction and Methods

An example, based on a data set created by
simulation, is presented here to illustrate features
of the information analysis. The simulated data set
and all statistical analyses were done using the
SYSTAT statistical package (Wilkinson 1986). 1
will be happy to provide interested persons with the
data set on request.

The simulated data set was based on seven
independent, normally distributed variables fitting
the description of equation 5, 1.¢. each variable was
the sum of two independent variables, B; and W;.
For each of the seven composite variables, a2, =1
while o5 ranged from 2 to 1024. All ps were zero.
The final data set consists of 10 measurements on
each of seven variables from each of 20 ‘indi-
viduals’. The data set was designed to resemble
data sets one is likely to obtain with real animals.
First, the sample size is quite realistic. Second, if we
endeavour to extract the minimum number of
variables necessary to characterize the composite
signature trait, these variables should have low
intercorrelations. Third, the range of orfow is
representative of the range I have encountered in
real data sets, such as the swallow calls we have
analysed, and which will be considered in the
Discussion (Beecher 1982; Beecher ct al. 1986;
Medvin, Stoddard & Beecher, unpublished data).

The major purpose of this example, apart from
illustrating the mechanics of the analysis, is to
compare our principal component/information
analysis with discriminant function analysis of the
same data. As mentioned in the introduction,
discriminant function analysis has been used in
recent studies as a way of quantifying the ability of
the signature traits to identify individuals (e.g.
Hafner et al. 1979; Smith et al. 1982; Gelfand &
McCracken 1986). Typically the data set is split,
with one subset used to derive the discriminant
functions which are then used to classify the second
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subset. How well the second subset is classified is
thus a measure of the signature capabilities of the
measured variables, at least for the sample consi-
dered. Discriminant function analysis resembles
the princtpal component analysis which we have
used here in that we derive new variables based on
linear combinations of the original variables; both
transformations give a number of factors/functions
equal to the original number of variables (though
they need not all be significant). The criteria for the
choosing of the coefficients in the two procedures,
however, are somewhat different. In principal
component analysis, the coefficients are chosen so
that the original variables are transformed into
principal components having zero covariances. In
discriminant function analysis, the coefficients are
chosen so that the original variables are trans-
formed into canonical discriminant functions
which reflect diffcrences between the groups as
much as possible (‘groups’=individuals here).
That is, the discriminant functions are chosen so as
to maximize the ratio MSs/MSw for each of the
functions successively, The principal component
analysis is constrained so as not to produce any
‘new’ variance, and so is an appropriate first step
for our information measure, which 1s intended to
characterize the original total non-redundant vari-
ance. The discriminant function analysis is not so
constrained, its purpose being only to separate the
groups (individuals) maximally. Any particular
observation is classified as to group membership on
the basis of its Mahalanobis distance from the
group centroid (Pimentel 1979; Manly 1986;
Wilkinson 1986).

Analysis and Results

Population and sample values for the simulated
data set are shown in Table I (obtained rs, not
shown, were all small and non-significant). The
data analysis proceeded as follows.

(1) A simple ANOVA was done on each variable
in the original data set. Only variables giving a
significant F are kept (although in fact any variable
not doing so would have little impact on the
subsequent analysis). In this case, F for each of the
seven variables was highly significant (P < 0-00001).
The between and within mean squares were used to
estimate o3 and ow (equations 9 and 10) for the
seven variables (Table 1, ‘sample’). (2) Each vari-
able in the original data was transformed by its ow
estimate to give the X* of equation 16. Note that if
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Table 1. Population parameters and sample estimates {10 observations from each of 20 ‘individuals’) for data set

obtained via simulation

Population* Sample* Principal componentst
Variable ¢% o*w orjow Hi 25 Pw  stisw H 5%g swo srisw H

1 2 1 1-73 0-79 1-81 0-86 176 0-82 1-16 0-95 1-49 058
2 4 l 224 1-16 620 [-02 266 [-41 4:32 695 2:36 1-24
3 9 [ 3-16 1-66 79 096 305 161 668 1:06 270 143
4 25 1 5-09 2-35 384 120 575 252 30-34 1-01 5-57 248
5 64 I 8-06 301 64-5 1-03 799 300 60-92 1-00 7-88 298
6 225 1 1503 391 359-1 1-08 183 4-19 299-6 0-98 17-52  4-13
7 1024 1 32:02 500 1232 0-89 370 521 1411 1-05 3662 519

Hg=17-88 Hs=18-76 Hs=18-03

* Each variable was the sum of two random, normally distributed variables B+ Wjj with means =0 and variances as

indicated under Population.

+ Each principal component is listed in the row with the original variable which loaded most heavily on it.
Symbols: os represent population parameters, ss represent estimates of those parameters via equations 9 and 10.

the ANOVA were repeated on these transformed
scores, the Fs would be identical to those of step 1.
(3) The X’ data were submitted to a principal
components transformation. As might be expected
for these data, the resulting principal components
were similar to the original variables because of the
low correlations among variables. (4) A simple
ANOVA was done on the principal components
data. All seven factors were significant at
P <0-00001. The between and within mean squares
were used to estimate g and ow (equations 9 and
10) for the seven factors (Table I, ‘Principal
components’). (5) The individual H; and the overall
Hs for each population variable, sample variable
and principal component were computed via equa-
tions 7 and 14.

Comparing the Hs estimates from Table 1, it can
be seen that the sample Hs is too high (18.76 versus
the true value of 17-88), as expected, since this
estimate contains redundant variance (i.e. the
variable intercorrelations have not been removed).
The Hs obtained from the principal components
analysis data (variable intercorrelations removed),
however, is close to the true population value
(principal components analysis Hs estimate = 18-03
versus the true value of 17-88). Given that we have
only a single sample, I will make only two remarks
about sampling error. First, in this case it is
obviously quite small. Second, in general Hs does
not present special problems for evaluating sam-
pling error (see, e.g. Losey 1978), since Hs is a
simple derivative of variance estimates for which

there are well-known statistical tests. Additionally,
variables which are marginally significant have
little effect on the value of Hs.

Because the mathematical bases for the principal
components/information analysis and discrimi-
nant function analysis are different, the simulated
data base was used Lo derive an empirical measure
of the relationship of the two procedures. All seven
variables, separately and in several combinations
of two or three variables, were analysed by both
procedures. The outcome of the principal compo-
nentsf/information analysis is Hs. The outcome of
the discriminant function analysis is the percentage
of observations that are correctly classified as to
group (‘individual’). In the discriminant function
analysis, one-half of the data sct was used to derive
the discriminant functions used to classify the
second half of the data set (i.c. the first subsct
consisted of five observations each on 20 “indi-
viduals’, and the second subset consisted of five
additional observations on each of the same 20
‘individuals’).

A comparison of Hg (from the principal com-
ponent/information analysis) and the probability
of correct classification (P, from the discriminant
function analysis) is shown in Fig. 2. Twenty data
points are shown: all seven variables considered
separately, seven pairs of variables, and six trios of
variables. Although the data points are not all
independent, the function is essentially identical to
smaller functions containing all independent points
{(e.g. each of the seven variables considered scpara-
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P)

Probability of cofrect classification (

o] 1 L

0 > g 5 8
Information (#)

Figure 2. Probability of correct classification (P),
obtained from the discriminant function analysis, as a
function of the information capacity {Hg) of the variable
set. Classification is for the full set of 20 ‘individuals’.
Points are the seven variables considered separately,
seven pairs of these variables, and six trios of variables
(see text). Best fit line: P=0-054+0-14H (r=0-98).

Probability of correct classification (P)

0 i 2 3 4 5 &
information. (#}

Figure 3. Probability of correct classification (P) as a
function of information capacity (Hs); shown for the
seven variables taken separately. The parameter is the
number of ‘individuals’ (10 or 20). ®: k=10 individuals.
The best fit line for these data is: P=01740-15H
(r=0-97). O: k=20 individuals. Best fit line for these data
is: P=0+0-16H (r=099).
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tely). Note that P=0-05, chance level for 20
individuals, when Hs=0. Note also that we ‘hit
ceiling’ (P~ 1-0) at Hsx~8. Any combination of
variables giving Hs> 8, gave P>0-99 (usually 1-0)
and these data points are not plotted in Fig. 2. The
major point here is that Hs and P are clearly
measuring the same thing. The major advantage of
Hs is that it provides a measure that is independent
of the particular conditions of the sample. In
particular, the value of P obtained from the
discriminant function analysis depends on the
number of individuals in the sample, and has no
general meaning outside of this context. For a
given Hs, decreasing the number of individuals in
the sample will increase P (unless Hs is high enough
that P is alrcady at its 1-0 ceiling). For example,
variables 4 and 6 together (Hs=13-72) do a poor job
of allocating observations to individuals for the full
sample of 20 individuals (59% correct classifica-
tion, point shown in Fig. 2) but do better for a
smaller sample of 10 individuals (76% correct
classification, not shown in Fig. 2). A demon-
stration of this difference is shown in Fig. 3, which,
foreach of the seven vartables separately, compares
a half of our full data set (10 individuals) with the
fuil data set (20 individuals). It can be seen that for
a given value of Hjs, the probability of correctly
classifying an individual averages about 0-2 higher
for the smaller data set. The advantage of Hs as a
measure is that it is independent of the number of
mdividuals to be classified, while predicting our
ability to classify an individual as to identity.

DISCUSSION
Assumptions of the Information Analysis

The information analysis approach that I have
described makes a number of assumptions. When
the goal of the application is to evaluate the
absolute value of the obtained Hs, these assump-
tions must be fully met. When the goal of the
application is to compare the relative values of Hs
for two or more species (or two or more modalities
within a species), only much weaker assumptions
are required. As an example of an absolute-value
application, in my preliminary development of this
information model, I predicted the information
capacity ol the chick call of the bank swallow,
Riparia riparia, necessary for a parent to find its
chick reliably in the creche of typical size and I
compared this with the value T obtained (Beecher
1982). This exercise requires satisfaction of all of
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the assumptions I will list below (and of some
problematic guesses, ¢.g. the ‘acceptable’ level of
error for a parent, the ‘typical’ size of a creche). 1
now regard this exercise as naive (although a
worthwhile pedagogical enterprise, as it clearly
illustrates the general meaning of Hs). As an
example of a relative-value application, in the same
paper (Beecher 1982) I predicted that the infor-
mation capacity of the bank swallow chick call
should be greater than that of the homologous call
of the rough-winged swallow, Stelgidopteryx serri-
pennis, as the former species is highly colonial and
the latter is not (see similar argument below).

I will detail these assumptions in their strongest
form (that are required for absolute evaluations of
Hs) and indicate as well the weaker requirements of
relative (comparative) evaluations.

Assumption 1: ideal receiver

Our method provides a measure of information
capacity of the signals, not information extracted
by the receiver. For the absolute value of Hsto have
meaning, the receiver must have extracted all the
information from the signal that we have extracted.
For comparative analyses, the following, weaker
version of this assumption is required.

In our approach ow is used as the ‘error’ term in
the evaluation of or. In this paper I have treated ow
as residing within the sender (e.g. its calls vary), but
I could just as well treat it as residing within the
receiver {its perception of the calls varies), or as a
composite of both. The theory is neutral on this
point. Here I distinguish these two sources of error
variation as the within-sender ow and the receiver’s
‘just noticeable difference’ (JND). Although some
of our measured within-sender ow may actually
arise within the measuring instruments (¢.g. micro-
phone, tape-recorder, spectrograph, spectrogram
measurer, etc.), in practice we will use calibration
procedures to show that measurement error
accounts for only a small proportion, relative to
true sender variation, of the measured ow. How-
ever, we will often not have information on the
receiver’s JND, This lack of information could lead
to serious misinterpretation if in fact the receiver’s
IND is considerably larger than the within-sender
ow, or if the JND and ow have an unpredictable
relationship, and the species being compared differ
in this respect. For comparative analyses, we need
only assume that the JND is consistently less than
the within-sender gy, or that the two have a
consistent relationship across variables and spe-
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cies. Note that when the receiver’s IND is consider-
ably less than the within-sender ow, we have an
approximation of the "ideal receiver’ case. That is,
the limits on identification are not the receiver’s
ability to distinguish two similar signals, but the
sender’s ability to present the same signal from one
time to the next.

Assumption 2: completeness

To assign significance to our obtained absolute
value of Hs, we must have extracted all of the
relevant information. Depending on our goal, this
may be all of the signature information used by the
species, or all of the information in a particular
modality {odours versus calls for example). For
comparative purposes, however, it is only necess-
ary that we have extracted (1) most of the relevant
information, and (2) a similar amount for all of the
species being compared (or if not a similar amount,
that the error be in the dirction opposite that of the
hypotheses). A good initial check on this assump-
tion is the ‘reconstruction’ criterion: can we, from
our extracted measurements, reconstruct a good
replica or model of the original? From calli
measurements, can we reconstruct a good replica of
the original spectrogram? From measurements of
egg colour patterns (see Buckley & Buckley 1972;
Shugart 1987), can we make a model egg that looks
like the real thing?

The completeness criterion really refers to two
things, only the second of which is evaluated by the’
‘reconstruction’ criterion. (1) Are all the relevant
variables measured to begin with? (2) Are all the
relevant variables extracted in the final data reduc-
tion? To take call measurements as an example, it is
well known that the sound spectrograph largely
fails to represent amplitude information (step 1).
Additional information may be lost when we
extract measurements from the spectrogram (step
2). In this instance it is relatively easy to evaluate
the second step but we can evaluate the first step
only if we use an instrument suitable for extracting
amplitude information (e.g. an oscilloscope).

Assumption 3: variable weighting

Our method weights each parameter in accord-
ance with gr/ow. This weighting is central to the
approach, of course, but some parameters may be
more perceptually salient to the animal than other
parameters.
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Testing the perceptual assumptions

It can be seen that all three of these assumptions
arc essentially questions about how the receiver
analyses (perceives) the signature traits under
consideration. In given instances we may know
enough about the perception of the particular
group with respect to the particular modality that
these perceptual assumptions are not a major
problem. For example, the perceptual assumptions
problem should not be too severe in a comparison
of the extent of facial variation in several species of
primates, if for no other reason than that the
perception of the species in question is likely to be
very much like our own (though undoubtedly not
identical). On the other hand, a conclusion that
several species of bees differ in the extent of
signature variation in odours would certainly
require a serious cvaluation of these perceptual
assumptions.

The most direct way to test these assumptions is
via a direct investigation of the amimal’s perception
of the signals in question. Unfortunately, most
often it will not be practical to test perception in the
same detail as the signal itself. In some cases,
however, perceptual studies can be used as a check
on conclusions of the signal analysis, or can be used
to probe particular interesting conclusions. For
example, we have analysed the chick call of the
colonial cliff swallow, Hirundo pyrrhonota, and the
non-colonial (or semi-colonial} barn swallow, Hir-
undo rustica, and found that Hs is approximately
five bits greater for the cliff swallow call (prelimin-
ary accounts in Beecher et al. 1986; Beecher et al. in
press; the full account is in preparation, Medvin,
Stoddard & Beecher, unpublished data). This
species difference is consistent with the prediction
described above for bank swallows and rough-
winged swallows, and with field experiments on
cliff swallows and barn swallows (Stoddard &
Beecher 1985; Medvin & Beecher 1987). To check
on the perceptual assumptions, we carried out
laboratory studies of the perception of these calls
by both cliff swallows and barn swallows, using
conditioning procedures (Beecher et al., in press).
These laboratory studies showed that both chff
swallows and barn swallows can discriminate more
easily among the calls of different cliff swallows
than among the calls of different barn swallows.
Moreover, birds of both species were able to
discriminate among the individual calls in a set of
calls, thus showing that true individual recognition
is possible, even though not manifested in the field
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(where, as per our earlier discussion, the bird is
interested merely in the distinction between iis
offspring and unrelated chicks). Finally, we could
predict with some accuracy a bird’s ability to
discriminate between particular calls on the basis of
the measured difference between calls, using the
variables and weightings of the information analy-
sis. Thus, these laboratory experiments generally
support the perceptual assumptions underlying the
information analysis in this case. To derive an
information measure directly from perceptual
experiments, however, will generally require a
substantially greater investment of time than a
signal analysis, and in general will not be practical.
Nor will it generally be feasable to do perceptual
tests in the field, if for no other reason than that
animals will not respond to heterospecific signals
under normal circumstances. If animals are tested
only on conspecific signals, sender characteristics
and receiver characteristics will be confounded.

Meaning and Uses of the Information Analysis
Approach

As our comparison of the information and
discriminant function analysis approach illustrated
above, Hs measures the extent to which the sig-
nature system permits correct identification of
individuals. Hg is ultimately translatable into the
size of a group in which an individual could be
identified to some particular degree of accuracy. If
we take our translation rule from the analysis of
Figs 2 and 3, then for a five-bit signature system
and 90% accuracy, this group size is somewhere
between 10 and 20 individuals. This particular
translation rule assumes an ‘ideal receiver’, i.e. one
that extracts all of the avatlable information from
the signals and assigns identities according to the
optimality rule specified in the discriminant func-
tion analysis. It is obvious that one could develop a
formal model to predict the probability of correct
classification given Hg and the group size. A very
simple example was developed for the discrete
signature model earlier in the paper. T will not
pursue this approach further here, however, as 1
believe the power of the method lies rather in
comparative analyses not requiring prediction of
precise values of Hs.

In conclusion, I suggest that the method I have
described here will be most useful for comparative
analyses. If, as in the swallow example described
above, we can rank several species in terms of some
variable affecting recognition {e.g. coloniality),
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then we would predict that the information capaci-
ties of their signature systems should be ranked
similarly. Another major use of the method is in
disparate comparisons. For example, we might
have reason to compare the individual distinctive-
ness of the scent mark of a particular mammal with
that of the song of a particular bird. Provided we
could adequately address the assumptions listed
above, so that we had confidence that the analyscs
were relatively complete and comparable then the
information measure would permit this sort of
apples-and-oranges comparison. While we have
focused on the hypothesis that selection has
increased individual distinctiveness, an informa-
tion analysis may be used to test the contrary
hypothesis that selection has decreased individual
distinctiveness. For example, several hypotheses
have proposed that selection has favoured decreas-
ing the individual distinctiveness of bird songs (e.g.
Falls 1982; Beecher & Stoddard, in press). Finally,
as suggested above, the information analysis can be
based directly on.perceptual data if the perceptual
assumptions are questionable, or if it is relatively
easy to get perceptual data. For example, onc
might extract the relevant dimensions of the signa-
tures via a multidimensional scaling analysis of
perceptual data (e.g. Dooling et al., in press).
Provided we could identify the stimulus correlates
of these dimensions, we could then use either
perceptual INDs or within-individual ows (or both)
as our error term.
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